Übungsvorlage in pdf: Übungsblatt_Funktionen.pdf
Anbei die Version in LaTeX:
% A. PR{\”{a}}AMBEL https://blogs.ethz.ch/rindi/
% ***********************************************\documentclass[smallheadings,headsepline,12pt,a4paper]{scrartcl}
\usepackage[ngerman, french]{babel}
\usepackage[applemac]{inputenc} % teilt LaTeX die Texcodierung mit. Bei Windowssystemen: ansinew
\usepackage[T1]{fontenc}
\usepackage{hyperref}
\usepackage[pdftex]{graphicx}
\usepackage{multicol}
\usepackage{color}
\usepackage[dvips]{geometry}
\pagestyle{plain}
\clubpenalty = 10000
\widowpenalty = 10000
\selectlanguage{ngerman}\begin{document}
% B. TITEL https://blogs.ethz.ch/rindi/
% ********************************************\titlehead{
\hfill Locarno der \today}
\subject{
\sc{{\”{u}}bungen\\Algebra Klasse 3d}}
\title{\sc{- Funktionen -}}
\author{\sc{Kantonsschule am Berg}\\
}
\date{2006}
\maketitle% C. UEBUNGEN https://blogs.ethz.ch/rindi/
% ********************************************\textbf{Definition:}\\
Eine Funktion ist eine Beziehung von einem Definitionsbereich $\mathbf{D}$ zu einem Wertebereich $\mathbf{W}$, bei der jedem Element aus $\mathbf{D}$ \emph{genau ein} Element aus $\mathbf{W}$ zu geordnet ist.\\
\\
Man schreibt:\\$f: \mathbf{D}\longrightarrow \mathbf{W}$ \qquad
$x \longmapsto f(x)$\\
\\\textbf{Beispiel 1} Es soll zwischen 10 und
20 Uhr der Temperaturverlauf an
einem sch{\”{o}}nen Sommertag (mit einem kurzen Gewitterschauer um
15 Uhr) eingetragen werden.
\begin{figure}[rh!]
\centering
\includegraphics[width=3.9cm]{Temp.jpg}
\caption{Tagestemperatur in Funktion der Zeit.}\label{Temp}
\end{figure}\textbf{Beispiel 2} Ihr habt nun ein Beispiel f{\”{u}}r ein Schaubild einer
Funktion kennengelernt. Ein Begriff lernt sich am besten, wenn
auch Gegenbeispiele gebracht
werden:
\begin{figure}[rh!]
\centering
\includegraphics[width=4.5cm]{NichtTemp.jpg}
\caption{Gegenbeispiel einer Funktion.}\label{NichtTemp}
\end{figure}
Dies ist nicht das Schaubild eines
Temperaturverlaufs.\\\textbf{Aufgabe 1.}\\
Warum ist die Kurve in Fig. \ref{NichtTemp} kein Schaubild einer Funktion?\\\textbf{Aufgabe 2.}\\
Handelt es sich bei den Kurven in Fig. \ref{FunktionenNichtFunktionen} um Schaubilder (Graphen) von Funktionen?\\
\begin{figure}[rh!]
\centering
\includegraphics[width=12cm]{FunktionenNichtFunktionen.jpg}
\caption{{\”{u}}bung macht den Meister!}\label{FunktionenNichtFunktionen}
\end{figure}\\
\textbf{Aufgabe 3. }\\
F{\”{u}}r die folgenden Funktionen ist\\
\\
– eine ausf{\”{u}}hrliche Wertetabelle im angegebenen Berich zu berechnen\\
– der Graph zu zeichnen und zu beschreiben\\
– die Definitionsmenge anzugeben\\
– mit dem Graph die Wertemenge zu bestimmen\\
\\
a) $\qquad x \longmapsto f(x)=\mid 2x-1 \mid +1 \qquad \qquad \mid x\mid \leq 5$\\
\\
b) $\qquad x \longmapsto f(x)=\frac{ 4 }{ x^{2}+4 }\qquad \qquad \qquad \mid x\mid \leq 4$\\
\\
c) $\qquad x \longmapsto f(x)=1-x^2\qquad \qquad \qquad \mid x\mid \leq 3$\\\newpage
\vfill
“Das entscheidende Kriterium ist Sch{\”{o}}nheit; f{\”{u}}r h{\”{a}}ßliche Mathematik ist auf dieser Welt kein best{\”{a}}ndiger Platz.”\\
\\
Godfrey Harold Hardy\nocite{*}
\bibliographystyle{plain}
\bibliography{bibGeolRegio}\end{document}