About Sarah Frédérickx

Sarah Frederickx is the Educational Developer at D-HEST.

Master Thesis Evaluation – a Web Tool

The problem

Grades do not tell anything precise about the student’s abilities in the areas of scientific work, project management, critical thinking and social skills. And, in Switzerland especially, they do not offer any meaning to non-Swiss.

The solution

Additionally to the grade, we offer a report that describes the student’s abilities thoroughly. Since report writing is arduous, we developed a web tool MTE (Master Thesis Evaluation) that will calculate the grade and produce a report in a few clicks. You can still individualize the report afterwards, deleting and adding parts.

Further Advantages

  • Compliance: Grade calculation and partition follow the study guidelines.
  • Fairness: The professors all assess along the same criteria.
  • Service to the student’s future: The report can be part of the student’s portfolio.


More info on MTE can be found in the moodle course “Master Thesis Evaluation“.

Here is an fictive report:

Virtual Labs @ETHZ, so far

Implementing Virtual Laboratories in HigherEd

It has been more than three years since I started implementing virtual labs (chemistry and biology labs) at ETH Zürich. I put together the experience so far in a PolyBook (used to be on eSkript: https://eskript.ethz.ch/labster/. Enjoy reading about what has been, and get the feeling of what the future holds! It includes an evaluation and small experimental study.

Teaching Scenarios: Interactive Lecture Material & Collaboration

eSkript, the platform for interactive lecture material at ETH Zurich was born in 2014 (cf. the interactive timeline about eSkript; new PolyBook link), and since then many scenarios have been used by many lecturers. (eSkript is available to all Switch AAI affiliated persons.)

The main goal of interactive lecture material is to engage students, which promises better learning outcomes. As a byproduct, it makes lecturers happier and have fun! 🙂 The following selection of scenarios have been used at least a few times each. Bear in mind, there are many more possibilities.

1 – Review

Students are the best judges of your material. Make it available for annotation and let students correct it and give you feedback. Already after one round, your material will be perfect!

2 – Collaborative Study Material

Many students or many groups of students create material together. Students experience collaboration and see its benefits. They have access to other students’ work and because the material is presented as a whole, the result is something they can be proud of. Furthermore, peer review and annotation by peers or assistants is then possible.

3 – Feedback

When students publish work (text, papers, exercise solutions, etc.), assistants and lecturers can easily give feedback and start discussions on very good points students came up with or problems they seem to have, on the spot.

4 – Working with Texts (Papers, Journals, Articles,…)

Students can answer predefined questions (by lecturers/assistants/peers), ask questions about difficult passages, paraphrase, discuss interesting points, attach complementary material, prove points with links to other research, reflect and form opinions right where it is relevant. This kind of assignments foster critical thinking and collaboration. It is much easier and more appealing than using a forum, which is the alternative for such tasks.

5 – Voting

Easily get feedback (students can append a star to parts of content of your choosing) on good/important/… content. You can even go further and let students collaboratively decide through their voting on…[depending on your scenario].

6 – Interactivity Modules

By far my favorite application in eSkript are the interactive modules. The possibilities are endless. You can enhance your material with interactive videos, drag and drops, timelines, interactive images (juxtapositions, sliders, info hotspots, hidden hotspots, and sequences), and many more. A scenario that has worked repeatedly well is the design of interactive modules by students. Check out a few examples of interactive modules (new PolyBook link)!

These and more scenarios in more details with detailed tasks, profit, caveat and real life cases can be found in the eSkript Scenarios (new PolyBook link).

Have fun and find new ways to engage and interact with your students! Open your first eSkript (new PolyBook link) today.

Open Your own eSkript

Note from May 2019: eSkript is not maintained anymore but PolyBooks are taking over! Contact LET for support.

Our First Virtual Laboratory: A success story!

Imagine a computer game where you click to get through. This is similar but better. The students follow instructions, manipulate samples, use machines, gather information and answer questions along the way to check their progress and understanding. A theory section with all relevant background material is available at all times. The setting looks very much like a real lab, and chemical reactions are shown in 2D or 3D videos. Finally, there is a mission (here: help a sports physician repair athletes’ damaged articular cartilage) that makes the virtual lab’s path and goal clear.

In 2015 we, Prof. Dr. M. Zenobi-Wong and her team, started developing the “Tissue Engineering Lab” (TEL) with Labster. The process was easy and rewarding. Since Fall 2016, after two pilot runs, the lab has been used by students every semester.

Here is the students’ evaluation from this spring (2017). Approximately 60% of the 60 participants filled out the survey at the end of the lab. Most of the students worked in pairs. (Source: Labster)


We are very happy about the results as the lab motivated students and they felt that they gained relevant knowledge.

Some screenshots, the learning goals and the techniques used can be found on the lab’s main page at Labster. And here is a short (and fast) screencast of the first hydrogel experiment.

What are the reasons for using virtual labs?

  1. lectures that haven’t got any physical lab time but would profit from lab work (exercise-/extra-material)
  2. experiments that have to be done by vast amounts of students
  3. experiments that are too dangerous to be performed by students
  4. experiments that are too costly to perform with students
  5. additional practice material
  6. not enough ressources (i.e. scarcity of lab spaces)

For this lab, it was the first reason, and now students can get lab work done in a one-hour exercise slot in the lecture hall. This is amazing!

We are happy to announce that the second virtual lab @ETH Zurich is on its way. In the physical setting, this lab can only be performed by an assistant. To offer the opportunity to students to try it out themselves, Prof. Dr. L. Nyström with Dr. M. Erzinger will develop the “Kjeldahl Lab” starting this summer.

eSkript & hypothes.is – New usage data

…and how to get students to collaborate using annotations!

Since fall semester 2015/16 hypothes.is annotation offers the possibility of public, private and goup-private (introduced later) web annotations to the users of eSkript, our platform for Interactive Lecture material.

This is a follow up to last year’s blog post “eSkript & hypothes.is – Web annotation for our students“. There you can read some info on web annotation and the story on how I started to get interested in these usage numbers.

Web annotation is moving fast, not only at hypothes.is, who has added groups to their functionality and a wonderful dashboard, only to mention two of the many new features, but also, in February 2017, web annotation has become a W3C standard, a web standard! Wow!

So what about that new usage data at ETH Zürich?
(Sept 2015 – March 2016 – March 2017)

since 2015 2016-2017  2015-2016
Days: 279 149  130
URLs: 308 171  137
Users: 145 73  72
Groups: 17 11  6
Annotations: 4505 2517  1988

Compared to the first year, every data point has increased. Since 2015, annotations have been made on 279 separate days on 308 eSkript URLs. (Bewegungs- und Sportbiomechanik has 35 URLs.) 145 users were active and 17 groups have been created. (Roughly 1’000 students have been exposed to lecture material on eSkript so far.) 4505 annotations have been made!

Of these 4505 annotations:

342 7.60% are public.
318 7.00% are in groups.
3845 85.40% are private.

Group annotations have gained momentum and now reach seven percent of all annotations from almost none. There are fewer public annotations (used to be 10%).

Of these 4505 annotations:

3696 82.05% are highlights.
807 17.90% are text annotations.
2 00.05% are page annotations without text.

Of these 807 text annotations:

643 79.70% are original annotations.
108 13.40% are replies.
52 06.40% are page annotations.
4 00.50% are PDF annotations.

The good news here are the 13% of ‘replies’. This is where collaboration begins.

Over time it looks like this:

Replies (in yellow) were mostly given in August, July and in January, just before the exams, by assistants, I guess.

Before coming back to this, let’s now look at the count of annotations per lecture and exercise material:

Fall 2015/16
Bewegungs- und Sportbiomechanik Fall 2015/16 812
Bewegungs- und Sportbiomechanik – Übungen Fall 2015/16 36
Solid State Physics and Chemistry of Materials I Fall 2015/16 528
Physik 3 Fall 2015/16 265
Spring 2016
Biomechanik 2 Spring 2016 577
Solid State Physics and Chemistry of Materials II Spring 2016 510
Solid State Physics and Chemistry of Materials Ex Spring 2016 65
Fall 2016/17
Bewegungs- und Sportbiomechanik Fall 2016/17 1108
Bewegungs- und Sportbiomechanik – Übungen Fall 2016/17 145
Bewegungs- und Sportbiomechanik – Stacoff Fall 2016/17 40
Spring 2017
Biomechanik 2 Spring 2017 45
Philosophische […] Physik Spring 2017 84

Spring semester 2017 has barely begun, and unfortunately the lectures Solid State Physics and Chemistry of Materials I & II are not held this academic year. Philosophische Betrachtungen zur Physik II with 84 annotations (on just one URL) has also just started mid February 2017 and is doing very well, especially because only 43 students are registered in this course.

Of the 84 annotations, 11 are highlights and 73 are text annotations. Of these 73 text annotations:

43 58.90% are original annotations.
29 39.75% are replies.
1 01.35% are page annotations.

Do you want to know the secret of how to get almost 40% of collaborative annotations? Use a scenario! Have a look at the eSkript scenarios, especially the one on ‘Working with Texts‘ (new PolyBook link).

PD Dr. Norman Sieroka, who pushed the use of hypothes.is and worked on the scenario for the lecture Philosophische Betrachtungen zur Physik II, gave us feedback after their planned use on one of Plato’s text:

Unsere Studierenden haben im Semesterfeedback sehr positiv auf die Verwendung von Eskript [und hypothes.is] reagiert/geantwortet — sowohl als “Disziplinierung” für sich selbst beim Lesen als auch (und vor allem) als Hilfsmittel, um eine Diskussion von Texten vorzubereiten und Themen zu spezifizieren. Und auch wir [die Dozierenden und Assistierenden] sind von der Qualität und Art der Kommentare positiv überrascht.

Translation (Eng): Our students have responded / reacted very positively to the use of eskript [and hypothes.is] in the semesterfeedback – both as a “discipline” for themselves in reading as well as (and above all) as an aid to prepare a discussion of texts and specify topics. And we [the lecturers and assistants] are also positively surprised by the quality and nature of the comments.

Next year, Dr. N. Sieroka and the lecture’s staff want to expand the use of hypothes.is annotation on other texts.

I want to thank everybody involved and especially congratulate the students who made quite an impression and showed how highly skilled they are! Bravo.

An Outstanding Lab Course

Practical Methods in Tissue Engineering (376-1622-00L)

Tissue engineering is the use of a combination of cells, engineering and materials methods, and suitable biochemical and physicochemical factors to improve or replace biological tissues (i.e., bone, cartilage, blood vessels, bladder, skin, muscle, etc.).

At the Institute of Biomechancis at D-HEST, each semester 12 students immerse themselves hands-on into tissue engineering. They learn to use state of the art methods for scaffold production and cell analysis. Dr. Karin Wuertz-Kozak, supported by Prof. Dr. Marcy Zenobi-Wong, teach the laboratory course for 4h per week. Students can earn 5 ECTS, but the didactics allow them to learn much more.

The lecturer’s design of the course’s learning outcomes accentuated four goals:

  1. Students are enabled to recognize and compare various 2D and 3D culture systems and choose the most appropriate system for future tissue engineering experiments
  2. In the tissue engineering lab, students apply professional standards to work safely and in sterile conditions in a tissue engineering lab
  3. Students can apply methods of gene and protein expression analysis, viability detection and mechanical testing to determine the cellular responses and properties of tissue engineered constructs.
  4. Finally, students learn and practice how to acquire, critically assess, and evaluate results.

To realize these aims, the lecturers guide the students through experiments in the lab, encourage them to use protocols to independently solve the complex analytical challenges, and even take students on field trips to contextualize their knowledge about tissue engineering with ETH’s academic and industry partners.


Key aspects of the course

  • Students perform experiments with state of the art techniques (such as electrospinning, 3D bioprinting and qPCR) that inspire creativity
  • Students work on interdisciplinary projects and practice cooperative learning with fellow students that have a different educational background
  • Students apply critical thinking by evaluating and discussing their results in the learning controls, by comparing their results to findings in the scientific literature, by explaining differences and by identifying errors/limitations
  • Students receive preparation for future (= their master thesis) in all learning controls, but specifically by having to write a project proposal that includes: state of the art, research aims, experimental plan, timetable, budget and relevance (learning control of the lab on electrospinning)
  • Students gain extensive hands-on experience that with applicability to current research (small group size, experiments related to ongoing research)
  • Students are given the possibility to visit selected laboratories and gain better insights into ongoing research activities
  • Students obtain innovative, practical and sustainable safety training by visiting the ETH Safety Parcours and by watching custom-made true/false videos on sterile working environments
  • Use of multimedia teaching (all documents are provided electronically on Moodle, including custom-made videos, advance organizer, online entry tests)
  • The course has received excellent student evaluations and has thus far been overbooked each semester offered

Advance Organizer of the course:


If you want access to the moodle course, please contact Dr. Karin Wuertz-Kozak.


In the course evaluations, students were extremely positive as can be seen in the picture below. (Overall satisfaction: 4.9 out of 5)


Outstanding work!

(Text by Dr. Erik Jentges, Dr. Karin Wuertz-Kozak and Sarah Frederickx.)

eSkript & hypothes.is — Web annotation for our students

For quite some time, I have been working on eSkript, our web platform for interactive lecture material. One part of the interaction is possible through web annotation of the lecture material right there on eSkript.

In fall semester 2015/16 we launched the hypothes.is annotation that offers the possibility of private web annotations. The year before (2014/15), only public annotation had been possible and the students had given us very clear feedback that if private annotation were not possible, this was not to be used! One of the lectures that started was Bewegungs- und Sportbiomechanik with its lecture material on eSkript https://eskript.ethz.ch/bsb.

Here you can see one nice public annotation including a YouTube video.


There were almost no annotations throughout the semester. The stream of annotations for Bewegungs- und Sportbiomechanik only included seven annotations.


There weren’t many public annotations on any other eSkripts. I was worried. What could the reasons be? Especially, because the year before we had had more than a few hundreds on each eSkript. Reasons could be that eSkript and hypothes.is were not properly introduced to the students, that students were not motivated by the lecturers, that students simply disliked it. Another reason could be that the material was just perfect. The year before, all annotations of students — these indicated typos, errors, problem areas and unclear language — had all been implemented into the material. Was the material crystal clear? Already?

I do not have an answer to that question but being so worried, I wrote to hypothes.is and asked for usage data. Have our students been using private annotations? And this is what I got:

On URLs matching eskript.ethz.ch there are 200 public annotations and 1788 private annotations!

I was flabbergasted. Here is some of the data I got from hypohtes.is. Thank you guys!

Days: 130
URLs: 137
Users:  72
Groups:  6
Annotations: 1988

Since September 2015 annotations have been made on 130 separate days on 137 eSkript URLs. (Bewegungs- und Sportbiomechanik has 35 URLs.) 72 users were active and six groups exist. (Roughly 400 students have been exposed to lecture material on eSkript since fall last year.) 1988 annotations have been made!

Of these 1988 annotations:

200 10.10% are public.
10 0.50% are in groups.
1778 89.40% are private.

Of the 200 public annotations, I’m certain I have written almost 50 myself but I haven’t written 1778 private annotations. 🙂

Here is the count of annotations per lecture:

Lecture Semester No.
Bewegungs- und Sportbiomechanik Fall 2015/16 812
Bewegungs- und Sportbiomechanik – Übungen Fall 2015/16 36
Solid State Physics and Chemistry of Materials I Fall 2015/16 528
Physik 3 Fall 2015/16 265
Biomechanik 2 Spring 2016 212

In sum these are 1853 annotations by roughly 60 students. The remaining 135 annotations are on the eSkript guides (User’s Guide, Author’s Guide) and other small reports (Computer Exams, Best Practice: Interactive Lecture Material). Biomechanik 2 with 212 annotations started mid February 2016 and is still running.

Last but not least, a very peculiar thing showed itself. hypothes.is gives you the possibilities of annotating publicly and privately but also of simple highlighting (without writing any comment to the highlighted text). These highlights are always private. Of the total of 1988 annotations only three (0.2%) are highlights. Why?

Maybe hypothes.is’ highlights do not work properly. (I don’t think so!) Maybe, if the students take the time to select text and are given a field to write their thoughts of the moment, they take this opportunity. Maybe, there is just space to write something down, space we didn’t have in our physical books 20 years ago.

To be continued… 🙂

UPDATE (April 18, 2017): There is a very simple explanation: The data that I got was wrong about the highlights. I got the new data, and in that period of time of these 1988 annotations 337 were text annotations and 1651 were highlights. As anyone would expect.