Prüfungsvorlage C | Gleichungen | Ungleichungen

Prüfungsvorlage in pdf: Gleichungen_Ungleichungen_Pruefung_Bogen_C.pdf

Anbei die Version in LaTeX:

% A. PR{\”{a}}AMBEL https://blogs.ethz.ch/rindi/
% ***********************************************

\documentclass[smallheadings,headsepline,12pt,a4paper]{scrartcl}
\usepackage[ngerman, french]{babel}
\usepackage[applemac]{inputenc} % teilt LaTeX die Texcodierung mit. Bei Windowssystemen: ansinew
\usepackage[T1]{fontenc}
\usepackage{hyperref}
\usepackage[pdftex]{graphicx}
\usepackage{multicol}
\usepackage{color}
\usepackage[dvips]{geometry}
\pagestyle{plain}
\clubpenalty = 10000
\widowpenalty = 10000
\selectlanguage{ngerman}

\begin{document}

% B. TITEL  https://blogs.ethz.ch/rindi/
% ***********************************************

\titlehead{
\hfill XY, der 29. M{\”{a}}rz}

\title{\sc{Algebra}}
\author{\sc{Gleichungen \& Ungleichungen}}
\date{\normalsize{Name, Vorname und Klasse: …………………………………………………}}
\maketitle

% C. AUFGABENSTELLUNGEN  https://blogs.ethz.ch/rindi/
% ***********************************************

\textbf{Theorieaufgabe 1:\hfill 6 Punkte}\\
\\
a) Du hast zwei verschiedene Br{\”{u}}che, z.B. $\frac{1}{3}$ und $\frac{1}{2}$. Wozu ist “Gleichnennrig machen” n{\”{u}}tzlich? Oder anders gefragt: Was kann man mit zwei gleichnamigen Br{\”{u}}chen machen? Mache ein ganz einfaches Zahlenbeispiel dazu!\\
\\
b) Du multiplizierst den Nenner \emph{und} den Z{\”{a}}hler eines Bruches mit einer Zahl $c\in \mathbf{ N}$. Wie nennt man diesen mathematischen Vorgang? Mache ein ganz einfaches Zahlenbeispiel dazu!\\
\\
c) F{\”{u}}r welche Zahlen ist die Quadratwurzel \emph{nicht} definiert? Mache ein ganz einfaches Zahlenbeispiel dazu!\\

\textbf{Theorieaufgabe 2:\hfill 4 Punkte}\\
\\
In dieser Aufgabe geht es um {\”{a}}quivalenzumformungen.\\
\\
a) Multipliziere die Gleichung $ax+b=0$ mit der Zahl $c=2$.\\
\\
b) Dividiere die Gleichung $az+b=0$ durch irgendeine$^*$ Zahl. Mache eine wichtige Bemerkung bez{\”{u}}glich $^*$dividieren$^*$!\\
\\
b) $\frac{r}{s}<t \quad |+u  \quad<=>$\\
\\
d) Multipliziere die Ungleichung $5>x$ mit $(-1)$.\\
\\
\begin{center}
\small Viel Erfolg!
\end{center}
\newpage

\textbf{Aufgabe 3:\hfill 16 Punkte}\\
\\
a) Isoliere $x$:
\begin{equation}
2222\cdot(2x+1)=6666
\end{equation}
\\
b) Bestimme die L{\”{o}}sung $y$ der Gleichung:
\begin{equation}
3\sqrt{y-1}-1=2\sqrt{y-1}+7
\end{equation}
\\
c) Bestimme $z$:

\begin{equation}
2z=z
\end{equation}
\\
d) Bestimme die L{\”{o}}sungsmenge $\mathbf{L}$ der Gleichung:
\begin{equation}
2+z=z
\end{equation}
\\
e) Bestimme, in $\mathbf{N}$, die L{\”{o}}sungsmenge $\mathbf{L}$ der Ungleichung:
\\
\begin{equation}
a^2 \geq 144
\end{equation}
\\
f) Bestimme, in $\mathbf{Z}$, die L{\”{o}}sungsmenge $\mathbf{L}$ der Ungleichung:
\\
\begin{equation}
\frac{b}{-10}>2
\end{equation}
\\
g) Bestimme, in $\mathbf{R}$, die L{\”{o}}sungsmenge $\mathbf{L}$ der Ungleichung:
\\
\begin{equation}
4c^2>(2c-8)^2
\end{equation}
\\%no45a) =1
h) L{\”{o}}se nach $x$ auf:
\begin{equation}
2(x+2)(x+5)=(2x+7)(x+3)
\end{equation}\\
\textbf{Aufgabe 4:\hfill 2 Punkte}\\
\\
Ein Zug f{\”{a}}hrt regelm{\”{a}}ssig, im Takt, 6 mal pro Tag. Jetzt wird der Takt um 2 Stunden gek{\”{u}}rzt. Wie oft wird der Zug in 2 Tagen gefahren sein? Mach dir auch eine Skizze dazu!\\

\end{document}

Prüfungsvorlage B | Gleichungen | Ungleichungen

Prüfungsvorlage in pdf: Gleichungen_Ungleichungen_Pruefung_Bogen_B.pdf

Anbei die Version in LaTeX:

% A. PR{\”{a}}AMBEL https://blogs.ethz.ch/rindi/
% ***********************************************

\documentclass[smallheadings,headsepline,12pt,a4paper]{scrartcl}
\usepackage[ngerman, french]{babel}
\usepackage[applemac]{inputenc} % teilt LaTeX die Texcodierung mit. Bei Windowssystemen: ansinew
\usepackage[T1]{fontenc}
\usepackage{hyperref}
\usepackage[pdftex]{graphicx}
\usepackage{multicol}
\usepackage{color}
\usepackage[dvips]{geometry}
\pagestyle{plain}
\clubpenalty = 10000
\widowpenalty = 10000
\selectlanguage{ngerman}

\begin{document}

% B. TITEL  https://blogs.ethz.ch/rindi/
% ***********************************************

\titlehead{
\hfill XY, der 29. M{\”{a}}rz}

\title{\sc{Algebra}}
\author{\sc{Gleichungen \& Ungleichungen}}
\date{\normalsize{Name, Vorname und Klasse: …………………………………………………}}
\maketitle

% C. AUFGABENSTELLUNGEN  https://blogs.ethz.ch/rindi/
% ***********************************************

\textbf{Theorieaufgabe 1:\hfill 6 Punkte}\\
\\
Mache je drei einfache verschiedene Beispiele f{\”{u}}r \emph{{\”{a}}quivalenzumformungen} mit verschiedenen Operatoren ($\pm; \times; \div$) bez{\”{u}}glich der drei Gleichungen einerseits, und der drei Ungleichungen andererseits. Vergiss nicht, die jeweilige Umformung anzugeben!\\

$px+q=0$ $\Leftrightarrow$ ………………………………………………………………………………………….\\

$px+q=0$ $\Leftrightarrow$ ………………………………………………………………………………………….\\

$px+q^2=0$ $\Leftrightarrow$ ………………………………………………………………………………………….\\

$0 \leq rx+q$  $\Leftrightarrow$ ………………………………………………………………………………………….\\

$0 \leq qx+r$  $\Leftrightarrow$ ………………………………………………………………………………………….\\

$0 > sx+q$  $\Leftrightarrow$ ………………………………………………………………………………………….\\
\\
\textbf{Theorierepetitionsaufgabe 2:\hfill 2 Punkte}\\
\\
Wie ist die Quadratwurzel definiert?\\

Definition:  ……………………………………………………………………………………………………..\\

……………………………………………………………………………………………………………………….\\

\newpage

\textbf{Theorieaufgabe 3:\hfill 4 Punkte}\\
\\a) Erg{\”{a}}nze die L{\”{u}}cke: “Wenn du zwei Br{\”{u}}che unterschiedlichen Nenners addieren\\ \\ oder subtrahieren m{\”{o}}chtests, musst du zuerst  ………………………………….. machen\\ \\ indem du ……………………………….”.\\
b) Ordne folgende Begriffe zu einem Spick: \{gleichnennrig machen; k{\”{u}}rzen; addieren/subtrahieren; vereinfachen; gehe zu 1)\}.\\

1)  …………………………………………………………………………………………………………….\\

2)  …………………………………………………………………………………………………………….\\

3)  …………………………………………………………………………………………………………….\\

4)  …………………………………………………………………………………………………………….\\

5)  …………………………………………………………………………………………………………….\\
\\
\textbf{Aufgabe 4:\hfill 12 Punkte}\\
\\
Bestimme die L{\”{o}}sung der Gleichung:
\begin{equation}
15\sqrt{m-1}-9=4\sqrt{m-1}+90
\end{equation}
\\
……………………………………………………………………………………………………………………….\\
\\
……………………………………………………………………………………………………………………….\\
\\
……………………………………………………………………………………………………………………….\\
\\
Isoliere $a$:
\\
\begin{equation}
\frac{(2a-1)}{3}=\frac{a+3}{20}
\end{equation}
\\
……………………………………………………………………………………………………………………….\\
\\
……………………………………………………………………………………………………………………….\\
\\
Bestimme die L{\”{o}}sungsmenge $\mathbf{L}$ der Gleichung:
\\
\begin{equation}
k=k-1
\end{equation}
\\
……………………………………………………………………………………………………………………….\\
\\
……………………………………………………………………………………………………………………….\\
\\
Bestimme, in $\mathbf{N}$, die L{\”{o}}sungsmenge $\mathbf{L}$ der Ungleichung:
\\
\begin{equation}
n^2\leq 81
\end{equation}
\\
……………………………………………………………………………………………………………………….\\
\\
……………………………………………………………………………………………………………………….\\
\\
……………………………………………………………………………………………………………………….\\
\\
Bestimme, in $\mathbf{Z}$, die L{\”{o}}sungsmenge $\mathbf{L}$ der Ungleichung:
\\
\begin{equation}
\frac{z}{-2}>10
\end{equation}
\\
……………………………………………………………………………………………………………………….\\
\\
……………………………………………………………………………………………………………………….\\
\\
……………………………………………………………………………………………………………………….\\
\\
Bestimme, in $\mathbf{R}$, die L{\”{o}}sungsmenge $\mathbf{L}$ der Ungleichung:
\\
\begin{equation}
(3r-8)^2>9r^2
\end{equation}
\\
……………………………………………………………………………………………………………………….\\
\\
……………………………………………………………………………………………………………………….\\
\\
……………………………………………………………………………………………………………………….\\
\\
\\
\textbf{Aufgabe 5:\hfill 3 Punkte}\\
\\
L{\”{o}}se nach $x$ auf: $\quad(5x-1)^2-x[10x-3(x-4)]=18x^2-21$
\\
\\
……………………………………………………………………………………………………………………….\\
\\
……………………………………………………………………………………………………………………….\\
\\
……………………………………………………………………………………………………………………….\\
\\
……………………………………………………………………………………………………………………….\\
\\
……………………………………………………………………………………………………………………….\\
\\
……………………………………………………………………………………………………………………….\\
\\
\textbf{Aufgabe 6:\hfill 2 Punkte}\\
\\
Ein Zaun hat 23 Pfosten. W{\”{u}}rde jeder Pfosten um $1.6$ cm weiter gesteckt, k{\”{o}}nnten zwei Pfosten eingespart werden. Wie lang ist der Zaun? Mach dir auch eine Skizze dazu!\\
\\
……………………………………………………………………………………………………………………….\\
\\
……………………………………………………………………………………………………………………….\\
\\
……………………………………………………………………………………………………………………….
\\
\textbf{Aufgabe 7:\hfill 2 Bonuspunkte}\\
\\
Eine Schule hat $200$ Sch{\”{u}}ler. Der Skitag f{\”{a}}llt aus. $50\%$ der Schule entscheidet sich zum Streik. $80\%$ der Streikenden entschuldigt sich beim betreffenden Lehrer. Wieviele Sch{\”{u}}ler (in Prozenten, mit Bezug auf die ganze Schule) d{\”{u}}rfen noch mit einem Disziplinarverfahren rechnen?
\\
……………………………………………………………………………………………………………………….\\
\\
……………………………………………………………………………………………………………………….\\
\\
……………………………………………………………………………………………………………………….\\
\\

%\begin{center}
%$\emph{\tiny Viel~Erfolg!}$
%\end{center}

\end{document}

Prüfungsvorlage A | Gleichungen | Ungleichungen

Prüfungsvorlage in pdf: Gleichungen_Ungleichungen_Pruefung_Bogen_A.pdf

Anbei die Version in LaTeX:

% A. PR{\”{a}}AMBEL https://blogs.ethz.ch/rindi/
% ***********************************************

\documentclass[smallheadings,headsepline,12pt,a4paper]{scrartcl}
\usepackage[ngerman, french]{babel}
\usepackage[applemac]{inputenc} % teilt LaTeX die Texcodierung mit. Bei Windowssystemen: ansinew
\usepackage[T1]{fontenc}
\usepackage{hyperref}
\usepackage[pdftex]{graphicx}
\usepackage{multicol}
\usepackage{color}
\usepackage[dvips]{geometry}
\pagestyle{plain}
\clubpenalty = 10000
\widowpenalty = 10000
\selectlanguage{ngerman}

\begin{document}

% B. TITEL  https://blogs.ethz.ch/rindi/
% ***********************************************

\titlehead{
\hfill XY, der 29. M{\”{a}}rz}

\title{\sc{Algebra}}
\author{\sc{Gleichungen \& Ungleichungen}}
\date{\normalsize{Name, Vorname und Klasse: …………………………………………………}}
\maketitle

% C. AUFGABENSTELLUNGEN  https://blogs.ethz.ch/rindi/
% ***********************************************

\textbf{Theorieaufgabe 1:\hfill 6 Punkte}\\
\\a) Du hast zwei verschiedene Br{\”{u}}che, z.B. $\frac{1}{3}$ und $\frac{1}{2}$. Wozu ist “Gleichnennrig machen” n{\”{u}}tzlich? Oder anders gefragt: Was kann man mit zwei gleichnamigen Br{\”{u}}chen machen? Mache ein ganz einfaches Zahlenbeispiel dazu!\\
\\
b) Du multiplizierst den Nenner \emph{und} den Z{\”{a}}hler eines Bruches mit einer Zahl $c\in \mathbf{N}$. Wie nennt man diesen mathematischen Vorgang? Mache ein ganz einfaches Zahlenbeispiel dazu!\\
\\
c) F{\”{u}}r welche Zahlen ist die Quadratwurzel \emph{nicht} definiert? Mache ein ganz einfaches Zahlenbeispiel dazu!\\

\textbf{Theorieaufgabe 2:\hfill 4 Punkte}\\
\\
In dieser Aufgabe geht es um {\”{a}}quivalenzumformungen.\\
\\
a) Multipliziere die Gleichung $ax+b=0$ mit der Zahl $c=2$.\\
\\
b) Dividiere die Gleichung $az+b=0$ durch irgendeine$^*$ Zahl. Mache eine wichtige Bemerkung bez{\”{u}}glich $^*$dividieren$^*$!\\
\\
b) $\frac{r}{s}<t \quad |+u  \quad<=>$\\
\\
d) Multipliziere die Ungleichung $5>x$ mit $(-1)$.\\
\\
\begin{center}
\small Viel Erfolg!
\end{center}
\newpage

\textbf{Aufgabe 3:\hfill 16 Punkte}\\
\\
a) Isoliere $x$:
\begin{equation}
2222\cdot(2x+1)=6666
\end{equation}
\\
b) Bestimme die Lösung $y$ der Gleichung:
\begin{equation}
3\sqrt{y-1}-1=2\sqrt{y-1}+7
\end{equation}
\\
c) Bestimme $z$:

\begin{equation}
2z=z
\end{equation}
\\
d) Bestimme die Lösungsmenge $\mathbf{L}$ der Gleichung:
\begin{equation}
2+z=z
\end{equation}
\\
e) Bestimme, in $\mathbf{N}$, die Lösungsmenge $\mathbf{L}$ der Ungleichung:
\\
\begin{equation}
a^2 \geq 144
\end{equation}
\\
f) Bestimme, in $\mathbf{Z}$, die Lösungsmenge $\mathbf{L}$ der Ungleichung:
\\
\begin{equation}
\frac{b}{-10}>2
\end{equation}
\\
g) Bestimme, in $\mathbf{R}$, die Lösungsmenge $\mathbf{L}$ der Ungleichung:
\\
\begin{equation}
4c^2>(2c-8)^2
\end{equation}
\\%no45a)
h) Löse nach $x$ auf:
\begin{equation}
2(x+2)(x+5)=(2x+7)(x+3)
\end{equation}\\
\textbf{Aufgabe 4:\hfill 2 Punkte}\\
\\
Ein Zug f{\”{a}}hrt regelm{\”{a}}ssig 6 mal im Tag. W{\”{u}}rde jeder Pfosten um $1.6$ cm weiter gesteckt, könnten zwei Pfosten eingespart werden. Wie lang ist der Zaun? Mach dir auch eine Skizze dazu!\\

\end{document}

Prüfungsvorlage B | Quadratwurzel

Prüfungsvorlage in pdf: Pruefung_Quadratwurzel_Bogen_B.pdf

Anbei die Vorlage in LaTeX:

% A. PR{\”{a}}AMBEL https://blogs.ethz.ch/rindi/
% ***********************************************

\documentclass[smallheadings,headsepline,12pt,a4paper]{scrartcl}
\usepackage[ngerman, french]{babel}
\usepackage[applemac]{inputenc} % teilt LaTeX die Texcodierung mit. Bei Windowssystemen: ansinew
\usepackage[T1]{fontenc}
\usepackage{hyperref}
\usepackage[pdftex]{graphicx}
\usepackage{multicol}
\usepackage{color}
\usepackage[dvips]{geometry}
\pagestyle{plain}
\clubpenalty = 10000
\widowpenalty = 10000
\selectlanguage{ngerman}

\begin{document}

% B. TITEL  https://blogs.ethz.ch/rindi/

% ***********************************************

\titlehead{
\hfill Stadt und Land, im Dezember}

\title{\sc{Quadratwurzel}}
\author{\sc{Bogen B}}
\date{\normalsize{Name und Vorname: …………………………………………………}}
\maketitle

% B. AUFGABENSTELLUNGEN  https://blogs.ethz.ch/rindi/

% ***********************************************

\textbf{Aufgabe 1}\\
\\
Welches sind die beiden m{\”{o}}glichen L{\”{o}}sungen der Gleichung $x^2=4$?\\
Mache eine Einsezprobe damit ich’s verstehe!\\
\\
Antwort:…………………………………………………………………………………………..\\
\\
F{\”{u}}lle die L{\”{u}}cken auf:\\
\\
$2$ ist die Quadratwurzel von …………. . Es ist also die ……………………….  L{\”{o}}sung\\
\\
der Gleichung …………………………………….. !\\
\\
\textbf{Aufgabe 2}\\
\\
Welches der beiden Beispiele ist richtig?\\
a)
\begin{displaymath}
\sqrt{\frac{x}{y}}=\frac{\sqrt{x}}{\sqrt{y}}
\end{displaymath}
b)
\begin{displaymath}
\sqrt{x-y}=\sqrt{x}-\sqrt{y}
\end{displaymath}
\\
Antwort: ……………………………………………………..\\
\\
Wie heisst die Regel, die man beim richtigen Beispiel anwendet?\\
\\
Regel: …………………………………………………………………………………………..\\
\\
Begr{\”{u}}nde Deine Antwort zus{\”{a}}tzlich mit einem von Dir erfundenen Zahlenbeispiel!\\
\\
Einsetzprobe beim richtigen Beispiel zum zeigen, dass es geht:\\
\begin{displaymath}
………………………………………………………………………………………………………..
\end{displaymath}
\\
Einsetzprobe beim falschen Beispiel zum zeigen, dass es \emph{nicht} geht:\\
\begin{displaymath}
………………………………………………………………………………………………………..
\end{displaymath}
\\
\textbf{Aufgabe 3}\\
\\
Ein Rechteck hat eine L{\”{a}}nge von $12$ cm und eine Breite von $3$ cm. Wie gross ist der Umfang eines fl{\”{a}}chengleichen Quadrates?\\
\\
Antwort mit Rechnung: …………………………………………………………………….\\
\\
………………………………………………………………………………………………………..\\
\\
………………………………………………………………………………………………………..\\

\textbf{Aufgabe 4}\\
\\
Wurzelfrei!\\
\\
a) DIVIDE ET IMPERA!
\begin{displaymath}
\sqrt{\frac{(t+u)^2+(t-u)^2}{2t^2+2u^2}}
\end{displaymath}
\\
………………………………………………………………………………………………………..\\
\\
………………………………………………………………………………………………………..\\
\\
………………………………………………………………………………………………………..\\
b)
\begin{displaymath}
\sqrt{a^2}
\end{displaymath}
\\
………………………………………………………………………………………………………..\\
\textbf{Aufgabe 5}\\
\\
Tabelliere die L{\”{o}}sungen von $y=x^2$ f{\”{u}}r $x = 0,~5,~10,~15,~20,~25,~30$.\\

Tabelle:\\
\begin{figure}[rh]
\centering
\includegraphics[width=10cm]{tabelle.jpg}
\end{figure}

Stelle diese L{\”{o}}sungen mit Punkten im gegebenen Koodinatensystem graphisch dar.\\
\begin{figure}[rh]
\centering
\includegraphics[width=13cm]{probe.jpg}
\end{figure}

Verbinde die Punkte mit einer sch{\”{o}}nen, glatten Kurve und gib mit Hilfe dieser Kurve $\sqrt{750}$ und $\sqrt{600}$ auf der $x$-Achse an.\\
\\
\textbf{Aufgabe 6}\\
\\
Berechne mit dem Taschenrechner und runde das Resultat auf zwei Stellen nach dem Komma.
\begin{equation}
4.3\sqrt{7^2+3\sqrt{5}}-6.5\sqrt{\frac{3}{5\sqrt{2}+7.5\cdot5}} = …………………..
\end{equation}

\begin{equation}
\sqrt{\bigg(\sqrt{(\sqrt{3})3}\bigg)3} = …………………..
\end{equation}

\textbf{Aufgabe 7}\\
\\
Forme um und vereinfache so weit als m{\”{o}}glich – wenn m{\”{o}}glich! (ohne Rechner)\\

\begin{equation}
\sqrt{-1001}
\end{equation}
\\
………………………………………………………………………………………………………..\\
\\
\begin{equation}
\sqrt{16x^4y^3z^6}
\end{equation}
\\
………………………………………………………………………………………………………..\\
\\
………………………………………………………………………………………………………..\\
\begin{equation}
\sqrt{4^2+5^2}
\end{equation}
\\
………………………………………………………………………………………………………..\\
\\
\begin{equation}
\sqrt{ab}:\sqrt{\frac{a}{b}}
\end{equation}
\\
………………………………………………………………………………………………………..\\
\\
………………………………………………………………………………………………………..\\

\begin{equation}
\sqrt{3}(\sqrt{3}-\frac{2}{\sqrt{3}})
\end{equation}
\\
………………………………………………………………………………………………………..\\
\\
………………………………………………………………………………………………………..\\

\begin{equation}
\sqrt{\frac{z^4+10z^2+25}{25z^4}}
\end{equation}
\\
………………………………………………………………………………………………………..\\
\\
………………………………………………………………………………………………………..\\
\\
………………………………………………………………………………………………………..\\

\textbf{Aufgabe 8}\\
\\
Heron: Berechnung von $\sqrt{11}$ mit dem Sch{\”{a}}tzwert $x_{1}=3.31662$\\
\\
Berechne einen zweiten N{\”{a}}herungswert $x_{2}$. Der L{\”{o}}sungsweg muss ersichtlich sein!\\
\\
………………………………………………………………………………………………………..\\
\\
………………………………………………………………………………………………………..\\
\\
………………………………………………………………………………………………………..\\
\\

\textbf{Weihnachtsaufgabe}\\
\\
Neben dem Christbaum liegt ein W{\”{u}}rfelp{\”{a}}ckli mit einem Volumen von $100$ m$^3$. Wie lang ist seine Kante? Gib das Resultat so exakt wie Dir nur m{\”{o}}glich an! (4 signifikante Stellen w{\”{u}}rden mir gen{\”{u}}gen.)\\
\\
………………………………………………………………………………………………………..\\
\\
………………………………………………………………………………………………………..\\

\end{document}

Anbei die dazu benötigten Graphiken:

Tabelle

Fig. 1: Tabelle für Prüfungsvorlage "Quadratwurzel"

Fig. 2: Prüfung zur Quadratwurzel

Prüfungsvorlage A | Quadratwurzel

Prüfungsvorlage in pdf: Pruefung_Quadratwurzel_Bogen_A.pdf

Anbei die LaTeX-Vorlage:

% A. PR{\”{a}}AMBEL https://blogs.ethz.ch/rindi/
% **********************************************

\documentclass[smallheadings,headsepline,12pt,a4paper]{scrartcl}
\usepackage[ngerman, french]{babel}
\usepackage[applemac]{inputenc} % teilt LaTeX die Texcodierung mit. Bei Windowssystemen: ansinew
\usepackage[T1]{fontenc}
\usepackage{hyperref}
\usepackage[pdftex]{graphicx}
\usepackage{multicol}
\usepackage{color}
\usepackage[dvips]{geometry}
\pagestyle{plain}
\clubpenalty = 10000
\widowpenalty = 10000
\selectlanguage{ngerman}

\begin{document}

% B. TITEL  https://blogs.ethz.ch/rindi/
% **********************************************

\titlehead{
\hfill Stadt und Land, im Dezember}

\title{\sc{Quadratwurzel}}
\author{\sc{Bogen A}}
\date{\normalsize{Name und Vorname: …………………………………………………}}
\maketitle

% B. AUFGABENSTELLUNGEN  https://blogs.ethz.ch/rindi/
% **********************************************

\textbf{Aufgabe 1}\\
\\
Welches sind die beiden m{\”{o}}glichen L{\”{o}}sungen der Gleichung $x^2=9$?\\
Mache eine Einsezprobe damit ich’s verstehe!\\
\\
Antwort:…………………………………………………………………………………………..\\
\\
F{\”{u}}lle die L{\”{u}}cken auf:\\
\\
$3$ ist die Quadratwurzel von …………. . Es ist also die ……………………….  L{\”{o}}sung\\
\\
der Gleichung …………………………………….. !\\
\\
\textbf{Aufgabe 2}\\
\\
Welches der beiden Beispiele ist richtig?\\
\\
a)
\begin{displaymath}
\sqrt{x+y}=\sqrt{x}+\sqrt{y}
\end{displaymath}
b)
\begin{displaymath}
\sqrt{xy}=\sqrt{x}\sqrt{y}
\end{displaymath}
\\
Antwort: ……………………………………………………..\\
\\
Wie heisst die Regel, die man beim richtigen Beispiel anwendet?\\
\\
Regel: …………………………………………………………………………………………..\\
\\
Begr{\”{u}}nde Deine Antwort zus{\”{a}}tzlich mit einem von Dir erfundenen Zahlenbeispiel!\\
\\
Einsetzprobe beim richtigen Beispiel zum zeigen, dass es geht:\\
\begin{displaymath}
………………………………………………………………………………………………………..
\end{displaymath}
\\
Einsetzprobe beim falschen Beispiel zum zeigen, dass es \emph{nicht} geht:\\
\begin{displaymath}
………………………………………………………………………………………………………..
\end{displaymath}
\\
\textbf{Aufgabe 3}\\
\\
Ein Rechteck hat eine L{\”{a}}nge von $8$ cm und eine Breite von $2$ cm. Wie gross ist der Umfang eines fl{\”{a}}chengleichen Quadrates?\\
\\
Antwort mit Rechnung: …………………………………………………………………….\\
\\
………………………………………………………………………………………………………..\\
\\
………………………………………………………………………………………………………..\\

\textbf{Aufgabe 4}\\
\\
Wurzelfrei!\\
\\
a)
\begin{displaymath}
\sqrt{a^2}
\end{displaymath}
b) DIVIDE ET IMPERA!
\begin{displaymath}
\sqrt{\frac{(r+s)^2+(r-s)^2}{2r^2+2s^2}}
\end{displaymath}
\\
………………………………………………………………………………………………………..\\
\\
………………………………………………………………………………………………………..\\
\\
………………………………………………………………………………………………………..\\
\\
\textbf{Aufgabe 5}\\
\\
Tabelliere die L{\”{o}}sungen von $y=x^2$ f{\”{u}}r $x = 0,~5,~10,~15,~20,~25,~30$.\\

Tabelle:\\
\begin{figure}[rh]
\centering
\includegraphics[width=10cm]{tabelle.jpg}
\end{figure}

Stelle diese L{\”{o}}sungen mit Punkten im gegebenen Koodinatensystem graphisch dar.\\
\begin{figure}[rh]
\centering
\includegraphics[width=13cm]{probe.jpg}
\end{figure}

Verbinde die Punkte mit einer sch{\”{o}}nen, glatten Kurve und gib mit Hilfe dieser Kurve $\sqrt{750}$ und $\sqrt{600}$ auf der x-Achse an.\\
\\
\textbf{Aufgabe 6}\\
\\
Berechne mit dem Taschenrechner und runde das Resultat auf zwei Stellen nach dem Komma.
\begin{equation}
2.3\sqrt{7^2+2\sqrt{6}}-4.5\sqrt{\frac{4}{6\sqrt{3}+5.5\cdot6}} = …………………..
\end{equation}

\begin{equation}
\sqrt{\bigg(\sqrt{(\sqrt{2})2}\bigg)2} = …………………..
\end{equation}

\textbf{Aufgabe 7}\\
\\
Forme um und vereinfache so weit als m{\”{o}}glich – wenn m{\”{o}}glich! (ohne Rechner)\\

\begin{equation}
\sqrt{-99}
\end{equation}
\\
………………………………………………………………………………………………………..\\
\\
\begin{equation}
\sqrt{12a^4b^3c^6}
\end{equation}
\\
………………………………………………………………………………………………………..\\
\\
………………………………………………………………………………………………………..\\
\begin{equation}
\sqrt{3^2+4^2}
\end{equation}
\\
………………………………………………………………………………………………………..\\
\\
\begin{equation}
\sqrt{xy}:\sqrt{\frac{x}{y}}
\end{equation}
\\
………………………………………………………………………………………………………..\\
\\
………………………………………………………………………………………………………..\\

\begin{equation}
\sqrt{2}(\sqrt{2}-\frac{1}{\sqrt{2}})
\end{equation}
\\
………………………………………………………………………………………………………..\\
\\
………………………………………………………………………………………………………..\\

\begin{equation}
\sqrt{\frac{25z^4}{z^4+10z^2+25}}
\end{equation}
\\
………………………………………………………………………………………………………..\\
\\
………………………………………………………………………………………………………..\\
\\
………………………………………………………………………………………………………..\\

\textbf{Aufgabe 8}\\
\\
Heron: Berechnung von $\sqrt{7}$ mit dem Sch{\”{a}}tzwert $x_{1}=2.64575$\\
\\
Berechne einen zweiten N{\”{a}}herungswert $x_{2}$. Der L{\”{o}}sungsweg muss ersichtlich sein!\\
\\
………………………………………………………………………………………………………..\\
\\
………………………………………………………………………………………………………..\\
\\
………………………………………………………………………………………………………..\\
\\

\textbf{Weihnachtsaufgabe}\\
\\
Unter dem Christbaum liegt ein W{\”{u}}rfelp{\”{a}}ckli mit einem Volumen von $100$ cm$^3$. Wie lang ist seine Kante? Gib das Resultat so exakt wie Dir nur m{\”{o}}glich an! (4 signifikante Stellen w{\”{u}}rden mir gen{\”{u}}gen.)\\
\\
………………………………………………………………………………………………………..\\
\\
………………………………………………………………………………………………………..\\

\end{document}

Anbei die dazu benötigten Graphiken:

Tabelle

Fig. 1: Tabelle

Fig. 2: Prüfung zur Quadratwurzel

Prüfungsvorlage | Proportionalität | Linearität | Bogen B

Prüfungsvorlage in pdf: Proportionalitaet_Linearitaet_Algebra_Bogen_B.pdf

Vorlage in LaTeX:

% A. PR{\”{a}}AMBEL https://blogs.ethz.ch/rindi/
% **********************************************

\documentclass[smallheadings,headsepline,12pt,a4paper]{scrartcl}
\usepackage[ngerman, french]{babel}
\usepackage[applemac]{inputenc} % teilt LaTeX die Texcodierung mit. Bei Windowssystemen: ansinew
\usepackage[T1]{fontenc}
\usepackage{hyperref}
\usepackage[pdftex]{graphicx}
\usepackage{multicol}
\usepackage{color}
\usepackage[dvips]{geometry}
\pagestyle{plain}
\clubpenalty = 10000
\widowpenalty = 10000
\selectlanguage{ngerman}

\begin{document}

% B. TITEL  https://blogs.ethz.ch/rindi/
% **********************************************

\titlehead{
\hfill Gen{\`{e}}ve, le \today}

\title{\sc{Algebra Bogen B}}
\author{\sc{Proportionalit{\”{a}}t \& Linearit{\”{a}}t}}
\date{\normalsize{Name und Vorname: …………………………………………………}}
\maketitle

% B. AUFGABENSTELLUNG  https://blogs.ethz.ch/rindi/
% **********************************************

\textbf{Aufgabe 1:\hfill 4 Punkte}\\
\\a) Was versteht man unter Proportionalit{\”{a}}t?
\\

Antwort: ……………………………………………………………………………………………..\\

…………………………………………………………………………………………………………….\\

…………………………………………………………………………………………………………….\\
\\b) Was versteht man unter Linearit{\”{a}}t?
\\

Antwort: ……………………………………………………………………………………………..\\

…………………………………………………………………………………………………………….\\

…………………………………………………………………………………………………………….\\

\textbf{Aufgabe 2:\hfill 4 Punkte}\\
\\Erg{\”{a}}nzen Sie die Tabelle der folgenden \emph{Proportionalit{\”{a}}t} und bestimmen Sie die zugeh{\”{o}}rige Funktionsgleichung.
\\

\begin{center}

\begin{tabular}{|c|c|c|c|c|c|}
\hline
$x$ & $-2.0$&  $7.0$ & $1$ &$$ & $0.5$ \\
\hline
$f(x)$ & $$& $4.0$  & $$ & $2.0$ & $$  \\
\hline
\end{tabular}

\end{center}

\vspace{0.5cm}

Funktionsgleichung:………………………………………………………………………………….\\

\newpage
\textbf{Aufgabe 3:\hfill 4 Punkte}\\
\\Erg{\”{a}}nzen Sie die Tabelle der folgenden \emph{linearen Funktion} und bestimmen Sie die zugeh{\”{o}}rige Funktionsgleichung.
\\

\begin{center}

\begin{tabular}{|c|c|c|c|c|c|}
\hline
$x$ & $1.0$ & $10$ & $$ & $$ & $7.0$ \\
\hline
$f(x)$ & $-2.0$ & $4.0$ & $0.0$ &$16$ & $$  \\
\hline
\end{tabular}
\\
\end{center}

\vspace{1cm}
Funktionsgleichung:………………………………………………………………………………….\\

\textbf{Aufgabe 4:\hfill 2 Punkte}\\
\\ Bestimmen Sie \emph{numerisch} die Funktionsgleichung der linearen Funktion, die durch die Punkte $P(1/2)$ und $Q(-1/5)$ geht.
\\
\\
Rechnung: ……………………………………………………………………………………………..\\

…………………………………………………………………………………………………………….\\

…………………………………………………………………………………………………………….\\

\textbf{Aufgabe 5:\hfill 2 Punkte}\\
\\ Bestimmen Sie \emph{graphisch} die Funktionsgleichung der linearen Funktion, die durch den Punkt $P(1/-2)$ geht und die Steigung $m=-\frac{3}{4}$ hat.
\\

\begin{center}

\setlength{\unitlength}{3mm}
\begin{picture}(30,20)
\linethickness{0.075mm}
\multiput(0,0)(1,0){31}%
{\line(0,1){20}}
\multiput(0,0)(0,1){21}%
{\line(1,0){30}}
\linethickness{0.15mm}
\multiput(0,0)(5,0){7}%
{\line(0,1){20}}
\multiput(0,0)(0,5){5}%
{\line(1,0){30}}
\linethickness{0.3mm}
\multiput(5,0)(10,0){3}%
{\line(0,1){20}}
\multiput(0,5)(0,10){2}%
{\line(1,0){30}}
\end{picture}

\end{center}

\newpage
\textbf{Aufgabe 6:\hfill 6 Punkte}\\
\\
\\ a) Berechnen Sie \emph{analytisch} den Schnittpunkt der x-Achse und der Gerade mit folgender Funktionsgleichung:
\begin{displaymath}f(x)=-\frac{5}{6}x+\frac {11}{6}
\end{displaymath}
\\b) Welche Punkte (oder welchen Punkt) haben die Gerade $f(x)$ und die Gerade $g(x)$ gemeinsam, wenn {\”{u}}berhaupt? \begin{displaymath}g(x)=\frac {7}{3}x-\frac {12}{5}\end{displaymath}
\\c) Geben sie ein Argument, warum die Geraden f(x) und g(x) \emph{nicht} parallel verlaufen.\\

\textbf{Aufgabe 7:\hfill 2 Punkte}\\
\\
Gegeben sei die lineare Gleichung:

\begin{displaymath}
ax+by=c
\end{displaymath}
$\qquad$wobei $\qquad a=-3 \qquad b=2\qquad c=4$.
\\

Geben Sie die Steigung und den y-Achsenabstand der zugeh{\”{o}}rigen Geraden an.\\

\textbf{Aufgabe 8:\hfill 8 Punkte}\\

Eine Pr{\”{u}}fung ist exzellent gelaufen! Die maximale Punktzahl betr{\”{a}}gt $71$ Punkte. Der Professor entscheidet sich obendrauf noch $6$ Punkte zu schenken! F{\”{u}}r $0$ Punkte gibt es eine Eins, f{\”{u}}r $65$ Punkte eine $6$.
\begin{enumerate}
\item Welche Note gibt es f{\”{u}}r  $39$ Punkte?
\item  Wieviele Punkte muss man erreichen um eine $5$ zu erhalten?
\item Wie lautet die Funktionsgleichung?
\item  Was ist die h{\”{o}}chste Note, die man machen kann, wenn Noten {\”{u}}ber der $6$ zul{\”{a}}ssig sind?
\end{enumerate}

\end{document}

Prüfungsvorlage 3 | Geometrie | Pythagoras

Aha, noch eine Prüfung bez. Pythagoras. Zur Abwechslung kann man ja auch ein Examen schreiben. Ich glaube fast, die Schüler hatten 2h Zeit.

a^2+b^2=c^2.

Anbei ein Exempel: Geometrie Examen Pythagoras.pdf

Anbei die LaTeX-Version:

% http://blogs.ethz.ch/rindi/
% A. PRÄAMBEL
%*****************************

\documentclass[smallheadings,headsepline,12pt,a4paper]{scrartcl}
\usepackage[ngerman, french]{babel}
\selectlanguage{ngerman}
\usepackage[applemac]{inputenc} % teilt LaTeX die Texcodierung mit. Bei Windowssystemen: ansinew
\usepackage[T1]{fontenc}
\usepackage{txfonts}
\usepackage{hyperref}
\usepackage{marvosym}
\usepackage[pdftex]{graphicx}\usepackage{multicol}
\usepackage{color}
\usepackage[dvips]{geometry}
\pagestyle{plain}
\clubpenalty = 10000
\widowpenalty = 10000

\begin{document}
\parindent 0pt

% B. TITELSEITE UND INHALTSVERZEICHNIS
%*****************************

\titlehead{
\hfill Kantonsschule XY, der 24. April}

\title{\sc{Examen in Geometrie}}
\author{\sc{Der Satz von Pythagoras}}
\date{\normalsize{Name, Vorname und Klasse: …………………………………………………}}
\maketitle

% C. TEST
%*****************************
\begin{tabbing}
\textbf{1.} \= Finde die Diagonalenlänge eines Rechteckes mit den Seiten $5.7$ und $17.6$ cm. \=(1 P)\\
\\
\textbf{2.} Berechne den Flächeninhalt eines Quadrates mit der Diagonalen $d = 10$ cm. \>\>(1 P)\\
\\
\textbf{3.} Finde die Körperdiagonalenlänge eines Quaders mit den Seitenlängen:\\
\>$3$ cm, $5$ cm und $4$ cm. \>(1 P)\\
\\
\textbf{4.} Ein gleichseitiges Dreieck hat die Seitenlänge $10$ cm.\\
\>Finde die Höhe $h$ und den Flächeninhalt $A$. \>(2 P)\\
\\
\textbf{5.} Ein gleichschenkliges Dreieck hat eine Basisseite von $70$ mm.\\
\>Die rechtwinklig dazu stehende Höhe misst $110$ mm.\\
\>Berechne die Länge einer der beiden anderen Seiten. \>(1 P)\\
\\
\textbf{6.} Ein rechtwinkliges Dreieck hat folgende Hypothenusenabschnitte:\\
\>$p = 3$ dm und $q = 13.5$ dm. Wie lang sind die Seiten und die Höhe $h_{c}$? \>(2 P)\\
\\
\textbf{7.} Eine Leiter ist $7$ m lang. Sie steht $2$ m weit weg von der Mauer.\\
\>Wie weit nach oben reicht sie? \>(1 P)\\
\\
\textbf{8.} Ein Schiff fährt aus dem Hafen von Hong Kong $50$ Seemeilen in südliche\\
\> Richtung. Dann dreht das Schiff auf westlichen Kurs und fährt 130 Seemeilen.\\
\>Wie weit ist das Schiff jetzt von Hong Kong entfernt?\>(1 P)\\
\\
\textbf{9.} Gegeben ist ein Dreieck mit den Seitenlängen: $0.3$ inches,\\
\> $0.4$ inches und $0.12$ inches. Hat es einen rechten Winkel?\>(1 P)\\
\\
\textbf{10.}  Wie weit liegen die Koordinatenpunkte $(-2;3)$ und $(5;-2)$ auseinander?\>\>(1 P)\\
\end{tabbing}

\begin{figure}[]
\centering
\includegraphics[width=10cm]{selfsimilar.jpg}
\caption{Fraktale Form}\label{self}
\end{figure}

\begin{tabbing}
\textbf{11.} \=Diese Figur ist selbstähnlich. Sie entsteht, indem man in ein kleines Quadrat ein grosses\\
\>Quadrat einbeschreibt. Die Ecken des umbeschriebenen (kleinen) Quadrates liegen \\
\>jeweils in der Mitte des jeweiligen einbeschreibenden (grösseren) Quadrates. Dieser Prozess\\
\>kann immerfort wiederholt werden, bis man die Quadrate gar nicht mehr zeichnen kann!\=\\
\>Wir nehmen an, dass das erste Quadrat eine Seitenlänge von $14$ cm hat.\\
\>Wie lang sind die Seiten des 2-ten und 3-ten Quadrates?\>(4 P)\\
\\
\>Joker: Gibt es eine Beziehung in der Seitenlängensequenz? Wenn ja, wie lange ist\\
\>die Seite des 10-ten Quadrates?\>(2 P)
\end{tabbing}
\vspace{2cm}
\begin{center}
\tiny Viel Erfolg!
\end{center}

\newpage

\begin{figure}[]
\centering
\includegraphics[width=9cm]{coordsyst.jpg}
\caption{Euklidische Stadt}\label{city}
\end{figure}
\begin{tabbing}
\textbf{12.} \=In der Stadt von Euklid gibt es ein Hotel bei $(-4;8)$, ein Restaurant findet man bei\=\\
\>$(6;8)$ und das Hallenstadion steht beim Punkte $(6;-6)$. Markiere nun diese “Locations” \\
\>  mit Farbe ins Koordinatensystem.\>(1 P)\\
\\
\>Die “Funky-Punky” Rock-Band ist mit vielen Fans im Hotel (für Signaturen etc.).\\
\> Noch vor dem Live-Konzert geht eine Gruppe von Fans mit dem Taxi ins Restaurant\\
\>Pizza essen. Im selben Moment wird der “Funky-Punky” Rock-Band ein 5-Gang Menu \\
\>serviert. Danach fliegt die Band mit dem Helikopter zum Hallenstadion.\\
\>Die Fans im Restaurant nehmen nach dem Essen den Bus dorthin.\\
\\
\>Wieviele Einheiten fahren die Fans vom Hotel ins Restaurant?\>(1 P)\\
\>Wieviele Einheiten fahren die Fans vom Restaurant zum Hallenstadion?\>(1 P)\\
\>Wieviele Einheiten fliegt die Band vom Hotel zum Hallenstadion?\>(1 P)\\
\\
\textbf{13.} Die Pyramide von Gizeh hat ein Quadrat mit der Seitenlänge von $226$ m als Basis.\\
\>Ihre Höhe beträgt $144$ m. Wie lang sind die vier noch unbekannten Seitenlängen?\>(4 P)
\end{tabbing}
\begin{figure}[b]
\centering
\includegraphics[width=4cm]{SquarePyramid.jpg}
\end{figure}
\newpage

\begin{figure}[]
\centering
\includegraphics[width=10cm]{pyth.jpg}
\caption{Geometrischer Beweis des Satzes von Pythagoras.}\label{struct}
\end{figure}
\begin{tabbing}
\textbf{12.} \=Die Aufgabe besteht darin, dass Du eigens (zum Abschluss des Themas)\\
\>nocheinmal den Satz des Pythagoras herleitetst. Die Figur ist ein eigentlicher\\
\> Beweis des Satzes. Was ist also noch zu tun?\\
\end{tabbing}
\begin{itemize}
\item Vollständige Beschriftung der Zeichnung.
\item \textbf{Schriftliches Ausformulieren der Beweisidee.}\hfill (4 P)
\end{itemize}
\vspace{2cm}
Vergiss nicht, mit dem Wort KONGRUENZ (deckungsgleich) zu argumentieren!

\end{document}

Anbei die benötigten Figures:

Fig.1 Fraktale Form
Fig. 1: Fraktale From

Euklidische Stadt
Fig. 2: Euklidische Stadt
Pyramide von Gizeh
Fig. 3: Pyramide von Gizeh
Pytharoras
Fig. 4: Pytharoras

Die Usepackeges sind etwas Appel lastig… z.B. \usepackage[applemac]{inputenc} Für Windowssysteme nimmt man ansinew.

Prüfungsvorlage 1 | Geometrie | Pythagoras

Augabenblatt: Aufgabenblatt-Pythagoras [pdf, 215KB]

Anbei der LaTeX code:

% http://blogs.ethz.ch/rindi/
\documentclass[smallheadings,headsepline,10pt,a4paper]{article}
\usepackage[english]{babel}
\usepackage{amsfonts}
\usepackage[pdftex]{graphicx}
\usepackage[pdftex]{hyperref}
\usepackage{multicol}
\usepackage{rotating}
\usepackage{textcomp}
\usepackage{color}
\pagestyle{headings}
\clubpenalty = 10000
\widowpenalty = 10000

\begin{document}

\title{Pythagoras}
\author{Klasse 2Ri Kantonsschule XY}
\date{24.04.2007}
\maketitle

\begin{figure}[htbp]
\centering
\includegraphics[width=1.5in]{PythagorasBueste.png}
\caption{Pythagoras von Samos (um 570 v. Chr., $\dag$  nach 510 v. Chr.) war ein griechischer Philosoph und Mathematiker.}
\label{face}
\end{figure}

\section{Aufgabe}
Eure Aufgabe besteht darin, dass Ihr eigens (zum Abschluss des Themas) nocheinmal den Satz des Pythagoras herleitet. Die Arbeit wird eingezogen und bewertet mit einer halb zaehlenden Note.\\
Es stehen Euch zwei Zeichnungen zur Verfuegung. Die Zeichnungen sind eigentliche Beweise des Satzes. Was ist also noch zu tun? Man muss sich fuer einen Beweis entscheiden. Dann:\\

\begin{itemize}
\item Genaues Abzeichnen einer der Figuren.
\item Vollstaendige Beschriftung der Zeichnung.
\item Farbliche Gestaltung der Zeichnung.
\item \textbf{Schriftliches Ausformulieren der Beweisidee.}
\item Man darf mit dem Nachbar fluestern!
\item Es soll ein mathematisches KUNSTWERK geben!
\end{itemize}

\section{Geometrische Zeichnungen}
\begin{figure}[rh!]
\centering
\includegraphics[width=9cm]{503px-Pythagore2.pdf}
\includegraphics[width=8cm]{Chinese_pythagoras.jpg}
\caption{Die erste Darstellung ist etwas einfacher! Die zweite Darstellung ist aus China! Vergiss nicht, mit dem Wort KONGRUENZ (deckungsgleich) zu argumentieren!}
\label{example1}
\end{figure}

\end{document}

Anbei die nötigen Figures:

Fig. 1: Büste von Pythagoras

Kongruenzfigur für den Beweis des Satzes von Pythagoras

Fig. 2: Kongruenzfigur zum Beweis des Satzes von Pythagoras

Figure that helps to proof Pythagoras a^2+b^2=c^2

Fig. 3: Chinesischer Beweis des Satzes von Pythagoras