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Abstract

We introduce a quantum version of the Keyne-
sian Beauty Contest game, based on the super-
position of the players’ guesses. We further ana-
lyze the strategy space of this game by means of
an evolutionary algorithm in analogy to level k
thinking. Through minor modifications to the
game dynamics, we assess various approaches
and observe diverse equilibrium outcomes. We
identify a particular version of the game that
shows a preference for pure states above the
state |0⟩ corresponding to the classical Nash
equilibrium, dependent on specific parameters.
In a projective approach we find a phase tran-
sition from an initially unordered to an ordered
phase. The time of the phase transition is found
to be strongly dependent on the random seed.
This approach favors almost pure |0⟩ states at
equilibrium. We also show chaotic games where
our algorithm can not find dominant strategies
as well as an approach that converges but also
shows slight deviation from the classical Nash
equilibrium as the expectated value.

1. Introduction

Historically, the Keynesian Beauty Contest is a game
that describes the interaction of rational agents in
a context where they are asked to choose the most
attractive person among a group of people. The
players who picked the most popular face are then
rewarded with a prize.

The catch of this game is that the player should
not really pick the most attractive person according
to their personal opinion, but rather be aware of the
opinions of the other agents in order to formulate
a decision. This line of thought can be carried
recursively, since the player can then formulate their
decision based on their expected opinion of the other
players’ public perception of beauty, and so on.

In the words of John Maynard Keynes himself:

“...it is not a case of choosing those [faces]
that, to the best of one’s judgment, are re-
ally the prettiest, nor even those that aver-
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age opinion genuinely thinks the prettiest.
We have reached the third degree where we
devote our intelligences to anticipating what
average opinion expects the average opin-
ion to be. And there are some, I believe,
who practice the fourth, fifth and higher de-
grees.” (Keynes, 1936)

Also, as Keynes remarks in this work, the Beauty
Contest has strong parallels with the behavior of
professional investors in financial markets, in the
sense that investors try to be one step ahead of the
average investor, who is seen as an ignorant agent
likely to be present in the market (Duffy and Nagel,
1997).

All the features that characterize this historical
version of the Beauty Contest can be elegantly put
in a mathematical framework that formalizes the
setup. In the following section, we will first discuss
this classical version of the game, which is a standard
introductory example in Game Theory courses. We
will then devote our attention to the formulation,
computational implementation, and analysis of a
quantum version of the game.

2. Theory

2.1. Classical Beauty Contest

The classical Beauty Contest game1 can be mathe-
matically formulated as a set of N players, each of
them choosing an integer number in some interval,
often from 0 to 100. The mean value n̄ of these
N numbers is then calculated, and given a certain
positive constant p (generally known by all players
before the game), the winning number of the contest
is given by w = p n̄ (rounded to the closest integer
in the range). The value p, commonly taken to be
1/2 or 2/3, determines a shift of the winning number
from the mean guess and therefore represents the
motivation for a certain level of recursive reasoning
in the player’s choice, analogous to the original
Beauty Contest formulation.

As an example of a contractive Beauty Contest
with a factor p = 2/3, the first histogram in Fig. 1
shows that a common strategy is to choose numbers

1. Also widely referred to as Guess 2/3 of the average
(Ledoux, 1981), p-contest (Kennerberg and Volkov, 2019),
and p-guessing game (Vie, 2021)

close to the value 50 · pk for some positive integer k
(i.e., 33, 22, ...). This indicates the different levels
of recursion in the decision process, where one starts
with the assumption that everybody will play a
random number, producing most likely n̄ = 50, and
hence playing a value 50 · p ≃ 33. The next step is to
think that everybody will most likely play 33, hence
the guess is 33·p = 22. This line of reasoning is called
the k-level thinking model, where a player tries to
outsmart the other players by playing one level ahead
of them. This model predicts that agents will learn
about their respective environment in successively
played games and seems to fairly accurately pre-
dict the popular guesses, at least for small values of k.

Another popular guess in this iteration of the
Beauty Contest seems to be 0, which is basically the
limit of this k-level model when k → ∞. In fact, the
scenario where every player guesses 0 is the unique
Nash equilibrium for the Beauty Contest game
(given 0 < p < 1) (Kennerberg and Volkov, 2019).
However, in this case, the assumption of perfect
rationality of the other players is a strong one,
and it is very naive to imagine that all people will
take this k-level model to the extreme consequences,
thus practically invalidating the strategy of playing 0.

As expected, in this first iteration of the Beauty
Contest with p = 2/3, the winning number is not
w = 0, but rather w = 20. If the same game is
repeated with the same group of N people, the
consequence is visible: people seem to adapt to the
game environment and play on average much lower
numbers, as seen in the last two histograms in Fig. 1.

It’s now time to go quantum!

2.2. Quantum Beauty Contest

The game we are considering again involves N play-
ers, each of whom will formulate a guess. In this
scenario, however, the guess is formulated in terms
of quantum states. For this, we construct a (M +1)-
dimensional Hilbert space HM , where, for concrete-
ness, we will choose M = 100. This space is spanned
by the following base kets, in standard Dirac nota-
tion: {

|0⟩ , |1⟩ , |2⟩ , ... |100⟩
}

(1)
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Figure 1: From top to bottom: the first three rounds
of the classical Beauty Contest results, with a value
of p = 2/3 (Diekmann, 2009).

which are the eigenstates of a number operator N̂
with the explicit form

N̂ =

100∑
n=0

n |n⟩ ⟨n| (2)

from which we can immediately see the defining
property

N̂ |n⟩ = n |n⟩ . (3)

Furthermore, the basis is generally chosen to be
normalized:

⟨n|m⟩ = δnm (4)

where δnm is the Kronecker delta.

In a certain sense, the base kets represent the
guesses a player can make in the classical game. Now,

in this variation of the game, each player is asked to
give a guess in the form of a normalized ket:

|ψi⟩ ∈ HM for i ∈ {1, 2, ... N}, (5)

i.e.,

|ψi⟩ =
100∑
n=0

c(i)n |n⟩ and

100∑
n=0

|c(i)n |2 = 1 ∀i. (6)

Then the following ket state is constructed:

|ψ⟩ = N
N∑
i=1

|ψi⟩ (7)

where N is some normalization constant.

The next step is to collapse our state |ψ⟩ into the
basis given in Eq. 1, that is to say, we perform a
measurement of N̂ on |ψ⟩.

We will therefore obtain the state ket

|n⟩ , with n ∈ {0, 1, ... 100} (8)

with a probability

Pn = | ⟨n|ψ⟩ |2. (9)

The winning number is then determined as usual:

w = round(p · n) (10)

for some positive p. With this number, we can sin-
gle out the basis ket |w⟩ and determine the winner(s)
of the Quantum Beauty Contest by assigning a payoff
to each player using the following formula:

ϕi = | ⟨w|ψi⟩ |2 (11)

which is basically a simple measure for determining
how much of the winning outcome was contained in
the player’s initial guess.

From a theoretical point of view, the Quantum
Beauty Contest we propose does not reduce to its
classical analogue for any choice of the players’
strategies. This is due to two independent features
of the quantum version of the game.

Firstly, the winning number w is produced through
a measurement procedure of the state |ψ⟩, hence
there is a component of randomness in this game
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that is not present in the classical version.

Secondly, even if one repeated the measurement
of the same state |ψ⟩ over and over again, thus ef-
fectively extracting the mean value of the operator
N̂ (which will be in fact done in some later computa-
tional implementations of the game), in general, there
is no strategy of the players that can simulate the
classical analogue of the game. This is because the
way we decided to construct the state |ψ⟩ is through
the sum with equal weights of the guesses |ψi⟩. In
this game, the only strategy that resembles a classi-
cal game is for every player to play a ket in the basis
of Eq. 1:

|ψi⟩ = |n⟩ , for some n ∈ {0, 1, ... 100} (12)

In this way, though, if two players decide to play
the same number, i.e., |ψi⟩ = |ψj⟩ = |n⟩ with i ̸= j,
then the probability amplitudes in the state |ψ⟩
for the basis state |n⟩ add up, while the actual
probability of extracting the number n goes as the
amplitude squared. This is in contrast with the
classical game, where every instance of a guess n
simply adds up, and the mean is calculated after-
wards without squaring the columns of the histogram.

Anyway, apart from these differences, the spirit
of the game remains the same, but in this case,
the strategy space is much richer than the classical
counterpart.

3. Computation

The strategies of the Quantum Beauty Contest
reside in a high-dimensional Hilbert space. To
efficiently explore and optimize these strategies, an
evolutionary algorithm is employed. This algorithm
leverages reproduction and mutation techniques,
enabling effective sampling of the strategy space to
discover optimal strategies. A similar algorithm has
been recently utilized for computational analysis of
the prisoner’s dilemma (Vie, 2021).

3.1. Reproduction

Let |S1⟩ and |S2⟩ represent the quantum states of two
parent strategies. The reproduction operator

R : H×H → H

combines these states to generate a new strategy for
the offspring:

|Soffspring⟩ = R (|S1⟩ , |S2⟩) = N (|S1⟩+ |S2⟩) (13)

This process ensures that the offspring inherits
characteristics from both parents while exploring
new regions of the strategy space.

3.2. Mutation

The mutation operator introduces variation by
perturbing individual strategies after reproduction.

Let’s denote the mutation operator as
M(|S⟩ , π, σ), where |S⟩ is some strategy, π is
the mutation rate, and σ is the mutation strength.
The mutation operator can be defined as follows:

M(|S⟩ , π, σ) = |S′⟩ (14)

|S′⟩i =
{

|S⟩i + δ with probability π
|S⟩i with probability 1− π

(15)

where |S′⟩ represents the mutated strategy, and
δ is a random perturbation drawn from a uniform
distribution U([−σ, σ]). If a mutation event occurs
(with probability π), the corresponding component
of the strategy is perturbed by adding a random
value from δ. Therefore, a higher mutation rate
leads to more frequent mutations and greater explo-
ration of the strategy space, while a lower mutation
rate promotes exploitation of existing elite strategies.

On the other hand, a larger mutation strength
results in larger deviations from the original strategy,
allowing for more significant exploration of the strat-
egy space. Conversely, a smaller mutation strength
limits the extent of perturbations, promoting finer
adjustments to the strategies.

3.3. Algorithm

Here is a quick overview of the algorithm employed:

1. Initialize: For every player i, draw ran-
dom strategy ket |Si⟩ ∼ U101([−1, 1]

101
) with

⟨Si|Si⟩ = 1

2. Simulate Game:

a. Draw |n⟩ from | ⟨ψ|ψ⟩ |2 as defined in Eq. 7
and determine winner ket |w⟩
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b. Determine fitness of |Si⟩ with respect to |w⟩
for every strategy

3. Reproduction Cycle

a. Extract fixed amount of elite strategies into
new game

b. Select parent strategies |Si⟩, |Sj⟩ i ̸= j and
form new strategy M(R(|Si⟩, |Sj⟩), π, σ)
c. Repeat b. until every player has a strategy

4. Iterate: Jump to 2. until convergence or fixed
number of iterations reached

For the specific implementation of the game we
can make different choices for how we determine
|w⟩ as well as the fitness. The implementations can
be found in the class functions fitness(self) and
measurement(self), respectively. The full source
code can be found in Appendix A.

4. Results and Discussion

For the results we are going look at the different
approaches for a quantum beauty contest, consider-
ing variation of parameters, and investigate special
behavior while comparing this to the classical results
from lab studies. When talking about the expected
value of |ψ⟩ or |S⟩ in the following we will only refer
to the values where no contraction factor p has been
applied yet, if not stated otherwise.

4.1. The Semi Classical Approach

First we look at the approach where the winning state
|w⟩ is determined from the expected value of |ψ⟩ and
the fitness of |Si⟩ is determined by its distance of its
expected value to |w⟩. This approach is almost identi-
cal to the classical game. The main difference are the
real values of the expectation from each player. For
any simulation these are still rational numbers due
to the machines precision of values. An analogue for
the classical game could therefore be the formation
of alliances of players which then give their average
as a guess. In the edge case of an infinite amount
of players in an alliance we could still reproduce real
numbers as a guess. As this approach is almost iso-
morphic to the classical game, we expect a similar
approach to |0⟩ for |w⟩. While we do observe this as
seen in figure 2, we do not quite reach a state of 0 after

many iterations, which is due to our evolution algo-
rithm allowing for relatively strong mutations, even
for high states. An analogue to this in the classical
game might be a disruptive player who purposefully
chooses numbers that can not win (n · p or above)
after several rounds, which can also be seen in 1.

Figure 2: Expected value of |ψ⟩ over 2000 rounds for
the semi classical approach.

For this simulation we used 100 players, 20 elite
players per round, π = 0.5, σ = 0.05 and p = 0.5.
Using smaller mutation rates such as π = 0.1 allows
for even stronger convergence to 0 and strategies
which survive the longest show an almost pure |0⟩
state.

4.2. Collapse with Players’ Average

For the next approach we keep the average to de-
termine the players performance, for the player it is
therefore still similar to simply providing real (ratio-
nal) numbers. To determine |w⟩ on the other hand,
we use a wave function collapse, i.e. physical mea-
surement of N̂ . We therefore have a non zero proba-
bility for any state |w⟩ which we can see from small
oscillations in the expected value over the course of
simulations. If | ⟨w|N̂ |w⟩ |2 ≫ | ⟨0|N̂ |0⟩ |2, only states
with expected values larger than 0 make up the elite
group of players and therefore increase the expected
value far above the noise level for the next rounds
as seen in figure 3. Eventually we can still observe
an overall convergence towards |0⟩ which is especially
clear from looking at the state which was in the elite
for the longest time over a simulation of 2000 rounds.
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Besides the states |0⟩ and |1⟩, no states have a signifi-
cant weight which goes beyond the induced mutation.
We show these results in figure 4.

Figure 3: Expected value of |ψ⟩ for the collapse -
average game.

Figure 4: Strategy with most rounds without an up-
date (most rounds inside the elite).

For the results shown we again used 100 players,
20 elite players per round, π = 0.5, σ = 0.05 and
p = 0.5. While a smaller π leads to a decrease in the
density of spikes seen in figure 3, a change to σ = 0.1
gives a non convergent game. We can therefore not
find any value as a fix point. The noise is too strong
for the convergence rate of the game. Interestingly
this value seems to be somewhere in the region of a
phase shift as for σ = 0.09 we can already see much
better convergence with a lower bound of ≈ 9.

4.3. Weight of the Average: A Nonzero
Equilibrium?

With this approach we go back to using the average
to determine |w⟩ but we now determine the fitness
from the weight each player assigned to the respec-
tive state |w⟩.

This approach is particularly interesting as the
winning players do not necessarily favor states with
low averages but are only focused on the single
state. This will eventually lead to a slower decay of
the expected value. This is also enhanced by the
mutation algorithm where the states not equal to
|w⟩ are uniformly distributed and only decrease in
weight slowly, from the higher weight necessary on
|w⟩. Once the decay flattens we do not observe the
expected value to reach a value around 0. Instead
the expected value stays constant between 8 and
10, therefore giving |w⟩ as |4⟩ or |5⟩. This only
happens after some time by chance and shorter simu-
lations often indicate a saturation between 10 and 12.

Additionally, we are able to observe large spikes
of the expected value when inside a flat area. This
may be caused by large mutations on higher states for
multiple states in the elite, leading to a continuous
boost of such features over the following rounds. An
example for the course of the expected value is given
in figure 5.

Figure 5: Expected value of |ψ⟩ for the weight of the
average approach.

The reason for this behavior lies in the nonzero
probability of higher states. Having a weight of 0.01
on the state |100⟩ increases the players expected
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value by 1. As we have positive mutations on 25%
of the states as well as the remaining probabilities
from the parents on higher states, an average of 0 is,
with the parameters as previously used in 4.1 and
4.2, simply not possible.

For the exact point of convergence we were yet able
to construct an exact formula but we do observe a lin-
ear scaling in σ. While the lower bound for σ = 0.05
was found to be 5, the lower bound for σ = 0.01 is de-
termined to be 1. For such low sigma games, we also
observe the establishment of dominant players which
is again an effect of the mutation algorithm, although
the mutations are already quite weak. Once a player
finds a strategy with an almost pure 1 state, any mu-
tation on other states leads to the a decrease in the
weight of the 1 state and therefore looses against the
dominant players. On the other hand, due to the
rounding of |w⟩, |0⟩ is always a bad play if all or
most players have some other non |0⟩ state. We show
the rounds won by each player after the saturation in
figure 6, indicating the dominance of a few players.

Figure 6: Times won by each player with σ = 0.001
and after boundary is reached.

4.4. The Projective Game

In this approach we are using the projection of each
player onto a state which is again determined by
the collapse of |ψ⟩ as already described in section
4.2. In other words, the more likely a player is to
receive the respective state upon measurement, the
better its fitness. This game is quite complex for the
player. For single rounds or rounds before a clear
convergence a player needs to have a good balance

in their states. Distributing all probabilities evenly
might not be enough to reach the elite. Putting
all the weight on one card on the other hand kicks
the player out of the elite for any other state. The
second extreme is very much the same as betting all
chips on one number at a roulette table but with a
less significant reward if the state is actually found.

With the simulation we do find an area of uncer-
tainty at the start of each game. With the two pre-
vious approaches we were more or less able to ob-
serve some kind of exponential decay in the expected
value. With this approach on the other hand such
a decay is only observed after many rounds were al-
ready played. Before that the game shows intervals
of slower decay and even sections where the expected
value may increase again. This behavior makes the
decay already very much reliant on the seed for the
random numbers which we were able to observe from
decays starting after a wide range of rounds played.
For our parameters this was generally still below 1000
rounds. Eventually the expected value still converges
towards |0⟩ were we again observe a similar behav-
ior to the approach described in 4.2 with occasional
spikes from non |0⟩ measurements. By looking at the
states |w⟩ we can clearly see a phase transition from
an unordered phase with many different winners to
an ordered phase with only solitary non |0⟩ measure-
ments. The strategy surviving the most rounds even
shows an almost pure |0⟩ state with no weights above
0.1. Examples are shown in figures 7 - 9.

Figure 7: expected value of |ψ⟩ for the projection
approach.
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Figure 8: Longest living state for the projection ap-
proach.

Figure 9: Values of |w⟩ over 2000 rounds for the pro-
jection approach.

For these results we used np.random.seed(42)

and np.random.seed(42) with the first run of the
simulation after setting the seed. The parameters
are kept at the same values as before with 100 play-
ers, 20 elite players per round, π = 0.5, σ = 0.05 and
p = 0.5. We again also try to bring up σ. Around
σ = 0.1 we do not observe total chaos, as the longest
living state is still dominated by |0⟩ and the expected
value is not distributed across all possible values. Still
for σ = 0.102 we do see some form of oscillations
over the course of 30.000 rounds where we observe
intervals with expected value around 15 as well as
40. At this point we do not have an explanation for
this phenomena, especially why there still seems to

be some order with two fix points and the system
does not stabilize around 30. What we also observe
is a far more uniform distribution across all possible
states in |w⟩ when the expected value is around 40
and far less measurements for states other than |0⟩
when around 10. This gives the indication that the
game switches between relatively ordered and almost
random states and large enough deviations from the
mutation change the phase of the game. An example
of this effect is shown in figure 10.

Figure 10: expected value of |ψ⟩ for a simulation with
on the projection game σ = 0.102.

4.5. Player Strategy Collapse

Until now we have not looked at approaches where
we collapsed each players strategy in order to
determine the fitness score. The reason for this
is simple: Using our previous approach of keeping
the elite wave functions after a measurement not
only seems to counter the idea of collapsing a
wave function, it also leads to chaotic behavior
where the expected value does not clearly converge
to any point. This is regardless of determining
|w⟩ from the total expected value or also from a
collapse of |ψ⟩. Starting with almost uniform states
the randomness which governs onto which state
each player collapses is so large that good features
(population of lower states) do not get the chance
to become relevant. An example is shown if figure 11.

Changing the approach to setting the players
strategy to its collapsed state before the next round
as well as mutations does also not lead to any
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convergence in the expected value. Another possible
change is to change the the order in the sense that
we first collapse each players and then draw from
the average. But even with this approach we do not
see any convergence in the data again also trying out
slight variations in the parameters.

This brings us to the conclusion that the confu-
sion for the players is simply too large and for any
described approach they are missing the incentive to
develop a ’good’ strategy in the sense of convergence.

Figure 11: Example of a non convergent game based
on wave function collapse of both |ψ⟩ and all |S⟩.

5. Conclusion and outlook

With the Quantum Beauty Contest we were able
to apply a formalism known from the theory of
quantum mechanics onto the classical game of the
Keynesian beauty contest. In particular, we looked
at the case of a contractive factor p = 1/2 but other
cases could also be easily investigated in the future.

With different approaches on how to determine
the fitness of the strategy of a specific player we were
able to observe and describe several phenomena in
an evolutionary setting which are not predicted by
the classical game. With phenomena such as a phase
transition on the projective game approach we are
able to draw connections to human behavior, in this
particular example the transition from confusion to
clarity on the interactions within the game. Still it
is uncertain if these simulations could ever be closely
reproduced by humans, considering the relatively

simple mutation algorithm we used throughout
the simulations. Here one could perform further
investigations by limiting the amount of vector
components one strategy can contain, changing the
adaptation from parent strategies or limiting the
precision. These might be able to closer represent a
human game where people would probably only use
simple fractions and not choose 101 states for many
rounds.

By using the principle of wave function collapse we
were also able to bring some instability to the game
in its equilibrium position forcing older strategies to
adapt to different conditions. While strategies still
show dominant |0⟩ states, using the player average
does not allow them to fully neglect other states.
Only by using the projection operation a player is
able to largely focus on this state when at the Nash
equilibrium.

With the approach of taking the weight of the
average we showed another interesting result as the
game did converge but always to a state higher than
|0⟩. With humans it might therefore be interesting
if we can reproduce such a behavior and especially
to which points humans would converge. Here using
smaller values for the contraction factor such as
p = 1/3 might also be interesting to investigate
in the future as this currently sets a hard bound-
ary at |1⟩ and makes a measurement of |0⟩ impossible.

One last thing which was not considered yet by
us is a variation in initial conditions. While we
chose the initial states at random, leaving us with a
relative uniform distribution in states, the classical
game shows that most players tend to avoid numbers
that are impossible to be determined as the average
already on the first move. Manipulating the initial
states might therefore also a a point for investigation
in the future.
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Appendix A. Supplementary Material

The source code for the simulation can be found on
https://github.com/yzimmermann/QBC.
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