Prüfungsvorlage A | Quadratwurzel

Prüfungsvorlage in pdf: Pruefung_Quadratwurzel_Bogen_A.pdf

Anbei die LaTeX-Vorlage:

% A. PR{\”{a}}AMBEL https://blogs.ethz.ch/rindi/
% **********************************************

\documentclass[smallheadings,headsepline,12pt,a4paper]{scrartcl}
\usepackage[ngerman, french]{babel}
\usepackage[applemac]{inputenc} % teilt LaTeX die Texcodierung mit. Bei Windowssystemen: ansinew
\usepackage[T1]{fontenc}
\usepackage{hyperref}
\usepackage[pdftex]{graphicx}
\usepackage{multicol}
\usepackage{color}
\usepackage[dvips]{geometry}
\pagestyle{plain}
\clubpenalty = 10000
\widowpenalty = 10000
\selectlanguage{ngerman}

\begin{document}

% B. TITEL  https://blogs.ethz.ch/rindi/
% **********************************************

\titlehead{
\hfill Stadt und Land, im Dezember}

\title{\sc{Quadratwurzel}}
\author{\sc{Bogen A}}
\date{\normalsize{Name und Vorname: …………………………………………………}}
\maketitle

% B. AUFGABENSTELLUNGEN  https://blogs.ethz.ch/rindi/
% **********************************************

\textbf{Aufgabe 1}\\
\\
Welches sind die beiden m{\”{o}}glichen L{\”{o}}sungen der Gleichung $x^2=9$?\\
Mache eine Einsezprobe damit ich’s verstehe!\\
\\
Antwort:…………………………………………………………………………………………..\\
\\
F{\”{u}}lle die L{\”{u}}cken auf:\\
\\
$3$ ist die Quadratwurzel von …………. . Es ist also die ……………………….  L{\”{o}}sung\\
\\
der Gleichung …………………………………….. !\\
\\
\textbf{Aufgabe 2}\\
\\
Welches der beiden Beispiele ist richtig?\\
\\
a)
\begin{displaymath}
\sqrt{x+y}=\sqrt{x}+\sqrt{y}
\end{displaymath}
b)
\begin{displaymath}
\sqrt{xy}=\sqrt{x}\sqrt{y}
\end{displaymath}
\\
Antwort: ……………………………………………………..\\
\\
Wie heisst die Regel, die man beim richtigen Beispiel anwendet?\\
\\
Regel: …………………………………………………………………………………………..\\
\\
Begr{\”{u}}nde Deine Antwort zus{\”{a}}tzlich mit einem von Dir erfundenen Zahlenbeispiel!\\
\\
Einsetzprobe beim richtigen Beispiel zum zeigen, dass es geht:\\
\begin{displaymath}
………………………………………………………………………………………………………..
\end{displaymath}
\\
Einsetzprobe beim falschen Beispiel zum zeigen, dass es \emph{nicht} geht:\\
\begin{displaymath}
………………………………………………………………………………………………………..
\end{displaymath}
\\
\textbf{Aufgabe 3}\\
\\
Ein Rechteck hat eine L{\”{a}}nge von $8$ cm und eine Breite von $2$ cm. Wie gross ist der Umfang eines fl{\”{a}}chengleichen Quadrates?\\
\\
Antwort mit Rechnung: …………………………………………………………………….\\
\\
………………………………………………………………………………………………………..\\
\\
………………………………………………………………………………………………………..\\

\textbf{Aufgabe 4}\\
\\
Wurzelfrei!\\
\\
a)
\begin{displaymath}
\sqrt{a^2}
\end{displaymath}
b) DIVIDE ET IMPERA!
\begin{displaymath}
\sqrt{\frac{(r+s)^2+(r-s)^2}{2r^2+2s^2}}
\end{displaymath}
\\
………………………………………………………………………………………………………..\\
\\
………………………………………………………………………………………………………..\\
\\
………………………………………………………………………………………………………..\\
\\
\textbf{Aufgabe 5}\\
\\
Tabelliere die L{\”{o}}sungen von $y=x^2$ f{\”{u}}r $x = 0,~5,~10,~15,~20,~25,~30$.\\

Tabelle:\\
\begin{figure}[rh]
\centering
\includegraphics[width=10cm]{tabelle.jpg}
\end{figure}

Stelle diese L{\”{o}}sungen mit Punkten im gegebenen Koodinatensystem graphisch dar.\\
\begin{figure}[rh]
\centering
\includegraphics[width=13cm]{probe.jpg}
\end{figure}

Verbinde die Punkte mit einer sch{\”{o}}nen, glatten Kurve und gib mit Hilfe dieser Kurve $\sqrt{750}$ und $\sqrt{600}$ auf der x-Achse an.\\
\\
\textbf{Aufgabe 6}\\
\\
Berechne mit dem Taschenrechner und runde das Resultat auf zwei Stellen nach dem Komma.
\begin{equation}
2.3\sqrt{7^2+2\sqrt{6}}-4.5\sqrt{\frac{4}{6\sqrt{3}+5.5\cdot6}} = …………………..
\end{equation}

\begin{equation}
\sqrt{\bigg(\sqrt{(\sqrt{2})2}\bigg)2} = …………………..
\end{equation}

\textbf{Aufgabe 7}\\
\\
Forme um und vereinfache so weit als m{\”{o}}glich – wenn m{\”{o}}glich! (ohne Rechner)\\

\begin{equation}
\sqrt{-99}
\end{equation}
\\
………………………………………………………………………………………………………..\\
\\
\begin{equation}
\sqrt{12a^4b^3c^6}
\end{equation}
\\
………………………………………………………………………………………………………..\\
\\
………………………………………………………………………………………………………..\\
\begin{equation}
\sqrt{3^2+4^2}
\end{equation}
\\
………………………………………………………………………………………………………..\\
\\
\begin{equation}
\sqrt{xy}:\sqrt{\frac{x}{y}}
\end{equation}
\\
………………………………………………………………………………………………………..\\
\\
………………………………………………………………………………………………………..\\

\begin{equation}
\sqrt{2}(\sqrt{2}-\frac{1}{\sqrt{2}})
\end{equation}
\\
………………………………………………………………………………………………………..\\
\\
………………………………………………………………………………………………………..\\

\begin{equation}
\sqrt{\frac{25z^4}{z^4+10z^2+25}}
\end{equation}
\\
………………………………………………………………………………………………………..\\
\\
………………………………………………………………………………………………………..\\
\\
………………………………………………………………………………………………………..\\

\textbf{Aufgabe 8}\\
\\
Heron: Berechnung von $\sqrt{7}$ mit dem Sch{\”{a}}tzwert $x_{1}=2.64575$\\
\\
Berechne einen zweiten N{\”{a}}herungswert $x_{2}$. Der L{\”{o}}sungsweg muss ersichtlich sein!\\
\\
………………………………………………………………………………………………………..\\
\\
………………………………………………………………………………………………………..\\
\\
………………………………………………………………………………………………………..\\
\\

\textbf{Weihnachtsaufgabe}\\
\\
Unter dem Christbaum liegt ein W{\”{u}}rfelp{\”{a}}ckli mit einem Volumen von $100$ cm$^3$. Wie lang ist seine Kante? Gib das Resultat so exakt wie Dir nur m{\”{o}}glich an! (4 signifikante Stellen w{\”{u}}rden mir gen{\”{u}}gen.)\\
\\
………………………………………………………………………………………………………..\\
\\
………………………………………………………………………………………………………..\\

\end{document}

Anbei die dazu benötigten Graphiken:

Tabelle

Fig. 1: Tabelle

Fig. 2: Prüfung zur Quadratwurzel

Leave a Reply

Your email address will not be published.