De l’inconvénient des usines à gaz

This is maybe for the cognoscenti, but rather funny:

The Norwegian Academy of Science and Letters announces the 2017 Abel Prize is awarded to Yves Meyer, École normale supérieure Paris-Saclay, France…

(from the AMS home page, as of right now…)

I’m even prouder now than before of having bought Meyer’s “Wavelets and operators” in the Peoria, Illinois, science museum store…

Définition tendancieuse

(I guess the title of this post would translate as something like “Biased definition” in English; according to the OED, “tendencious” does exist, but is ascribed as coming from the German “tendenziös”)

My son is currently reading an abridged version of Les Misérables for his French class. This is a text intended for schools and comes (among other things) with explanations of “hard words”. While glancing through it recently, I noticed the following striking instance:

Le hasard, c’est-à-dire la providence(1)

where the footnote translates, in lapidary style:

1. Providence = chance

(in English: Providence = luck). I may not know a lot about Victor Hugo, but it’s as clear as day to me that nothing could be further away from his use of the word “providence” than the idea that this is mere luck.

This reminded me of another definition I have seen in the French Larousse Universel encyclopedic dictionary from 1922 concerning the German language (see here in the middle of the page):

Langue: … une langue laborieuse… de là un certain manque de rapidité et de précision dans l’expression de la pensée.

(Or: … a clumsy language… from this comes a certain lack of speed and precision in the expression of one’s thoughts.)

This is actually a very nice book overall, with wonderfully useful illustrations to understand what, say, a “face-à-main” is, or to remind yourself of the important classification of “chapeaux bicornes”


(the scan I am linking to does not do justice to the book; one can download the PDFs of the two volumes, but each is a huge file of at least 250 MB, and the quality is also not so great — but the books become searchable).

Condorcet, Dedekind, Minkowski

One of my great pleasures in life is to walk leisurely down from my office about 30 minutes before the train (to Paris, or Göttingen, or Basel, or what you will) starts, browse a few minutes in one of the second-hand bookstores on the way, and get on the train with some wonderfully surprising book, known or not.

A few months ago, I found “Condorcet journaliste, 1790-1794”,


which one cannot call a well-known book. It is the printed version of the 1929 thesis (at the École des Hautes Études Sociales) of Hélène Delsaux, and its main goal is to survey and discuss in detail all the journal articles that Condorcet, that particularly likable character of the French revolution (about the only one to be happily married, one of the very few in favor of a Republic from the outset, and — amid much ridicule — a supporter of vote for women), wrote during those years.

Condorcet was also known at the time as a mathematician; hence this remarkable quote from the book in question:

Il est généralement admis que rien ne dessèche le coeur comme l’étude approfondie des mathématiques…

or in a rough translation

It is a truth universally acknowledged that nothing shrivels the heart more than the deep study of mathematics… [Ed. Note: what about real estate?]

This book cost me seven Francs. More recently, my trip to the bookstore was crowned by the acquisition of a reprint of R. Dedekind’s Stetigkeit und irrationale Zahlen” and “Was sind und was sollen die Zahlen” (five Francs)


and of a first edition (Teubner Verlag, Leipzig, 1907) of Minkowski’s “Diophantische Approximationen”


for the princely sum of thirty-eight Francs.

The content of Minkowski’s book is not at all what the title might suggest. There are roughly two parts, one concerned with the geometry of numbers, and the second with algebraic number theory. In both cases, the emphasis is on dimensions 2 and (indeed, especially) 3, so cubic fields are at the forefront of the discussion in the second part. This leads to a much greater number of pictures (there are 82) than a typical textbook of algebraic number theory would have today. Here are two examples,


and here is Minkowski’s description of the Minkowski functional (or gauge) of a convex set:


AMS Open Math Notes

When I was attending the conference in honor of Alex Lubotzky’s 60th birthday, Karen Vogtmann, who was also there, told me of the Open Math Notes repository, a new project of the AMS that she was involved with. This is meant to be a collection of (mostly) lecture notes, such as many mathematicians write for a course, but which are not published (nor necessarily meant to be published). So they can be incomplete, they might contain mistakes, and may more generally be subject to all the slings and arrows that mathematical writing is heir to. (See the web site for more information, submission guidelines, etc…)

I think that this is a great idea, and am very happy that, as the web site is now public, two of my own lecture notes can be found among the inaugural set! The highlight of the current selection is however undoubtedly “A singular mathematical promenade”, by Étienne Ghys, his beautiful book on graphs of polynomials, Newton’s method, Puiseux expansions, divergent series, and much much else that I have yet to see (I’m only one-third through looking at it…)

Hopefully, the Open Math Notes collection will grow to contain many further texts. The example of the book of Ghys is already an illustration of how useful this may be — although it is also available on his home page, one doesn’t necessarily visit it frequently enough to notice it…

Two final whimsical remarks to conclude: (1) among the six authors currently represented [Update (four hours later): this has already changed!], three [Update: four] (at least) are French; (2) one of my set of notes promises a randonnée, and Ghys’s book is a promenade — clearly, one can think of mathematics as a journey…