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 1
I n t r o d u c t i o n
This guide describes the Wave Optics Module, an optional add-on package for 
COMSOL Multiphysics® designed to assist you to set-up and solve 
electromagnetic wave problems at optical frequencies.

This chapter introduces you to the capabilities of this module. A summary of the 
physics interfaces and where you can find documentation and model examples is 
also included. The last section is a brief overview with links to each chapter in this 
guide.

In this chapter:

• About the Wave Optics Module

• Overview of the User’s Guide
 1
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Abou t  t h e  Wav e  Op t i c s  Modu l e

These topics are included in this section:

• About the Wave Optics Module

• What Problems Can You Solve?

• The Wave Optics Module Physics Guide

• Selecting the Study Type

• The Wave Optics Module Modeling Process

• Where Do I Access the Documentation and Model Library?

About the Wave Optics Module

The Wave Optics Module extends the functionality of the physics user interfaces of the 
base package for COMSOL Multiphysics. The details of the physics user interfaces and 
study types for the Wave Optics Module are listed in the table. The functionality of the 
COMSOL Multiphysics base package is given in the COMSOL Multiphysics 
Reference Manual.

The Wave Optics Module solves problems in the field of electromagnetic waves at 
optical frequencies (corresponding to wavelengths in the nano- to micrometer range). 
The underlying equations for electromagnetics are automatically available in all of the 
physics interfaces—a feature unique to COMSOL Multiphysics. This also makes 
nonstandard modeling easily accessible. 

The module is useful for simulations and design of optical applications in virtually all 
areas where you find electromagnetic waves, such as:

• Optical fibers

• Photonic waveguides

In the COMSOL Multiphysics Reference Manual:

• Studies and the Study Nodes 

• The Physics User Interfaces 

• For a list of all the interfaces included with the COMSOL basic license, 
see Physics Guide.
1 :  I N T R O D U C T I O N



• Photonic crystals

• Nonlinear optics

• Laser resonator design

• Active devices in photonics

The physics interfaces cover the following types of electromagnetics field simulations 
and handle time-harmonic, time-dependent, and eigenfrequency/eigenmode 
problems:

• In-plane, axisymmetric, and full 3D electromagnetic wave propagation

• Full vector mode analysis in 2D and 3D

Material properties include inhomogeneous and fully anisotropic materials, media with 
gains or losses, and complex-valued material properties. In addition to the standard 
postprocessing features, the module supports direct computation of S-parameters and 
far-field patterns. You can add ports with a wave excitation with specified power level 
and mode type, and add PMLs (perfectly matched layers) to simulate electromagnetic 
waves that propagate into an unbounded domain. For time-harmonic simulations, you 
can use the scattered wave or the total wave. 

Using the multiphysics capabilities of COMSOL Multiphysics you can couple 
simulations with heat transfer, structural mechanics, fluid flow formulations, and other 
physical phenomena.

What Problems Can You Solve?

The Wave Optics Module allows you to make high-frequency electromagnetic wave 
simulations. It distinguishes itself from the AC/DC Module, in that the AC/DC 
Module targets quasi-static simulations, where the size of the computational domain 
is small compared to the wavelength.

Both the RF and the Wave Optics Module can handle high-frequency electromagnetic 
wave simulations. However, with the Wave Optics Module you can do time-harmonic 
simulations of domains that are much larger than the wavelength. This situation is 
typical for optical phenomena, components and systems. Due to the relatively weak 
coupling between waves in optical materials, the interaction lengths are often much 
larger than the wavelength. This applies to linear couplers, like directional couplers and 
fiber Bragg gratings, and nonlinear phenomena, like second harmonic generation, 
self-phase modulation, etc. With the Wave Optics Module, these kinds of problems are 
directly addressable, without huge computer memory requirements.
A B O U T  T H E  W A V E  O P T I C S  M O D U L E  |  3
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Independently of the structure size, the module accommodates any case of nonlinear, 
inhomogeneous, or anisotropic media. It also handles materials with properties that 
vary as a function of time as well as frequency-dispersive materials.

The Wave Optics Module Physics Guide

The physics interfaces in this module form a complete set of simulation tools for 
electromagnetic wave simulations. Use the Model Wizard to select the physics and 
study type when starting to build a new model. You can add interfaces and studies to 
an existing model throughout the design process. See the COMSOL Multiphysics 
Reference Manual for detailed instructions. In addition to the interfaces included 
with the basic COMSOL Multiphysics license, the physics below are included with the 
Wave Optics Module and available in the indicated space dimension. All interfaces are 
available in 2D and 3D. In 2D there are in-plane formulations for problems with a 
planar symmetry as well as axisymmetric formulations for problems with a cylindrical 
symmetry. 2D mode analysis of waveguide cross sections with out-of-plane 
propagation is also supported. 

PHYSICS USER INTERFACE ICON TAG SPACE 
DIMENSION

AVAILABLE PRESET STUDY TYPE

  Optics

 Wave Optics

Electromagnetic 
Waves, Beam 
Envelopes

ewbe 3D, 2D, 2D 
axisymmetric

boundary mode analysis; 
eigenfrequency; frequency 
domain; frequency-domain 
modal

Electromagnetic 
Waves, Frequency 
Domain

ewfd 3D, 2D, 2D 
axisymmetric

boundary mode analysis; 
eigenfrequency; frequency 
domain; frequency-domain 
modal; mode analysis (2D and 
2D axisymmetric models only)

Electromagnetic 
Waves, Time 
Explicit

teew 3D, 2D, 2D 
axisymmetric

time dependent

Electromagnetic 
Waves, Transient

ewt 3D, 2D, 2D 
axisymmetric

eigenfrequency; time 
dependent; time dependent 
modal
1 :  I N T R O D U C T I O N



Selecting the Study Type

To carry out different kinds of simulations for a given set of parameters in a physics 
interface, you can select, add, and change the Study Types at almost every stage of 
modeling. 

C O M P A R I N G  T H E  T I M E  D E P E N D E N T  A N D  F R E Q U E N C Y  D O M A I N  S T U D I E S

When variations in time are present there are two main approaches to represent the 
time dependence. The most straightforward is to solve the problem by calculating the 
changes in the solution for each time step; that is, solving using the Time Dependent 
study (available with the Electromagnetic Waves, Transient and Electromagnetic 
Waves, Time Explicit interfaces). However, this approach can be time consuming if 
small time steps are necessary for the desired accuracy. It is necessary when the inputs 
are transients like turn-on and turn-off sequences.

However, if the Frequency Domain study available with the Electromagnetic Waves, 
Frequency Domain and the Electromagnetic Waves, Beam Envelopes interfaces is 
used, this allows you to efficiently simplify and assume that all variations in time occur 
as sinusoidal signals. Then the problem is time-harmonic and in the frequency domain. 
Thus you can formulate it as a stationary problem with complex-valued solutions. The 
complex value represents both the amplitude and the phase of the field, while the 
frequency is specified as a scalar model input, usually provided by the solver. This 
approach is useful because, combined with Fourier analysis, it applies to all periodic 
signals with the exception of nonlinear problems. Examples of typical frequency 
domain simulations are wave-propagation problems.

For nonlinear problems you can apply a Frequency Domain study after a linearization 
of the problem, which assumes that the distortion of the sinusoidal signal is small. You 
can also couple waves at different frequencies, for example in applications like second 
harmonic generation, by coupling several interfaces, defined for the different 
frequencies, using weak expression coupling terms.

Use a Time Dependent study when the nonlinear influence is strong, or if you are 
interested in the harmonic distortion of a sine signal. It may also be more efficient to 
use a time dependent study if you have a periodic input with many harmonics, like a 
square-shaped signal.

Studies and Solvers in the COMSOL Multiphysics Reference Manual
A B O U T  T H E  W A V E  O P T I C S  M O D U L E  |  5
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C O M P A R I N G  T H E  E L E C T R O M A G N E T I C  W A V E S ,  F R E Q U E N C Y  D O M A I N  A N D  

T H E  E L E C T R O M A G N E T I C  W A V E S ,  B E A M  E N V E L O P E S  I N T E R F A C E S

Both the Electromagnetic Waves, Frequency Domain and the Electromagnetic Waves, 
Beam Envelopes interfaces solve the time-harmonic Maxwell’s equations. For the 
Frequency Domain interface, the dependent variable is the total electric field. Since the 
electric field has a spatial variation on the scale of a wavelength, the maximum mesh 
element size must be a fraction of a wavelength. If this mesh requirement is fulfilled, 
the Frequency Domain interface is very flexible for solving both propagation and 
scattering problems.

For many optical applications the propagation length is much longer than the 
wavelength. For instance, a typical optical wavelength is 1 m, but the propagation 
length can easily be on the milli- to centimeter scale. To apply the Frequency Domain 
interface to this kind of problems, requires a large amount of available memory. 
However, many problems are such that the electric field can be factored into a slowly 
varying amplitude factor and a rapidly varying phase factor. The Electromagnetic 
Waves, Beam Envelopes interface is based on this assumption. Thus, this interface 
assumes a prescribed rapidly varying phase factor and solves for the slowly varying 
amplitude factor. Thereby it can be used for solving problems extending over domains 
that are a large number of wavelengths long, without requiring the use of large 
amounts of memory.

The Wave Optics Module Modeling Process

The modeling process has these main steps, which (excluding the first step), 
correspond to the branches displayed in the Model Builder in the COMSOL Desktop 
environment.

1 Selecting the appropriate physics interface or predefined multiphysics coupling in 
the Model Wizard. 

2 Defining model parameters and variables in the Definitions branch ( ).

3 Drawing or importing the model geometry in the Geometry branch ( ).

4 Assigning material properties to the geometry in the Materials branch ( ).

5 Setting up the model equations and boundary conditions in the physics interfaces 
branch.

6 Meshing in the Mesh branch ( ).

7 Setting up the study and computing the solution in the Study branch ( ). 

8 Analyzing and visualizing the results in the Results branch ( ).
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Even after a model is defined, you can edit input data, equations, boundary conditions, 
geometry—the equations and boundary conditions are still available through 
associative geometry—and mesh settings. You can restart the solver, for example, using 
the existing solution as the initial condition or initial guess. It is also easy to add 
another interface to account for a phenomenon not previously described in a model.

S H O W  M O R E  P H Y S I C S  O P T I O N S

There are several general options available for the physics user interfaces and for 
individual nodes. This section is a short overview of these options, and includes links 
to additional information when available.

To display additional options for the physics interfaces and other parts of the model 
tree, click the Show button ( ) on the Model Builder and then select the applicable 
option.

After clicking the Show button ( ), additional sections get displayed on the settings 
window when a node is clicked and additional nodes are available from the context 
menu when a node is right-clicked. For each, the additional sections that can be 
displayed include Equation, Advanced Settings, Discretization, Consistent Stabilization, 
and Inconsistent Stabilization.

You can also click the Expand Sections button ( ) in the Model Builder to always show 
some sections or click the Show button ( ) and select Reset to Default to reset to 
display only the Equation and Override and Contribution sections.

For most nodes, both the Equation and Override and Contribution sections are always 
available. Click the Show button ( ) and then select Equation View to display the 
Equation View node under all nodes in the Model Builder.

Availability of each node, and whether it is described for a particular node, is based on 
the individual selected. For example, the Discretization, Advanced Settings, Consistent 

To locate and search all the documentation for this information, in 
COMSOL Multiphysics, select Help>Documentation from the main menu 
and either enter a search term or look under a specific module in the 
documentation tree.
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Stabilization, and Inconsistent Stabilization sections are often described individually 
throughout the documentation as there are unique settings.

O T H E R  C O M M O N  S E T T I N G S

At the main level, some of the common settings found (in addition to the Show  
options) are the Interface Identifier, Domain, Boundary, or Edge Selection, and 
Dependent Variables.

At the nodes’ level, some of the common settings found (in addition to the Show  
options) are Domain, Boundary, Edge, or Point Selection, Material Type, Coordinate 
System Selection, and Model Inputs. Other sections are common based on application 
area and are not included here.

SECTION CROSS REFERENCE

Show More Options and 
Expand Sections

Advanced Physics Sections

The Model Wizard and Model Builder

Discretization Show Discretization

Discretization (Node)

Discretization—Splitting of 
complex variables

Compile Equations

Consistent and 
Inconsistent Stabilization

Show Stabilization

Numerical Stabilization

Constraint Settings Weak Constraints and Constraint Settings

Override and Contribution Physics Exclusive and Contributing Node Types

SECTION CROSS REFERENCE

Coordinate System 
Selection

Coordinate Systems

Domain, Boundary, Edge, 
and Point Selection

About Geometric Entities

About Selecting Geometric Entities

Interface Identifier Predefined Physics Variables

Variable Naming Convention and Scope

Viewing Node Names, Identifiers, Types, and Tags

Material Type Materials
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Where Do I Access the Documentation and Model Library?

A number of Internet resources provide more information about COMSOL, including 
licensing and technical information. The electronic documentation, context help, and 
the Model Library are all accessed through the COMSOL Desktop.

T H E  D O C U M E N T A T I O N

The COMSOL Multiphysics Reference Manual describes all user interfaces and 
functionality included with the basic COMSOL Multiphysics license. This book also 
has instructions about how to use COMSOL and how to access the documentation 
electronically through the COMSOL Help Desk.

To locate and search all the documentation, in COMSOL Multiphysics:

• Press F1 or select Help>Help ( ) from the main menu for context help.

Model Inputs About Materials and Material Properties

Selecting Physics

Adding Multiphysics Couplings

Pair Selection Identity and Contact Pairs

Continuity on Interior Boundaries

SECTION CROSS REFERENCE

If you are reading the documentation as a PDF file on your computer, the 
blue links do not work to open a model or content referenced in a 
different guide. However, if you are using the online help in COMSOL 
Multiphysics, these links work to other modules, model examples, and 
documentation sets.
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• Press Ctrl+F1 or select Help>Documentation ( ) from the main menu for opening 
the main documentation window with access to all COMSOL documentation.

• Click the corresponding buttons (  or ) on the main toolbar.

and then either enter a search term or look under a specific module in the 
documentation tree.

T H E  M O D E L  L I B R A R Y

Each model comes with documentation that includes a theoretical background and 
step-by-step instructions to create the model. The models are available in COMSOL 
as MPH-files that you can open for further investigation. You can use the step-by-step 
instructions and the actual models as a template for your own modeling and 
applications.

In most models, SI units are used to describe the relevant properties, parameters, and 
dimensions in most examples, but other unit systems are available.

To open the Model Library, select View>Model Library ( ) from the main menu, and 
then search by model name or browse under a module folder name. Click to highlight 
any model of interest, and select Open Model and PDF to open both the model and the 
documentation explaining how to build the model. Alternatively, click the Help 
button ( ) or select Help>Documentation in COMSOL to search by name or browse 
by module.

The model libraries are updated on a regular basis by COMSOL in order to add new 
models and to improve existing models. Choose View>Model Library Update ( ) to 
update your model library to include the latest versions of the model examples.

If you have any feedback or suggestions for additional models for the library (including 
those developed by you), feel free to contact us at info@comsol.com.

If you have added a node to a model you are working on, click the Help 
button ( ) in the node’s settings window or press F1 to learn more 
about it. Under More results in the Help window there is a link with a 
search string for the node’s name. Click the link to find all occurrences of 
the node’s name in the documentation, including model documentation 
and the external COMSOL website. This can help you find more 
information about the use of the node’s functionality as well as model 
examples where the node is used.
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C O N T A C T I N G  C O M S O L  B Y  E M A I L

For general product information, contact COMSOL at info@comsol.com.

To receive technical support from COMSOL for the COMSOL products, please 
contact your local COMSOL representative or send your questions to 
support@comsol.com. An automatic notification and case number is sent to you by 
email.

C O M S O L  WE B S I T E S

COMSOL website www.comsol.com

Contact COMSOL www.comsol.com/contact

Support Center www.comsol.com/support

Download COMSOL www.comsol.com/support/download

Support Knowledge Base www.comsol.com/support/knowledgebase

Product Updates www.comsol.com/support/updates

COMSOL Community www.comsol.com/community
A B O U T  T H E  W A V E  O P T I C S  M O D U L E  |  11
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Ove r v i ew o f  t h e  U s e r ’ s  Gu i d e

The Wave Optics Module User’s Guide gets you started with modeling using 
COMSOL Multiphysics®. The information in this guide is specific to this module. 
Instructions on how to use COMSOL in general are included with the COMSOL 
Multiphysics Reference Manual. 

M O D E L I N G  W I T H  T H E  WA V E  O P T I C S  M O D U L E

The Wave Optics Modeling chapter familiarize you with the modeling procedures. A 
number of models available through the Model Library also illustrate the different 
aspects of the simulation process. Topics include Preparing for Wave Optics Modeling, 
Simplifying Geometries, and Scattered Field Formulation.

The chapter also contains a review of the basic theory of electromagnetics, starting 
with Maxwell’s Equations, and the theory for some Special Calculations: S-parameters, 
and far-field analysis. There is also a list of Electromagnetic Quantities with the SI units 
and symbols.

O P T I C S

The Optics Branch chapter describes these interfaces. The underlying theory is also 
included at the end of the chapter.

• The Electromagnetic Waves, Frequency Domain User Interface, which analyzes 
frequency domain electromagnetic waves, and uses time-harmonic and 
eigenfrequency or eigenmode (2D only) studies, boundary mode analysis and 
frequency domain modal.

• The Electromagnetic Waves, Beam Envelopes User Interface, which analyzes 
frequency domain electromagnetic waves, and uses time-harmonic and 
eigenfrequency studies, boundary mode analysis and frequency domain modal.

• The Electromagnetic Waves, Transient User Interface, which supports the time 
dependent study type.

• The Electromagnetic Waves, Time Explicit User Interface, which solves a transient 
wave equation for both the electric and magnetic fields.

As detailed in the section Where Do I Access the Documentation and 
Model Library? this information can also be searched from the COMSOL 
Multiphysics software Help menu. 
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 2
W a v e  O p t i c s  M o d e l i n g
The goal of this chapter is to familiarize you with the modeling procedure in the 
Wave Optics Module. A number of models available through the Model Library 
also illustrate the different aspects of the simulation process.

In this chapter:

• Preparing for Wave Optics Modeling

• Simplifying Geometries

• An Example — A Directional Coupler

• Periodic Boundary Conditions

• Scattered Field Formulation

• Modeling with Far-Field Calculations

• Maxwell’s Equations

• Special Calculations

• S-Parameters and Ports

• Lossy Eigenvalue Calculations

• Electromagnetic Quantities
 13
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P r epa r i n g  f o r  Wav e  Op t i c s  Mode l i n g

Several modeling topics are described in this section that may not be found in ordinary 
textbooks on electromagnetic theory.

This section is intended to help answer questions such as:

• Which spatial dimension should I use: 3D, 2D axial symmetry, or 2D?

• Is my problem suited for time dependent or frequency domain formulations?

• Can I assume that the electric field has a slowly varying amplitude?

• What sources can I use to excite the fields?

• When do I need to resolve the thickness of thin shells and when can I use boundary 
conditions?

• What is the purpose of the model?

• What information do I want to extract from the model?

Increasing the complexity of a model to make it more accurate usually makes it more 
expensive to simulate. A complex model is also more difficult to manage and interpret 
than a simple one. Keep in mind that it can be more accurate and efficient to use several 
simple models instead of a single, complex one.

Overview of the Physics and Building a COMSOL Model in the 
COMSOL Multiphysics Reference Manual
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S imp l i f y i n g  Geome t r i e s

Most of the problems that are solved with COMSOL Multiphysics® are 
three-dimensional (3D) in the real world. In many cases, it is sufficient to solve a 
two-dimensional (2D) problem that is close to or equivalent to the real problem. 
Furthermore, it is good practice to start a modeling project by building one or several 
2D models before going to a 3D model. This is because 2D models are easier to 
modify and solve much faster. Thus, modeling mistakes are much easier to find when 
working in 2D. Once the 2D model is verified, you are in a much better position to 
build a 3D model.

In this section:

• 2D Models

• 3D Models

• Using Efficient Boundary Conditions

• Applying Electromagnetic Sources

• Meshing and Solving

2D Models

The text below is a guide to some of the common approximations made for 2D 
models. Remember that the modeling in 2D usually represents some 3D geometry 
under the assumption that nothing changes in the third dimension or that the field has 
a prescribed propagation component in the third dimension.

C A R T E S I A N  C O O R D I N A T E S

In this case a cross section is viewed in the xy-plane of the actual 3D geometry. The 
geometry is mathematically extended to infinity in both directions along the z-axis, 
assuming no variation along that axis or that the field has a prescribed wave vector 
component along that axis. All the total flows in and out of boundaries are per unit 
length along the z-axis. A simplified way of looking at this is to assume that the 
geometry is extruded one unit length from the cross section along the z-axis. The total 
flow out of each boundary is then from the face created by the extruded boundary (a 
boundary in 2D is a line).

There are usually two approaches that lead to a 2D cross-section view of a problem. 
The first approach is when it is known that there is no variation of the solution in one 
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particular dimension. The second approach is when there is a problem where the 
influence of the finite extension in the third dimension can be neglected.

A X I A L  S Y M M E T R Y  ( C Y L I N D R I C A L  C O O R D I N A T E S )

If the 3D geometry can be constructed by revolving a cross section around an axis, and 
if no variations in any variable occur when going around the axis of revolution (or that 
the field has a prescribed wave vector component in the direction of revolution), then 
use an axisymmetric physics interface. The spatial coordinates are called r and z, where 
r is the radius. The flow at the boundaries is given per unit length along the third 
dimension. Because this dimension is a revolution all flows must be multiplied with r, 
where  is the revolution angle (for example, 2 for a full turn). 

PO L A R I Z A T I O N  I N  2 D

In addition to selecting 2D or 2D axisymmetry when you start building the model, the 
physics interfaces (The Electromagnetic Waves, Frequency Domain User Interface, 
The Electromagnetic Waves, Transient User Interface, or The Electromagnetic Waves, 
Beam Envelopes User Interface) in the Model Builder offers a choice in the 
Components settings section. The available choices are Out-of-plane vector, In-plane 
vector, and Three-component vector. This choice determines what polarizations can 
be handled. For example, as you are solving for the electric field, a 2D TM 
(out-of-plane H field) model requires choosing In-plane vector as then the electric 
field components are in the modeling plane.

3D Models

Although COMSOL Multiphysics fully supports arbitrary 3D geometries, it is 
important to simplify the problem. This is because 3D models often require more 
computer power, memory, and time to solve. The extra time spent on simplifying a 
model is probably well spent when solving it. Below are a few issues that need to be 
addressed before starting to implement a 3D model in this module.

• Check if it is possible to solve the problem in 2D. Given that the necessary 
approximations are small, the solution is more accurate in 2D, because a much 
denser mesh can be used.

When using the axisymmetric versions, the horizontal axis represents the 
radial (r) direction and the vertical axis the z direction, and the geometry 
in the right half-plane (that is, for positive r only) must be created. 
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• Look for symmetries in the geometry and model. Many problems have planes where 
the solution is the same on both sides of the plane. A good way to check this is to 
flip the geometry around the plane, for example, by turning it up-side down around 
the horizontal plane. Then remove the geometry below the plane if no differences 
are observed between the two cases regarding geometry, materials, and sources. 
Boundaries created by the cross section between the geometry and this plane need 
a symmetry boundary condition, which is available in all 3D physics interfaces.

• There are also cases when the dependence along one direction is known, and it can 
be replaced by an analytical function. Use this approach either to convert 3D to 2D 
or to convert a layer to a boundary condition.

• Sometimes the electric field can be decomposed into a product of a slowly varying 
amplitude function and a prescribed rapidly varying phase function. In this case it is 
advantageous to reformulate the equations and solve for the slowly varying 
amplitude function. Thereby the mesh only need to resolve the slowly varying 
function, and not the prescribed rapidly varying phase function.

Using Efficient Boundary Conditions

An important technique to minimize the problem size is to use efficient boundary 
conditions. Truncating the geometry without introducing too large errors is one of the 
great challenges in modeling. Below are a few suggestions of how to do this. They 
apply to both 2D and 3D problems.

• Many models extend to infinity or may have regions where the solution only 
undergoes small changes. This problem is addressed in two related steps. First, the 
geometry needs to be truncated in a suitable position. Second, a suitable boundary 
condition needs to be applied there. For static and quasi-static models, it is often 
possible to assume zero fields at the open boundary, provided that this is at a 
sufficient distance away from the sources. For radiation problems, special 
low-reflecting boundary conditions need to be applied. This boundary should be in 
the order of a few wavelengths away from any source.

A more accurate option is to use perfectly matched layers (PMLs). PMLs are layers 
that absorbs all radiated waves with small reflections.

• Replace thin layers with boundary conditions where possible. There are several types 
of boundary conditions in COMSOL Multiphysics suitable for such replacements. 
S I M P L I F Y I N G  G E O M E T R I E S  |  17
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For example, replace materials with high conductivity by the perfect electric 
conductor (PEC) boundary condition.

• Use boundary conditions for known solutions. For example, an antenna aperture 
can be modeled as an equivalent surface current density on a 2D face (boundary) in 
a 3D model.

Applying Electromagnetic Sources

Electromagnetic sources can be applied in many different ways. The typical options are 
boundary sources, line sources, and point sources, where point sources in 2D 
formulations are equivalent to line sources in 3D formulations. The way sources are 
imposed can have an impact on what quantities can be computed from the model. For 
example, a line source in an electromagnetic wave model represents a singularity and 
the magnetic field does not have a finite value at the position of the source. In a 
COMSOL Multiphysics model, the magnetic field of a line source has a finite but 
mesh-dependent value. In general, using volume or boundary sources is more flexible 
than using line sources or point sources, but the meshing of the source domains 
becomes more expensive.

Meshing and Solving

The finite element method approximates the solution within each element, using some 
elementary shape function that can be constant, linear, or of higher order. Depending 
on the element order in the model, a finer or coarser mesh is required to resolve the 
solution. In general, there are three problem-dependent factors that determine the 
necessary mesh resolution:

• The first is the variation in the solution due to geometrical factors. The mesh 
generator automatically generates a finer mesh where there is a lot of fine 
geometrical details. Try to remove such details if they do not influence the solution, 
because they produce a lot of unnecessary mesh elements.

• The second is the skin effect or the field variation due to losses. It is easy to estimate 
the skin depth from the conductivity, permeability, and frequency. At least two linear 
elements per skin depth are required to capture the variation of the fields. If the skin 
depth is not studied or a very accurate measure of the dissipation loss profile is not 
needed, replace regions with a small skin depth with a boundary condition, thereby 
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saving elements. If it is necessary to resolve the skin depth, the boundary layer 
meshing technique can be a convenient way to get a dense mesh near a boundary. 

• The third and last factor is the wavelength. To resolve a wave properly, it is necessary 
to use about 10 linear (or five 2nd order) elements per wavelength. Keep in mind 
that the wavelength depends on the local material properties. Notice that this 
limitation does not apply if it is possible to factor out the rapid field variation that 
occurs on a wavelength scale (see 3D Models).

S O L V E R S

In most cases the solver sequence generated by COMSOL Multiphysics can be used. 

The choice of solver is optimized for the typical case for each physics interface and 

study type in this module. However, in special cases tuning the solver settings may be 

required. This is especially important for 3D problems because they can require a large 

amount of memory. For large 3D problems, a 64-bit platform may be needed.

In the COMSOL Multiphysics Reference Manual:

• Meshing

• Studies and Solvers
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An Examp l e  — A D i r e c t i o n a l  C oup l e r

Introduction

Directional couplers are used for coupling a light wave from one waveguide to another 
waveguide. By controlling the refractive index in the two waveguides, for instance by 
heating or current injection, it is possible to control the amount of coupling between 
the waveguides.

Figure 2-1: Schematic drawing of the waveguide structure. The structure consists of the 
two waveguide cores and the surrounding cladding. Port 1 and 2 are used for exciting the 
waveguides and Port 3 and 4 absorb the waves.

Light that propagates through a dielectric waveguide has most of the power 
concentrated within the central core of the waveguide. Outside the waveguide core, in 
the cladding, the electric field decays exponentially with the distance from the core. 
However, if you put another waveguide core close to the first waveguide (see 
Figure 2-1), that second waveguide perturbs the mode of the first waveguide (and vice 
versa). Thus, instead of having two modes with the same effective index, one localized 
in the first waveguide and the second mode in the second waveguide, the modes and 
their respective effective indexes split and you get a symmetric supermode (see 
Figure 2-2 and Figure 2-4 below), with an effective index that is slightly larger than 

Port 1 and
Port 2

Port 3 and
Port 4

Cores

Cladding
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the effective index of the unperturbed waveguide mode, and an antisymmetric 
supermode (see Figure 2-3 and Figure 2-5), with an effective index that is slightly 
lower than the effective index of the unperturbed waveguide mode.

Since the supermodes are the solution to the wave equation, if you excite one of them, 
it propagates unperturbed through the waveguide. However, if you excite both the 
symmetric and the antisymmetric mode, that have different propagation constants, 
there is a beating between these two waves. Thus, the power fluctuates back and forth 
between the two waveguides, as the waves propagate through the waveguide structure. 
You can adjust the length of the waveguide structure to get coupling from one 
waveguide to the other waveguide. By adjusting the phase difference between the 
fields of the two supermodes, you can decide which waveguide that initially is to be 
excited.

Model Definition

The directional coupler, as shown in Figure 2-1, consists of two waveguide cores 
embedded in a cladding material. The cladding material is GaAs, with ion-implanted 
GaAs for the waveguide cores. The structure is modeled after Ref. 1.

The core cross-section is square, with a side length of 3 µm. The two waveguides are 
separated 3 µm. The length of the waveguide structure is 2 mm. Thus, given the tiny 
cross-section, compared to the length, it is advantageous to use a view that don’t 
preserve the aspect ratio for the geometry.

For this kind of problem, where the propagation length is much longer than the 
wavelength, The Electromagnetic Waves, Beam Envelopes User Interface is 
particularly suitable, as the mesh does not need to resolve the wave on a wavelength 
scale, but rather the beating between the two waves.

The model is setup to factor out the fast phase variation that occurs in synchronism 
with the first mode. Mathematically, we write the total electric field as the sum of the 
electric fields of the two modes,

The expression within the square parentheses is what is solved for. It has a beat length 
L defined by

E r  E1 j1x– exp E2 j2x– exp+
E1 E2 j 2 1– x– exp+  j1x– exp

=
=

2 1– L 2=
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or

In the simulation, this beat length must be well resolved. Since the waveguide length 
is half of the beat length and the waveguide length is discretized into 20 subdivisions, 
the beat length is very well resolved in the model.

The model uses two numeric ports per input and exit boundary (see Figure 2-1). The 
two ports define the lowest symmetric and antisymmetric modes of the waveguide 
structure.

Results and Discussion

Figure 2-2 to Figure 2-5 shows the results of the initial boundary mode analysis. The 
first two modes (those with the largest effective mode index) are both symmetric. 
Figure 2-2 shows the first mode. This mode has the transverse polarization component 
along the z-direction. The second mode, shown in Figure 2-4, has transverse 

L 2
2 1–
------------------=
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polarization along the y-direction.

Figure 2-2: The symmetric mode for z-polarization. Notice that the returned solution can 
also show the electric field as positive values in the peaks at the cores.

Figure 2-3: The antisymmetric mode for z-polarization.

Figure 2-3 and Figure 2-5 show the antisymmetric modes. Those have effective 
indexes that are slightly smaller than those of the symmetric modes. Figure 2-3 shows 
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the mode for z-polarization and Figure 2-5 shows the mode for y-polarization.

Figure 2-4: The symmetric mode for y-polarization. Notice that the returned solution can 
also show the electric field as positive values in the peaks at the cores.

Figure 2-5: The antisymmetric mode for y-polarization.
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Figure 2-6 shows how the electric field increases in the receiving waveguide and 
decreases in the exciting waveguide. If the waveguide had been longer, the waves 
would switch back and forth between the waveguides.

Figure 2-6: Excitation of the symmetric and the antisymmetric modes. The wave couples 
from the input waveguide to the output waveguide. Notice your result may show that the 
wave is excited in the other waveguide core, if your mode fields have different signs than 
what is displayed in Figure 2-2 to Figure 2-5.

Figure 2-7 show the result, when there is a phase difference between the fields of the 
exciting ports. In this case, the superposition of the two modes results in excitation of 
the other waveguides (as compared to the case in Figure 2-6).
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Figure 2-7: The same excitation conditions as in Figure 2-6, except that there is a phase 
difference between the two ports of  radians.
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Modeling Instructions

M O D E L  W I Z A R D

1 Go to the Model Wizard window.

2 Click Next.

Model Library path: Wave_Optics_Module/Waveguides_and_Couplers/

directional_coupler
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3 In the Add physics tree, select Optics>Wave Optics>Electromagnetic Waves, Beam 

Envelopes (ewbe).

4 Click Next.

5 Find the Studies subsection. In the tree, select Preset Studies>Boundary Mode 

Analysis.

6 Click Finish.

G L O B A L  D E F I N I T I O N S

First, define a set of parameters for creating the geometry and defining the material 
parameters.

Parameters
1 In the Model Builder window, right-click Global Definitions and choose Parameters.

2 In the Parameters settings window, locate the Parameters section.

3 In the table, enter the following settings:

G E O M E T R Y  1

Create the calculation domain.

Block 1
1 In the Model Builder window, under Model 1 right-click Geometry 1 and choose Block.

2 In the Block settings window, locate the Size and Shape section.

3 In the Width edit field, type len.

4 In the Depth edit field, type width.

5 In the Height edit field, type height.

NAME EXPRESSION DESCRIPTION

wl 1.15[um] Wavelength

f0 c_const/wl Frequency

a 3[um] Side of waveguide cross-section

d 3[um] Distance between the waveguides

len 2.1[mm] Waveguide length

width 6*a Width of calculation domain

height 4*a Height of calculation domain

ncl 3.47 Refractive index of GaAs

dn 0.005 Refractive index increase in waveguide core

nco ncl+dn Refractive index in waveguide core
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6 Locate the Position section. From the Base list, choose Center.

Now add the first embedded waveguide.

Block 2
1 In the Model Builder window, right-click Geometry 1 and choose Block.

2 In the Block settings window, locate the Size and Shape section.

3 In the Width edit field, type len.

4 In the Depth edit field, type a.

5 In the Height edit field, type a.

6 Locate the Position section. From the Base list, choose Center.

7 In the y edit field, type -d.

Add the second waveguide, by duplicating the first waveguide and modifying the 
position.

Block 3
1 Right-click Model 1>Geometry 1>Block 2 and choose Duplicate.

2 In the Block settings window, locate the Position section.

3 In the y edit field, type d.

4 Click the Build All button.

D E F I N I T I O N S

Since the geometry is so long and narrow, don't preserve the aspect ratio in the view.

1 In the Model Builder window, expand the Model 1>Definitions node.

Camera
1 In the Model Builder window, expand the Model 1>Definitions>View 1 node, then click 

Camera.

2 In the Camera settings window, locate the Camera section.

3 Clear the Preserve aspect ratio check box.

4 Click the Go to View 1 button on the Graphics toolbar.
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5 Click the Zoom Extents button on the Graphics toolbar.

M A T E R I A L S

Now, add materials for the cladding and the core of the waveguides.

Material 1
1 In the Model Builder window, under Model 1 right-click Materials and choose Material.

2 In the Material settings window, locate the Material Contents section.

3 In the table, enter the following settings:

4 Right-click Model 1>Materials>Material 1 and choose Rename.

5 Go to the Rename Material dialog box and type GaAs cladding in the New name 
edit field.

6 Click OK.

Material 2
1 Right-click Materials and choose Material.

2 Select Domains 2 and 3 only.

PROPERTY NAME VALUE

Refractive index n ncl
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3 In the Material settings window, locate the Material Contents section.

4 In the table, enter the following settings:

5 Right-click Model 1>Materials>Material 2 and choose Rename.

6 Go to the Rename Material dialog box and type Implanted GaAs core in the New 

name edit field.

7 Click OK.

E L E C T R O M A G N E T I C  WA V E S ,  B E A M  E N V E L O P E S

Since there will be no reflected waves in this model, it is best to select unidirectional 
propagation.

1 In the Electromagnetic Waves, Beam Envelopes settings window, locate the Wave 

Vectors section.

2 From the Number of directions list, choose Unidirectional.

3 In the Model Builder window, click Electromagnetic Waves, Beam Envelopes.

4 In the Electromagnetic Waves, Beam Envelopes settings window, locate the Wave 

Vectors section.

5 In the k1 table, enter the following settings:

This sets the wave vector to be that of the lowest waveguide mode.

Add two numeric ports per port boundary. The first two ports excite the waveguides.

Port 1
1 Right-click Electromagnetic Waves, Beam Envelopes and choose Port.

2 Select Boundaries 1, 5, and 10 only.

3 In the Port settings window, locate the Port Properties section.

4 From the Type of port list, choose Numeric.

5 From the Wave excitation at this port list, choose On.

Now duplicate the first port and rename it.

PROPERTY NAME VALUE

Refractive index n nco

ewbe.beta_1 x

0 y

0 z
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Port 2
1 Right-click Model 1>Electromagnetic Waves, Beam Envelopes>Port 1 and choose 

Duplicate.

2 In the Port settings window, locate the Port Properties section.

3 In the Port name edit field, type 2.

Next create the ports at the other end of the waveguides.

Port 3
1 In the Model Builder window, right-click Electromagnetic Waves, Beam Envelopes and 

choose Port.

2 Select Boundaries 16–18 only.

3 In the Port settings window, locate the Port Properties section.

4 From the Type of port list, choose Numeric.

Duplicate this port and give it a new unique name.

Port 4
1 Right-click Model 1>Electromagnetic Waves, Beam Envelopes>Port 3 and choose 

Duplicate.

2 In the Port settings window, locate the Port Properties section.

3 In the Port name edit field, type 4.

M E S H  1

Define a triangular mesh on the input boundary and then sweep that mesh along the 
waveguides.

Free Triangular 1
1 In the Model Builder window, under Model 1 right-click Mesh 1 and choose More 

Operations>Free Triangular.

2 Select Boundaries 1, 5, and 10 only.

Size 1
1 Right-click Model 1>Mesh 1>Free Triangular 1 and choose Size.

Set the maximum mesh element size to be one wavelength, which will be enough 
to resolve the modes.

2 In the Size settings window, locate the Element Size section.

3 Click the Custom button.
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4 Locate the Element Size Parameters section. Select the Maximum element size check 
box.

5 In the associated edit field, type wl.

6 Select the Minimum element size check box.

7 In the associated edit field, type wl/2.

Sweep the mesh along the waveguides. Twenty elements along the waveguide will 
be sufficient to resolve the mode-coupling that will occur.

8 In the Model Builder window, right-click Mesh 1 and choose Swept.

Size
1 In the Model Builder window, under Model 1>Mesh 1 click Size.

2 In the Size settings window, locate the Element Size section.

3 Click the Custom button.

4 Locate the Element Size Parameters section. In the Maximum element size edit field, 
type len/20.

5 Click the Build All button.

S T U D Y  1

Don't generate the default plots.
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1 In the Model Builder window, click Study 1.

2 In the Study settings window, locate the Study Settings section.

3 Clear the Generate default plots check box.

Step 1: Boundary Mode Analysis
Now analyze the four lowest modes. The first two modes will be symmetric. Since the 
waveguide cross-section is square, there will be one mode polarized in the z-direction 
and one mode polarized in the y-direction. Mode three and four will be antisymmetric, 
one polarized in the z-direction and the other in the y-direction.

1 In the Model Builder window, under Study 1 click Step 1: Boundary Mode Analysis.

2 In the Boundary Mode Analysis settings window, locate the Study Settings section.

3 In the Desired number of modes edit field, type 4.

Search for the modes with effective index close to that of the waveguide cores.

4 In the Search for modes around edit field, type nco.

5 In the Mode analysis frequency edit field, type f0.

Compute only the boundary mode analysis step.

6 Right-click Study 1>Step 1: Boundary Mode Analysis and choose Compute Selected 

Step.

R E S U L T S

Create a 3D surface plot to view the different modes.

3D Plot Group 1
1 In the Model Builder window, right-click Results and choose 3D Plot Group.

2 Right-click 3D Plot Group 1 and choose Surface.

First look at the modes polarized in the z-direction.

3 In the Surface settings window, click Replace Expression in the upper-right corner of 
the Expression section. From the menu, choose Electromagnetic Waves, Beam 

Envelopes>Boundary mode analysis>Boundary mode electric field>Boundary mode 

electric field, z component (ewbe.tEbm1z).

4 In the Model Builder window, click 3D Plot Group 1.

5 In the 3D Plot Group settings window, locate the Data section.

6 From the Effective mode index list, choose the largest effective index.
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7 Click the Plot button. This plot (same as Figure 2-2) shows the symmetric mode 
polarized in the z-direction. Notice that you might get positive electric field values 
in the peaks located at the waveguide cores.

8 From the Effective mode index list, choose the third largest effective index.

9 Click the Plot button. This plot (same as Figure 2-3) shows the anti-symmetric 
mode polarized in the z-direction.
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10 In the Model Builder window, under Results>3D Plot Group 1 click Surface 1.

11 In the Surface settings window, locate the Expression section.

12 In the Expression edit field, type ewbe.tEbm1y.

13 In the Model Builder window, click 3D Plot Group 1.

14 In the 3D Plot Group settings window, locate the Data section.

15 From the Effective mode index list, choose the second largest effective index.

16 Click the Plot button. This plot (same as Figure 2-4) shows the symmetric mode 
polarized in the y-direction.

17 From the Effective mode index list, choose the smallest effective index.
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18 Click the Plot button. This plot (same as Figure 2-5) shows the anti-symmetric 
mode polarized in the y-direction.

Derived Values
You will need to copy the effective indexes for the different modes and use them in the 
boundary mode analyses for the different ports.

1 In the Model Builder window, under Results right-click Derived Values and choose 
Global Evaluation.

2 In the Global Evaluation settings window, locate the Expression section.

3 In the Expression edit field, type ewbe.beta_1.

4 Click the Evaluate button.

Copy all information in the table to the clipboard. Then paste that information in 
to your favorite text editor, so you easily can enter the values later in the boundary 
mode analysis steps.

5 In the Table window, click Full Precision.

6 In the Table window, click Copy Table and Headers to Clipboard. Table 2-1 lists the 
effective mode indices for the different modes.

TABLE 2-1:  THE EFFECTIVE INDICES FOR THE MODES

POLARIZATION MODE TYPE EFFECTIVE MODE INDEX

z Symmetric 3.4716717443092047

y Symmetric 3.471663542438744
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S T U D Y  1

Step 1: Boundary Mode Analysis
1 In the Model Builder window, under Study 1 click Step 1: Boundary Mode Analysis.

2 In the Boundary Mode Analysis settings window, locate the Study Settings section.

3 In the Desired number of modes edit field, type 1.

4 In the Search for modes around edit field, type 3.4716717443092047, by selecting 
the value in you text editor and then copying and pasting it here. This should be the 
largest effective index. The last figures could be different from what is written here.

Step 3: Boundary Mode Analysis 1
1 Right-click Study 1>Step 1: Boundary Mode Analysis and choose Duplicate.

2 In the Boundary Mode Analysis settings window, locate the Study Settings section.

3 In the Search for modes around edit field, type 3.4714219480792177, by selecting 
the value in you text editor and then copying and pasting it here. This should be the 
third largest effective index. The last figures could be different from what is written 
here.

4 In the Port name edit field, type 2.

Step 4: Boundary Mode Analysis 2
1 Select the two boundary mode analyses, Step 1: Boundary Mode Analysis and Step 3: 

Boundary Mode Analysis 3.

2 In the Model Builder window, right-click Step 1: Boundary Mode Analysis and choose 
Duplicate.

3 In the Boundary Mode Analysis settings window, locate the Study Settings section.

4 In the Port name edit field, type 3.

Step 5: Boundary Mode Analysis 3
1 In the Model Builder window, under Study 1 click Step 5: Boundary Mode Analysis 3.

2 In the Boundary Mode Analysis settings window, locate the Study Settings section.

3 In the Port name edit field, type 4.

z Antisymmetric 3.4714219480792177

y Antisymmetric 3.471420178631897

TABLE 2-1:  THE EFFECTIVE INDICES FOR THE MODES

POLARIZATION MODE TYPE EFFECTIVE MODE INDEX
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Step 2: Frequency Domain
1 In the Model Builder window, under Study 1 click Step 2: Frequency Domain.

2 In the Frequency Domain settings window, locate the Study Settings section.

3 In the Frequencies edit field, type f0.

Finally, move Step2: Frequency Domain to be the last study step.

4 Right-click Study 1>Step 2: Frequency Domain and choose Move Down.

5 Right-click Study 1>Step 2: Frequency Domain and choose Move Down.

6 Right-click Study 1>Step 2: Frequency Domain and choose Move Down.

7 Right-click Study 1 and choose Compute.

R E S U L T S

3D Plot Group 1
Remove the surface plot and replace it with a slice plot of the norm of the electric field.

1 In the Model Builder window, under Results>3D Plot Group 1 right-click Surface 1 and 
choose Delete. Click Yes to confirm.

2 Right-click 3D Plot Group 1 and choose Slice.

3 In the Slice settings window, locate the Plane Data section.

4 From the Plane list, choose xy-planes.

5 In the Planes edit field, type 1.

6 Right-click Results>3D Plot Group 1>Slice 1 and choose Deformation.

7 In the Deformation settings window, locate the Expression section.

8 In the z component edit field, type ewbe.normE.

9 Click the Plot button.

10 Click the Go to View 1 button on the Graphics toolbar.

11 Click the Zoom Extents button on the Graphics toolbar. The plot (same as 
Figure 2-6) shows how the light couples from the excited waveguide to the 
unexcited one. Notice that your graph might show that the other waveguide is 
excited than what is shown below. This can happen if your solution returned modes 
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with different signs for the mode fields in Figure 2-2 to Figure 2-5.

E L E C T R O M A G N E T I C  WAV E S ,  B E A M  E N V E L O P E S

Port 2
To excite the other waveguide, set the phase difference between the exciting ports to .

1 In the Model Builder window, under Model 1>Electromagnetic Waves, Beam Envelopes 
click Port 2.

2 In the Port settings window, locate the Port Properties section.

3 In the in edit field, type pi.

S T U D Y  1

In the Model Builder window, right-click Study 1 and choose Compute.
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R E S U L T S

3D Plot Group 1
Now the other waveguide is excited and the coupling occurs in reverse direction, 
compared to the previous case.
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Pe r i o d i c  Bounda r y  Cond i t i o n s

The Wave Optics Module has a dedicated Periodic Condition. The periodic condition 
can identify simple mappings on plane source and destination boundaries of equal 
shape. The destination can also be rotated with respect to the source. There are three 
types of periodic conditions available (only the first two for transient analysis):

• Continuity—The tangential components of the solution variables are equal on the 
source and destination.

• Antiperiodicity—The tangential components have opposite signs.

• Floquet periodicity—There is a phase shift between the tangential components. The 
phase shift is determined by a wave vector and the distance between the source and 
destination. Floquet periodicity is typically used for models involving plane waves 
interacting with periodic structures.

Periodic boundary conditions must have compatible meshes.  

If more advanced periodic boundary conditions are required, for 
example, when there is a known rotation of the polarization from one 
boundary to another, see Model Couplings in the COMSOL 
Multiphysics Reference Manual for tools to define more general 
mappings between boundaries.

To learn how to use the Copy Mesh feature to ensure that the mesh on 
the destination boundary is identical to that on the source boundary, see 
Fresnel Equations: Model Library path Wave_Optics_Module/

Verification_Models/fresnel_equations.

In the COMSOL Multiphysics Reference Manual:

• Periodic Condition and Destination Selection

• Periodic Boundary Conditions
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S c a t t e r e d  F i e l d  F o rmu l a t i o n

For many problems, it is the scattered field that is the interesting quantity. Such models 
usually have a known incident field that does not need a solution computed for, so 
there are several benefits to reduce the formulation and only solve for the scattered 
field. If the incident field is much larger in magnitude than the scattered field, the 
accuracy of the simulation improves if the scattered field is solved for. Furthermore, a 
plane wave excitation is easier to set up, because for scattered-field problems it is 
specified as a global plane wave. Otherwise matched boundary conditions must be set 
up around the structure, which can be rather complicated for nonplanar boundaries. 
Especially when using perfectly matched layers (PMLs), the advantage of using the 
scattered-field formulation becomes clear. With a full-wave formulation, the damping 
in the PML must be taken into account when exciting the plane wave, because the 
excitation appears outside the PML. With the scattered-field formulation the plane 
wave for all non-PML regions is specified, so it is not at all affected by the PML design.

S C A T T E R E D  F I E L D S  S E T T I N G  

The scattered-field formulation is available for The Electromagnetic Waves, Frequency 
Domain User Interface under the Settings section. The scattered field in the analysis is 
called the relative electric field. The total electric field is always available, and for the 
scattered-field formulation this is the sum of the scattered field and the incident field.
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Mode l i n g  w i t h  F a r - F i e l d  C a l c u l a t i o n s

The far electromagnetic field from, for example, antennas can be calculated from the 
near-field solution on a boundary using far-field analysis. The antenna is located in the 
vicinity of the origin, while the far-field is taken at infinity but with a well-defined 
angular direction . The far-field radiation pattern is given by evaluating the 
squared norm of the far-field on a sphere centered at the origin. Each coordinate on 
the surface of the sphere represents an angular direction. 

In this section:

• Far-Field Support in the Electromagnetic Waves, Frequency Domain User Interface

• The Far Field Plots

Far-Field Support in the Electromagnetic Waves, Frequency Domain 
User Interface

The Electromagnetic Waves, Frequency Domain interface supports far-field analysis. 
To define the far-field variables use the Far-Field Calculation node. Select a domain for 
the far-field calculation. Then select the boundaries where the algorithm integrates the 
near field, and enter a name for the far electric field. Also specify if symmetry planes are 
used in the model when calculating the far-field variable. The symmetry planes have to 
coincide with one of the Cartesian coordinate planes. For each of these planes it is 
possible to select the type of symmetry to use, which can be of either symmetry in E 
(PMC) or symmetry in H (PEC). Make the choice here match the boundary 
condition used for the symmetry boundary. Using these settings, the parts of the 
geometry that are not in the model for symmetry reasons can be included in the 
far-field analysis.

For each variable name entered, the software generates functions and variables, which 
represent the vector components of the far electric field. The names of these variables 
are constructed by appending the names of the independent variables to the name 
entered in the field. For example, the name Efar is entered and the geometry is 
Cartesian with the independent variables x, y, and z, the generated variables get the 

  

Optical Scattering Off of a Gold Nanosphere: Model Library path 
Wave_Optics_Module/Optical_Scattering/scattering_nanosphere
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names Efarx, Efary, and Efarz. If, on the other hand, the geometry is axisymmetric 
with the independent variables r, phi, and z, the generated variables get the names 
Efarr, Efarphi, and Efarz. In 2D, the software only generates the variables for the 
nonzero field components. The physics interface name also appears in front of the 
variable names so they may vary, but typically look something like ewfd.Efarz and so 
forth.

To each of the generated variables, there is a corresponding function with the same 
name. This function takes the vector components of the evaluated far-field direction as 
arguments.

The expression

Efarx(dx,dy,dz)

gives the value of the far electric field in this direction. To give the direction as an angle, 
use the expression

Efarx(sin(theta)*cos(phi),sin(theta)*sin(phi),cos(theta))

where the variables theta and phi are defined to represent the angular direction 
 in radians. The magnitude of the far field and its value in dB are also generated 

as the variables normEfar and normdBEfar, respectively.

The Far Field Plots

The Far Field plots are available with this module to plot the value of a global variable 
(the far field norm, normEfar and normdBEfar, or components of the far field variable 
Efar). The variables are plotted for a selected number of angles on a unit circle (in 2D) 
or a unit sphere (in 3D). The angle interval and the number of angles can be manually 
specified. Also the circle origin and radius of the circle (2D) or sphere (3D) can be 
specified. For 3D Far Field plots you also specify an expression for the surface color.

The vector components also can be interpreted as a position. For 
example, assume that the variables dx, dy, and dz represent the direction 
in which the far electric field is evaluated.

  

Far-Field Calculations Theory
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The main advantage with the Far Field plot, as compared to making a Line Graph, is that 
the unit circle/sphere that you use for defining the plot directions, is not part of your 
geometry for the solution. Thus, the number of plotting directions is decoupled from 
the discretization of the solution domain.  

Default Far Field plots are automatically added to any model that uses far 
field calculations.

3D model example with a Polar Plot Group Optical Scattering Off of a 
Gold Nanosphere: Model Library path Wave_Optics_Module/

Optical_Scattering/scattering_nanosphere.

• Far-Field Support in the Electromagnetic Waves, Frequency Domain 
User Interface

• Far Field in the COMSOL Multiphysics Reference Manual
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Maxwe l l ’ s  Equa t i o n s

In this section:

• Introduction to Maxwell’s Equations

• Constitutive Relations

• Potentials

• Electromagnetic Energy

• Material Properties

• Boundary and Interface Conditions

• Phasors

Introduction to Maxwell’s Equations

Electromagnetic analysis on a macroscopic level involves solving Maxwell’s equations 
subject to certain boundary conditions. Maxwell’s equations are a set of equations, 
written in differential or integral form, stating the relationships between the 
fundamental electromagnetic quantities. These quantities are the:

• Electric field intensity E

• Electric displacement or electric flux density D

• Magnetic field intensity H

• Magnetic flux density B

• Current density J

• Electric charge density 

The equations can be formulated in differential or integral form. The differential form 
are presented here, because it leads to differential equations that the finite element 
method can handle. For general time-varying fields, Maxwell’s equations can be 
written as

 H J D
t

-------+=

 E B
t

-------–=

 D =

 B 0=
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The first two equations are also referred to as Maxwell-Ampère’s law and Faraday’s 
law, respectively. Equation three and four are two forms of Gauss’ law, the electric and 
magnetic form, respectively.

Another fundamental equation is the equation of continuity, which can be written as

Out of the five equations mentioned, only three are independent. The first two 
combined with either the electric form of Gauss’ law or the equation of continuity 
form such an independent system.

Constitutive Relations

To obtain a closed system, the constitutive relations describing the macroscopic 
properties of the medium, are included. They are given as

Here 0 is the permittivity of vacuum, 0 is the permeability of vacuum, and  the 
electrical conductivity. In the SI system, the permeability of a vacuum is chosen to be 
4·107 H/m. The velocity of an electromagnetic wave in a vacuum is given as c0 and 
the permittivity of a vacuum is derived from the relation

The electric polarization vector P describes how the material is polarized when an 
electric field E is present. It can be interpreted as the volume density of electric dipole 
moments. P is generally a function of E. Some materials can have a nonzero P also 
when there is no electric field present.

The magnetization vector M similarly describes how the material is magnetized when 
a magnetic field H is present. It can be interpreted as the volume density of magnetic 
dipole moments. M is generally a function of H. Permanent magnets, however, have a 
nonzero M also when there is no magnetic field present.

For linear materials, the polarization is directly proportional to the electric field, 
P0eE, where e is the electric susceptibility. Similarly in linear materials, the 

 J 
t

------–=

D 0E P+=

B 0 H M+ =

J E=

0
1

c0
20

---------- 8.854 10 12–  F/m 1
36
--------- 10 9–  F/m= =
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magnetization is directly proportional to the magnetic field, MmH, where m is the 
magnetic susceptibility. For such materials, the constitutive relations can be written

The parameter r is the relative permittivity and r is the relative permeability of the 
material. These are usually scalar properties but they can, for a general anisotropic 
material, be 3-by-3 tensors. The properties  and  (without subscripts) are the 
permittivity and permeability of the material.

G E N E R A L I Z E D  C O N S T I T U T I V E  R E L A T I O N S

Generalized forms of the constitutive relations are well suited for modeling nonlinear 
materials. The relation used for the electric fields is

The field Dr is the remanent displacement, which is the displacement when no electric 
field is present.

Similarly, a generalized form of the constitutive relation for the magnetic field is

where Br is the remanent magnetic flux density, which is the magnetic flux density 
when no magnetic field is present.

The relation defining the current density is generalized by introducing an externally 
generated current Je. The resulting constitutive relation is

Potentials

Under certain circumstances it can be helpful to formulate the problems in terms of 
the electric scalar potential V and the magnetic vector potential A. They are given by 
the equalities

D 0 1 e+ E 0rE E= = =

B 0 1 m+ H 0rH H= = =

D 0rE Dr+=

B 0rH Br+=

J E Je
+=

B  A=

E V–
A
t

-------–=
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The defining equation for the magnetic vector potential is a direct consequence of the 
magnetic Gauss’ law. The electric potential results from Faraday’s law.

In the magnetostatic case where there are no currents present, Maxwell-Ampère’s law 
reduces to H0. When this holds, it is also possible to define a magnetic scalar 
potential Vm by the relation

Electromagnetic Energy

The electric and magnetic energies are defined as

The time derivatives of these expressions are the electric and magnetic power

These quantities are related to the resistive and radiative energy, or energy loss, 
through Poynting’s theorem (Ref. 3)

where V is the computation domain and S is the closed boundary of V.

The first term on the right-hand side represents the resistive losses,

which result in heat dissipation in the material. (The current density J in this 
expression is the one appearing in Maxwell-Ampère’s law.)

The second term on the right-hand side of Poynting’s theorem represents the radiative 
losses,

H Vm–=

We E Dd
0

D

 
  Vd

V E D
t

------- td
0

T

 
  Vd

V= =

Wm H Bd
0

B

 
  Vd

V H B
t

------- td
0

T

 
  Vd

V= =

Pe E D
t

------- Vd
V=

Pm H B
t

------- Vd
V=

E D
t

------- H B
t

-------+ 
  Vd

V– J E Vd
V E H  n dS

S+=

Ph J E Vd
V=
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The quantity SEH is called the Poynting vector.

Under the assumption the material is linear and isotropic, it holds that

By interchanging the order of differentiation and integration (justified by the fact that 
the volume is constant and the assumption that the fields are continuous in time), this 
equation results:

The integrand of the left-hand side is the total electromagnetic energy density

Material Properties

Until now, there has only been a formal introduction of the constitutive relations. 
These seemingly simple relations can be quite complicated at times. There are four 
main groups of materials where they require some consideration. A given material can 
belong to one or more of these groups. The groups are:

• Inhomogeneous materials

• Anisotropic materials

• Nonlinear materials

• Dispersive materials

The least complicated of the groups above is that of the inhomogeneous materials. An 
inhomogeneous medium is one where the constitutive parameters vary with the space 
coordinates, so that different field properties prevail at different parts of the material 
structure.

Pr E H  n dS
S=

E D
t

------- E E
t

-------
t
 1

2
---E E 
 = =

H B
t

------- 1

---B B

t
-------

t
 1

2
-------B B 
 = =

t
 1

2
---E E 1

2
-------B B+ 

  Vd
V– J E Vd

V E H  n dS
S+=

w we wm+=
1
2
---E E 1

2
-------B B+=
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For anisotropic materials, the field relations at any point are different for different 
directions of propagation. This means that a 3-by-3 tensor is required to properly 
define the constitutive relations. If this tensor is symmetric, the material is often 
referred to as reciprocal. In these cases, the coordinate system can be rotated in such 
a way that a diagonal matrix is obtained. If two of the diagonal entries are equal, the 
material is uniaxially anisotropic. If none of the elements have the same value, the 
material is biaxially anisotropic (Ref. 2). An example where anisotropic parameters are 
used is for the permittivity in crystals (Ref. 2).

Nonlinearity is the effect of variations in permittivity or permeability with the intensity 
of the electromagnetic field. This also includes hysteresis effects, where not only the 
current field intensities influence the physical properties of the material, but also the 
history of the field distribution.

Finally, dispersion describes changes in the velocity of the wave with wavelength. In 
the frequency domain, dispersion is expressed by a frequency dependence in the 
constitutive laws.

M A T E R I A L  P R O P E R T I E S  A N D  T H E  M A T E R I A L  B R O W S E R

All physics interfaces in the Wave OpticsModule support the use of the COMSOL 
Multiphysics material database libraries. The electromagnetic material properties that 
can be stored in the materials database are:

• The electrical conductivity

• The relative permittivity

• The relative permeability

• The refractive index

The physics-specific domain material properties are by default taken from the material 
specification. The material properties are inputs to material laws or constitutive 
relations that are defined on the feature level below the physics interface node in the 
model tree. There is one editable default domain feature (wave equation) that initially 
represents a linear isotropic material. Domains with different material laws are specified 
by adding additional features. Some of the domain parameters can either be a scalar or 
a matrix (tensor) depending on whether the material is isotropic or anisotropic.

In a similar way, boundary, edge, and point settings are specified by adding the 
corresponding features. A certain feature might require one or several fields to be 
specified, while others generate the conditions without user-specified fields. 
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Boundary and Interface Conditions

To get a full description of an electromagnetic problem, specify boundary conditions 
at material interfaces and physical boundaries. At interfaces between two media, the 
boundary conditions can be expressed mathematically as

where s and Js denote surface charge density and surface current density, 
respectively, and n2 is the outward normal from medium 2. Of these four conditions, 
only two are independent. One of the first and the fourth equations, together with one 
of the second and third equations, form a set of two independent conditions.

A consequence of the above is the interface condition for the current density,

I N T E R F A C E  B E T W E E N  A  D I E L E C T R I C  A N D  A  P E R F E C T  C O N D U C T O R

A perfect conductor has infinite electrical conductivity and thus no internal electric 
field. Otherwise, it would produce an infinite current density according to the third 
fundamental constitutive relation. At an interface between a dielectric and a perfect 
conductor, the boundary conditions for the E and D fields are simplified. If, say, 
subscript 1 corresponds to the perfect conductor, then D10 and E10 in the 
relations above. For the general time-varying case, it holds that B10 and H10 as 
well (as a consequence of Maxwell’s equations). What remains is the following set of 
boundary conditions for time-varying fields in the dielectric medium.

Phasors

Whenever a problem is time-harmonic the fields can be written in the form

n2 E1 E2–  0=

n2 D1 D2–  s=

n2 H1 H2–  Js=

n2 B1 B2–  0=

n2 J1 J2– 
s
t

--------–=

n– 2 E2 0=

n– 2 H2 Js=

n– 2 D2 s=

n– 2 B2 0=
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Instead of using a cosine function for the time dependence, it is more convenient to 
use an exponential function, by writing the field as

The field  is a phasor (phase vector), which contains amplitude and phase 
information of the field but is independent of t. One thing that makes the use of 
phasors suitable is that a time derivative corresponds to a multiplication by j,

This means that an equation for the phasor can be derived from a time-dependent 
equation by replacing the time derivatives by a factor j. All time-harmonic equations 
in this module are expressed as equations for the phasors. (The tilde is dropped from 
the variable denoting the phasor.).

For example, all plot functions visualize

by default, which is E at time t = 0. To obtain the solution at a given time, specify a 
phase factor when evaluating and visualizing the results.

E r t  E
ˆ

r  t + cos=

E r t  E
ˆ

r  t + cos Re E
ˆ

r ejejt  Re E
˜

r ejt = = =

E
˜

r 

E
t

------- Re jE
˜

r ejt =

When looking at the solution of a time-harmonic equation, it is important 
to remember that the field that has been calculated is a phasor and not a 
physical field.

Re E
˜

r  
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S p e c i a l  C a l c u l a t i o n s

In this section:

• S-Parameter Calculations

• Far-Field Calculations Theory

• References

S-Parameter Calculations

For high-frequency problems, voltage is not a well-defined entity, and it is necessary 
to define the scattering parameters (S-parameter) in terms of the electric field. To 
convert an electric field pattern on a port to a scalar complex number corresponding 
to the voltage in transmission line theory an eigenmode expansion of the 
electromagnetic fields on the ports needs to be performed. Assume that an eigenmode 
analysis has been performed on the ports 1, 2, 3, … and that the electric field patterns 
E1, E2, E3, … of the fundamental modes on these ports are known. Further, assume 
that the fields are normalized with respect to the integral of the power flow across each 
port cross section, respectively. This normalization is frequency dependent unless 
TEM modes are being dealt with. The port excitation is applied using the fundamental 
eigenmode. The computed electric field Ec on the port consists of the excitation plus 
the reflected field. The S-parameters are given by

S11

Ec E1–  E1
*  A1d

port 1


E1 E1
*  A1d

port 1


----------------------------------------------------------------=

S21

Ec E2
*  A2d

port 2


E2 E2
*  A2d

port 2


-----------------------------------------------=

S31

Ec E3
*  A3d

port 3


E3 E3
*  A3d

port 3


-----------------------------------------------=
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and so on. To get S22 and S12, excite port number 2 in the same way.

S - P A R A M E T E R S  I N  TE R M S  O F  P O W E R  F L O W

For a guiding structure in single mode operation, it is also possible to interpret the 
S-parameters in terms of the power flow through the ports. Such a definition is only 
the absolute value of the S-parameters defined in the previous section and does not 
have any phase information.

The definition of the S-parameters in terms of the power flow is

PO W E R  F L O W  N O R M A L I Z A T I O N

The fields E1, E2, E3, and so on, should be normalized such that they represent the 
same power flow through the respective ports. The power flow is given by the 
time-average Poynting vector,

The amount of power flowing out of a port is given by the normal component of the 
Poynting vector,

Below the cutoff frequency the power flow is zero, which implies that it is not possible 
to normalize the field with respect to the power flow below the cutoff frequency. But 
in this region the S-parameters are trivial and do not need to be calculated.

In the following subsections the power flow is expressed directly in terms of the electric 
field for TE, TM, and TEM waves.

TE Waves
For TE waves it holds that

S11
Power reflected from port 1

Power incident on port 1
-----------------------------------------------------------------------=

S21
Power delivered to port 2
Power incident on port 1
-----------------------------------------------------------------=

S31
Power delivered to port 3
Power incident on port 1
-----------------------------------------------------------------=

Sav
1
2
---Re E H* =

n Sav n 1
2
---Re E H* =

E ZTE– n H =
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where ZTE is the wave impedance

 is the angular frequency of the wave,  the permeability, and  the propagation 
constant. The power flow then becomes

TM Waves
For TM waves it holds that

where ZTM is the wave impedance

and  is the permittivity. The power flow then becomes

TEM Waves
For TEM waves it holds that

where ZTEM is the wave impedance

The power flow then becomes

ZTE



-------=

n Sav 1
2
---n Re E H*  1

2
---Re E n H*  –

1
2ZTE
-------------- E 2

= = =

H 1
ZTM
----------- n E =

ZTM


-------=

n Sav 1
2
---n Re E H*  1

2ZTM
--------------- n Re E n E*   = =

1
2ZTM
--------------- n E 2

=

H 1
ZTEM
--------------- n E =

ZTEM


---=

n Sav 1
2
---n Re E H*  1

2ZTEM
------------------ n E 2 1

2ZTEM
------------------ E 2

= = =
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where the last equality holds because the electric field is tangential to the port.

Far-Field Calculations Theory

The far electromagnetic field from, for example, antennas can be calculated from the 
near field using the Stratton-Chu formula. In 3D, this is:

and in 2D it looks slightly different:

In both cases, for scattering problems, the far field in COMSOL Multiphysics is 
identical to what in physics is known as the “scattering amplitude”.

The antenna is located in the vicinity of the origin, while the far-field point p is taken 
at infinity but with a well-defined angular position . 

In the above formulas,

• E and H are the fields on the “aperture”—the surface S enclosing the antenna.

• r0 is the unit vector pointing from the origin to the field point p. If the field points 
lie on a spherical surface S', r0 is the unit normal to S'.

• n is the unit normal to the surface S.

•  is the impedance:

• k is the wave number.

•  is the wavelength.

• r is the radius vector (not a unit vector) of the surface S.

• Ep is the calculated far field in the direction from the origin towards point p.

Thus the unit vector r0 can be interpreted as the direction defined by the angular 
position  and Ep is the far field in this direction.

Because the far field is calculated in free space, the magnetic field at the far-field point 
is given by

Ep
jk
4
------r0 n E r0 n H –  jkr r0 exp Sd=

Ep  jk
4
------r0 n E r0 n H –  jkr r0 exp Sd=

  

  =

  
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The Poynting vector gives the power flow of the far field:

Thus the relative far-field radiation pattern is given by plotting Ep
2.
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Hp
r0 Ep

0
-------------------=

r0 S r0 Re Ep Hp
*  Ep

2=
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S - P a r ame t e r s  and Po r t s

In this section:

• S-Parameters in Terms of Electric Field

• S-Parameter Calculations: Ports

• S-Parameter Variables

• Port Sweeps and Touchstone Export

S-Parameters in Terms of Electric Field

Scattering parameters (or S-parameters) are complex-valued, frequency dependent 
matrices describing the transmission and reflection of electromagnetic waves at 
different ports of devices like filters, antennas, waveguide transitions, and transmission 
lines. S-parameters originate from transmission-line theory and are defined in terms of 
transmitted and reflected voltage waves. All ports are assumed to be connected to 
matched loads, that is, there is no reflection directly at a port.

For a device with n ports, the S-parameters are

where S11 is the voltage reflection coefficient at port 1, S21 is the voltage transmission 
coefficient from port 1 to port 2, and so on. The time average power reflection/
transmission coefficients are obtained as | Sij |

2.

Now, for high-frequency problems, voltage is not a well-defined entity, and it is 
necessary to define the scattering parameters in terms of the electric field.

S

S11 S12 . . S1n

S21 S22 . . .

. . . . .

. . . . .
Sn1 . . . Snn

=

For details on how COMSOL Multiphysics calculates the S-parameters, 
see S-Parameter Calculations.
S - P A R A M E T E R S  A N D  P O R T S  |  59



60 |  C H A P T E R
S-Parameter Calculations: Ports

The Optics interfaces have a built-in support for S-parameter calculations. To set up 
an S-parameter study use a Port boundary feature for each port in the model.  

S-Parameter Variables

This module automatically generates variables for the S-parameters. The port names 
(use numbers for sweeps to work correctly) determine the variable names. If, for 
example, there are two ports with the numbers 1 and 2 and Port 1 is the inport, the 
software generates the variables S11 and S21. S11 is the S-parameter for the reflected 
wave and S21 is the S-parameter for the transmitted wave. For convenience, two 
variables for the S-parameters on a dB scale, S11dB and S21dB, are also defined using 
the following relation:

The model and physics interface names also appear in front of the variable names so 
they may vary. The S-parameter variables are added to the predefined quantities in 
appropriate plot lists.

Port Sweeps and Touchstone Export

The Port Sweep Settings section in the Electromagnetic Waves, Frequency Domain 
interface cycles through the ports, computes the entire S-matrix and exports it to a 
Touchstone file.

See Port for instructions to set up a model.

S11dB 20 10 S11 log=
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L o s s y  E i g e n v a l u e  C a l c u l a t i o n s

In mode analysis and eigenfrequency analysis, it is usually the primary goal to find a 
propagation constant or an eigenfrequency. These quantities are often real valued 
although it is not necessary. If the analysis involves some lossy part, like a nonzero 
conductivity or an open boundary, the eigenvalue is complex. In such situations, the 
eigenvalue is interpreted as two parts (1) the propagation constant or eigenfrequency 
and (2) the damping in space and time.

In this section:

• Eigenfrequency Analysis

• Mode Analysis 

Eigenfrequency Analysis

The eigenfrequency analysis solves for the eigenfrequency of a model. The 
time-harmonic representation of the fields is more general and includes a complex 
parameter in the phase

where the eigenvalue, ()j, has an imaginary part representing the 
eigenfrequency, and a real part responsible for the damping. It is often more common 
to use the quality factor or Q-factor, which is derived from the eigenfrequency and 
damping

VA R I A B L E S  A F F E C T E D  B Y  E I G E N F R E Q U E N C Y  A N A L Y S I S

The following list shows the variables that the eigenfrequency analysis affects:

NAME EXPRESSION CAN BE COMPLEX DESCRIPTION

omega imag(-lambda) No Angular frequency

damp real(lambda) No Damping in time

Qfact 0.5*omega/abs(damp) No Quality factor

nu omega/(2*pi) No Frequency

E r t  Re E
˜

rT ejt  Re E
˜

r e – t = =

Qfact


2 
---------=
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N O N L I N E A R  E I G E N F R E Q U E N C Y  P R O B L E M S

For some combinations of formulation, material parameters, and boundary conditions, 
the eigenfrequency problem can be nonlinear, which means that the eigenvalue enters 
the equations in another form than the expected second-order polynomial form. The 
following table lists those combinations:

These situations require special treatment, especially since it can lead to “singular 
matrix” or “undefined value” messages if not treated correctly. The complication is not 
only the nonlinearity itself, it is also the way it enters the equations. For example the 
impedance boundary conditions with nonzero boundary conductivity has the term

where ()j. When the solver starts to solve the eigenfrequency problem it 
linearizes the entire formulation with respect to the eigenvalue around a certain 
linearization point. By default this linearization point is zero, which leads to a division 
by zero in the expression above. To avoid this problem and also to give a suitable initial 
guess for the nonlinear eigenvalue problem, it is necessary to provide a “good” 
linearization point for the eigenvalue solver. Do this in the Eigenvalue node (not the 
Eigenfrequency node) under the Solver Sequence node in the Study branch of the 
Model Builder. A solver sequence may need to be generated first. In the Linearization 

Point section, select the Transform point check box and enter a suitable value in the 
Point field. For example, it is known that the eigenfrequency is close to 1 GHz, enter 
the eigenvalue 1[GHz] in the field.

In many cases it is enough to specify a good linearization point and then solve the 
problem once. If a more accurate eigenvalue is needed, an iterative scheme is necessary:

1 Specify that the eigenvalue solver only search for one eigenvalue. Do this either for 
an existing solver sequence in the Eigenvalue node or, before generating a solver 
sequence, in the Eigenfrequency node.

SOLVE FOR CRITERION BOUNDARY CONDITION

E Nonzero conductivity Impedance boundary condition

E Nonzero conductivity at 
adjacent domain

Scattering boundary condition

E Analytical ports Port boundary condition

– 
00 rbnd

rbnd
bnd
– 0

-----------------+

------------------------------------------ n n H  –
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2 Solve the problem with a “good” linearization point. As the eigenvalues shift, use 
the same value with the real part removed.

3 Extract the eigenvalue from the solution and update the linearization point and the 
shift.

4 Repeat until the eigenvalue does not change more than a desired tolerance.

Mode Analysis

In mode analysis and boundary mode analysis COMSOL Multiphysics solves for the 
propagation constant. The time-harmonic representation is almost the same as for the 
eigenfrequency analysis, but with a known propagation in the out-of-plane direction

The spatial parameter, zj, can have a real part and an imaginary part. The 
propagation constant is equal to the imaginary part, and the real part, z, represents 
the damping along the propagation direction.

VA R I A B L E S  I N F L U E N C E D  B Y  M O D E  A N A L Y S I S

The following table lists the variables that are influenced by the mode analysis: 

• For a list of the studies available by physics interface, see The Wave 
Optics Module Physics Guide

• Studies and Solvers in the COMSOL Multiphysics Reference Manual

NAME EXPRESSION CAN BE COMPLEX DESCRIPTION

beta imag(-lambda) No Propagation constant

dampz real(-lambda) No Attenuation constant

dampzdB 20*log10(exp(1))*
dampz

No Attenuation per meter in dB

neff j*lambda/k0 Yes Effective mode index

E r t  Re E
˜

rT ejt jz–  Re E
˜

r ejt z– = =

For an example of Boundary Mode Analysis, see the model Directional 
Coupler: Model Library path Wave_Optics_Module/

Waveguides_and_Couplers/directional_coupler.
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• For a list of the studies available by physics interface, see The Wave 
Optics Module Physics Guide

• Studies and Solvers in the COMSOL Multiphysics Reference Manual
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E l e c t r omagne t i c  Quan t i t i e s

Table 2-2 shows the symbol and SI unit for most of the physical quantities that are 
included with this module.

TABLE 2-2:  ELECTROMAGNETIC QUANTITIES

QUANTITY SYMBOL UNIT ABBREVIATION

Angular frequency   radian/second rad/s

Attenuation constant   meter-1 m-1

Capacitance  C farad F

Charge  q coulomb C

Charge density (surface)  s coulomb/meter2 C/m2

Charge density (volume)   coulomb/meter3 C/m3

Current  I ampere A

Current density (surface)  Js ampere/meter A/m

Current density (volume)  J ampere/meter2 A/m2

Electric displacement  D coulomb/meter2 C/m2

Electric field  E volt/meter V/m

Electric potential  V volt V

Electric susceptibility  e (dimensionless)  

Electrical conductivity   siemens/meter S/m

Energy density  W joule/meter3 J/m3

Force  F newton N

Frequency   hertz Hz

Impedance  Z,  ohm  

Inductance   L henry H

Magnetic field  H ampere/meter A/m

Magnetic flux   weber Wb

Magnetic flux density  B tesla T

Magnetic potential (scalar)  Vm ampere A

Magnetic potential (vector)  A weber/meter Wb/m

Magnetic susceptibility  m (dimensionless)  

Magnetization  M ampere/meter A/m
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Permeability   henry/meter H/m

Permittivity   farad/meter F/m

Polarization  P coulomb/meter2 C/m2

Poynting vector  S watt/meter2 W/m2

Propagation constant   radian/meter rad/m

Reactance  X ohm  

Relative permeability  r (dimensionless)  

Relative permittivity  r (dimensionless)  

Resistance  R ohm  W

Resistive loss  Q watt/meter3 W/m3

Torque  T newton-meter Nm

Velocity  v meter/second m/s

Wavelength   meter m

Wave number  k radian/meter rad/m

TABLE 2-2:  ELECTROMAGNETIC QUANTITIES

QUANTITY SYMBOL UNIT ABBREVIATION
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 3
T h e  O p t i c s  B r a n c h
This chapter reviews the physics interfaces in the Wave Optics Module, which are 
under the Optics branch ( ) in the Model Wizard. 

In this chapter:

• The Electromagnetic Waves, Frequency Domain User Interface

• The Electromagnetic Waves, Transient User Interface

• The Electromagnetic Waves, Time Explicit User Interface

• The Electromagnetic Waves, Beam Envelopes User Interface

• Theory for the Electromagnetic Waves User Interfaces

• Theory for the Electromagnetic Waves, Time Explicit User Interface
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Th e  E l e c t r omagne t i c  Wav e s ,  
F r e qu en c y  Doma i n  U s e r  I n t e r f a c e

The Electromagnetic Waves, Frequency Domain (ewfd) interface ( ), found under the 
Wave Optics branch ( ) in the Model Wizard, solves the electric field based 
time-harmonic wave equation, which is strictly valid for linear media only.

The physics interface supports the study types Frequency domain, Eigenfrequency, 
Mode analysis, and Boundary mode analysis. The frequency domain study type is used 
for source driven simulations for a single frequency or a sequence of frequencies. The 
Eigenfrequency study type is used to find resonance frequencies and their associated 
eigenmodes in cavity problems.

When this interface is added, these default nodes are also added to the Model Builder—
Wave Equation, Electric, Perfect Electric Conductor, and Initial Values.

Right-click the Electromagnetic Waves, Frequency Domain node to add other features 
that implement, for example, boundary conditions and sources. The following sections 
provide information about all feature nodes in the interface.

I N T E R F A C E  I D E N T I F I E R

The interface identifier is used primarily as a scope prefix for variables defined by the 
physics user interface. Refer to such interface variables in expressions using the pattern 
<identifier>.<variable_name>. In order to distinguish between variables 
belonging to different physics user interfaces, the identifier string must be unique. 
Only letters, numbers and underscores (_) are permitted in the Identifier field. The first 
character must be a letter.

The default identifier (for the first interface in the model) is ewfd.

The Mode analysis study type is applicable only for 2D cross-sections of 
waveguides and transmission lines where it is used to find allowed 
propagating modes. 

Boundary mode analysis is used for the same purpose in 3D and applies 
to boundaries representing waveguide ports.
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D O M A I N  S E L E C T I O N

The default setting is to include All domains in the model to define the dependent 
variables and the equations. To choose specific domains, select Manual from the 
Selection list.

S E T T I N G S

From the Solve for list, select whether to solve for the Full field (the default) or the 
Scattered field. If Scattered field is selected, enter the component expressions for the 
Background electric field Eb (SI unit: V/m).

E L E C T R I C  F I E L D  C O M P O N E N T S  S O L V E D  F O R

Select the Electric field components solved for—Three-component vector, Out-of-plane 

vector, or In-plane vector. Select:

• Three-component vector (the default) to solve using a full three-component vector 
for the electric field E.

• Out-of-plane vector to solve for the electric field vector component perpendicular to 
the modeling plane, assuming that there is no electric field in the plane.

• In-plane vector to solve for the electric field vector components in the modeling 
plane assuming that there is no electric field perpendicular to the plane.

O U T - O F - P L A N E  WAV E  N U M B E R

This section is available for 2D models.

This section is available for 2D models, when solving for Three-component 

vector or In-plane vector. Assign a wave vector component to the 
Out-of-plane wave number field.

This section is available for axisymmetric 2D models, when solving for 
Three-component vector or In-plane vector. Assign an integer constant or 
an integer parameter expression to the Azimuthal mode number field.
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PO R T  S W E E P  S E T T I N G S

Select the Activate port sweep check box to switch on the port sweep. When selected, 
this invokes a parametric sweep over the ports/terminals in addition to the 
automatically generated frequency sweep. The generated lumped parameters are in the 
form of an impedance or admittance matrix depending on the port/terminal settings 
which consistently must be of either fixed voltage or fixed current type.

If Activate port sweep is selected, enter a Sweep parameter name to assign a specific 
name to the variable that controls the port number solved for during the sweep.

For this interface, the lumped parameters are subject to Touchstone file export. Click 
Browse to locate the file, or enter a file name and path. Select an Output format—
Magnitude angle, Magnitude (dB) angle, or Real imaginary.

Enter a Reference impedance, Touchstone file export Zref (SI unit: ). The default is 
50 .

D I S C R E T I Z A T I O N

To display this section, click the Show button ( ) and select Discretization. Select 
Linear, Quadratic (the default), or Cubic for the Electric field. Specify the Value type when 

using splitting of complex variables—Real or Complex (the default).

D E P E N D E N T  V A R I A B L E S

The dependent variables (field variables) are for the Electric field E and its components 
(in the Electric field components fields). The name can be changed but the names of 
fields and dependent variables must be unique within a model. 

Domain, Boundary, Edge, Point, and Pair Nodes for the 
Electromagnetic Waves, Frequency Domain Interface

The Electromagnetic Waves, Frequency Domain User Interface has these domain, 
boundary, edge, point, and pair nodes and subnodes available.

• Show More Physics Options

• Domain, Boundary, Edge, Point, and Pair Nodes for the 
Electromagnetic Waves, Frequency Domain Interface

• Theory for the Electromagnetic Waves User Interfaces
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D O M A I N

B O U N D A R Y  C O N D I T I O N S

With no surface currents present the boundary conditions

need to be fulfilled. Because E is being solved for, the tangential component of the 
electric field is always continuous, and thus the first condition is automatically fulfilled. 
The second condition is equivalent to the natural boundary condition

and is therefore also fulfilled. These conditions are available (listed in alphabetical 
order):

• External Current Density

• Far-Field Calculation

• Far-Field Domain

• Initial Values

• Wave Equation, Electric

• Diffraction Order

• Electric Field

• Impedance Boundary Condition

• Magnetic Field

• Perfect Electric Conductor

• Perfect Magnetic Conductor

• Periodic Condition

• Port

• Scattering Boundary Condition

• Surface Current

• Transition Boundary Condition

n2 E1 E2–  0=

n2 H1 H2–  0=

n r
1–  E 1 r

1–  E 2– – n j0 H1 H2–  0= =
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E D G E ,  P O I N T ,  A N D  P A I R

Wave Equation, Electric

Wave Equation, Electric is the main feature node for this interface. The governing 
equation can be written in the form

for the time-harmonic and eigenfrequency problems. The wave number of free space 
k0 is defined as

• Circular Port Reference Axis

• Edge Current

• Electric Field

• Electric Point Dipole

• Line Current (Out-of-Plane)

• Magnetic Current

• Magnetic Point Dipole

• Perfect Electric Conductor

• Perfect Magnetic Conductor

• Periodic Port Reference Point

• Surface Current

For 2D axisymmetric models, COMSOL Multiphysics takes the axial 
symmetry boundaries (at r = 0) into account and automatically adds an 
Axial Symmetry node to the model that is valid on the axial symmetry 
boundaries only.

In the COMSOL Multiphysics Reference Manual:

• Continuity on Interior Boundaries

• Identity and Contact Pairs 

• Periodic Condition and Destination Selection

• Periodic Boundary Conditions

To locate and search all the documentation, in COMSOL, select 
Help>Documentation from the main menu and either enter a search term 
or look under a specific module in the documentation tree.

 r
1–  E  k0

2rcE– 0=
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where c0 is the speed of light in vacuum.

In 2D the electric field varies with the out-of-plane wave number kz as

.

The wave equation is thereby rewritten as

,

where z is the unit vector in the out-of-plane z-direction.

Similarly, in 2D axisymmetry, the electric field varies with the azimuthal mode number 
m as

.

For this case, the wave equation is rewritten as

,

where  is the unit vector in the out-of-plane -direction.

When solving the equations as an eigenfrequency problem the eigenvalue is the 
complex eigenfrequency j, where  is the damping of the solution. The 
Q-factor is given from the eigenvalue by the formula

Using the relation r = n2, where n is the refractive index, the equation can 
alternatively be written

When the equation is written using the refractive index, the assumption is that r = 1 
and  = 0 and only the constitutive relations for linear materials are available. When 
solving for the scattered field the same equations are used but EEscEi and Esc is 
the dependent variable.

k0  00

c0
-----= =

E x y z   E
˜

x y  ikzz– exp=

 ikzz–  r
1–  ikzz–  E

˜
  k0

2rcE
˜

– 0=

E r  z   E
˜

r z  im– exp=

 im
r
-----– 

  r
1–  im

r
-----– 

  E
˜

 k0
2rcE

˜
– 0=

Qfact


2 
---------=

  E  k0
2n2E– 0=
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D O M A I N  S E L E C T I O N

For a default node, the setting inherits the selection from the parent node, and cannot 
be edited; that is, the selection is automatically selected and is the same as for the 
interface. When nodes are added from the context menu, you can select Manual from 
the Selection list to choose specific domains or select All domains as required.

M O D E L  I N P U T S

This section contains field variables that appear as model inputs, if the settings include 
such model inputs. By default, this section is empty.

M A T E R I A L  TY P E

Select a Material type—Non-solid (the default), Solid, or From material.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Global coordinate system is selected by default. The Coordinate system list contains 
any additional coordinate systems that the model includes.

E L E C T R I C  D I S P L A C E M E N T  F I E L D

Select an Electric displacement field model—Relative permittivity, Refractive index (the 
default), Loss tangent, Dielectric loss, Drude-Lorentz dispersion model, Debye dispersion 

model, or Sellmeier dispersion model. 

Relative Permittivity
When Relative permittivity is selected, the default Relative permittivity r takes values 
From material. If User defined is selected, choose Isotropic, Diagonal, Symmetric, or 
Anisotropic and enter values or expressions in the field or matrix. 

Refractive Index
When Refractive index is selected, the default Refractive index n and Refractive index, 

imaginary part k take the values From material. To specify the real and imaginary parts 
of the refractive index and assume a relative permeability of unity and zero 
conductivity, for one or both of the options, select User defined then choose Isotropic, 
Diagonal, Symmetric, or Anisotropic. Enter values or expressions in the field or matrix.

Beware of the time-harmonic sign convention requiring a lossy material 
having a negative imaginary part of the refractive index (see Introducing 
Losses in the Frequency Domain).
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Loss Tangent
When Loss tangent is selected, the default Relative permittivity  and Loss tangent take 
values From material. If User defined is selected, choose Isotropic, Diagonal, Symmetric, 
or Anisotropic and enter values or expressions in the field or matrix. Then if User 
defined is selected for Loss tangent , enter a value to specify a loss tangent for dielectric 
losses. This assumes zero conductivity.

Dielectric Loss
When Dielectric loss is selected, the default Relative permittivity  and Relative 

permittivity (imaginary part)  take values From material. If User defined is selected for 
one or both options, choose Isotropic, Diagonal, Symmetric, or Anisotropic and enter 
values or expressions in the field or matrix.

Drude-Lorentz Dispersion Model
The Drude-Lorentz dispersion model is defined by the equation

where is the high-frequency contribution to the relative permittivity, P is the 
plasma frequency, fj is the oscillator strength, 0j is the resonance frequency, and j is 
the damping coefficient.

When Drude-Lorentz dispersion model is selected, the default Relative permittivity, high 

frequency  (dimensionless) takes its value From material. If User defined is selected, 
choose Isotropic, Diagonal, Symmetric, or Anisotropic and enter a value or expression in 
the field or matrix.

Enter a Plasma frequency (SI unit: rad/s). The default is 0 rad/s.

In the table, enter values or expressions in the columns for the Oscillator strength, 
Resonance frequency (rad/s), and Damping in time (Hz).

Debye Dispersion Model
The Debye dispersion model is given by

Beware of the time-harmonic sign convention requiring a lossy material 
having a negative imaginary part of the relative permittivity (see 
Introducing Losses in the Frequency Domain).

r   
fjP

2

0j
2 2

– ij+
----------------------------------------

j 1=

M

+=
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where is the high-frequency contribution to the relative permittivity, k is the 
contribution to the relative permittivity, and k is the relaxation time.

When Debye dispersion model is selected, the default Relative permittivity, high 

frequency  (dimensionless) takes its value From material. If User defined is selected, 
choose Isotropic, Diagonal, Symmetric, or Anisotropic and enter a value or expression in 
the field or matrix.

In the table, enter values or expressions in the columns for the Relative permittivity 

contribution and Relaxation time (s).

Sellmeier Dispersion Model
The Sellmeier dispersion model is often used for characterizing the refractive index of 
optical glasses. The model is given by

where the coefficients Bk and Ck determine the dispersion properties.

When Sellmeier dispersion model is selected, in the table, enter values or expressions in 
the columns for B and C (m^2).

M A G N E T I C  F I E L D

Select the Constitutive relation—Relative permeability (the default) or Magnetic losses.

• If Relative permeability is selected, the Relative permeability r uses values From 

material. If User defined is selected, choose Isotropic, Diagonal, Symmetric, or 
Anisotropic based on the characteristics of the magnetic field, and then enter values 
or expressions in the field or matrix.

• If Magnetic losses is selected, the default values for Relative permeability (real part)  
and Relative permeability (imaginary part)  are taken From material. Select User 

defined to enter different values.

   
k

1 ik+
----------------------

k
+=

n2   1
Bk

2

2 Ck–
-------------------

k
+=

For magnetic losses, beware of the time-harmonic sign convention 
requiring a lossy material having a negative imaginary part of the relative 
permeability (see Introducing Losses in the Frequency Domain).
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C O N D U C T I O N  C U R R E N T

By default, the Electrical conductivity (SI unit: S/m) uses values From material. 

• If User defined is selected, choose Isotropic, Diagonal, Symmetric, or Anisotropic based 
on the characteristics of the current and enter values or expressions in the field or 
matrix. 

• If Linearized resistivity is selected, the default values for the Reference temperature 
Tref (SI unit: K), Resistivity temperature coefficient (SI unit: 1/K), and Reference 

resistivity 0 (SI unit: m) are taken From material. Select User defined to enter 
other values or expressions for any of these variables.

Initial Values

The Initial Values node adds an initial value for the electric field that can serve as an 
initial guess for a nonlinear solver. Right-click to add additional Initial Values node from 
the Other menu.

D O M A I N  S E L E C T I O N

For a default node, the setting inherits the selection from the parent node, and cannot 
be edited; that is, the selection is automatically selected and is the same as for the 
interface. When nodes are added from the context menu, you can select Manual from 
the Selection list to choose specific domains or select All domains as required.

I N I T I A L  V A L U E S

Enter values or expressions for the initial values of the components of the Electric field 
E (SI unit: V/m). The default values are 0 V/m.

External Current Density

The External Current Density node adds an externally generated current density Je, 
which appears in Ohm’s law

and in the equation that the interface defines.

For an example using the Drude-Lorentz dispersion model, see Nanorods: 
Model Library path Wave_Optics_Module/Optical_Scattering/nanorods.

J E Je+=
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D O M A I N  S E L E C T I O N

From the Selection list, choose the domains to define.

M A T E R I A L  TY P E

Select a Material type—Non-solid (the default), Solid, or From material.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Global coordinate system is selected by default. The Coordinate system list contains 
any additional coordinate systems that the model includes.

E X T E R N A L  C U R R E N T  D E N S I T Y

Based on space dimension, enter the components (x, y, and z for 3D models for 
example) of the External current density Je (SI unit: A/m2).

Far-Field Domain

To set up a far-field calculation, add a Far-Field Domain node and specify the far-field 
domains in its settings window. Use Far-Field Calculation subnodes (one is added by 
default) to specify all other settings needed to define the far-field calculation. Select a 
homogeneous domain or domain group that is outside of all radiating and scattering 
objects and which has the material settings of the far-field medium.

D O M A I N  S E L E C T I O N

From the Selection list, choose the domains to define The default setting is to include 
All domains in the model.  

Far-Field Calculation

A Far-Field Calculation subnode is added by default to the Far-Field Domain node and 
is used to select boundaries corresponding to a single closed surface surrounding all 
radiating and scattering objects. Symmetry reduction of the geometry makes it 
relevant to select boundaries defining a non-closed surface. Also use this feature to 
indicate symmetry planes and symmetry cuts applied to the geometry, and whether the 
selected boundaries are defining the inside or outside of the far field domain; that is, 

Modeling with Far-Field Calculations
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to say whether facing away from infinity or toward infinity. Right-click the Far-Field 

Domain node to add additional subnodes as required.

B O U N D A R Y  S E L E C T I O N

From the Selection list, choose the boundaries to define and that make up the source 
aperture for the far field.

F A R - F I E L D  C A L C U L A T I O N

Enter a Far-field variable name FarName. The default is Efar.

Select as required the Symmetry in the x=0 plane, Symmetry in the y=0 plane, or 
Symmetry in the z=0 plane check boxes to use it your model when calculating the 
far-field variable. The symmetry planes have to coincide with one of the Cartesian 
coordinate planes.

When a check box is selected, also choose the type of symmetry to use from the 
Symmetry type list that appears—Symmetry in E (PMC) or Symmetry in H (PEC). The 
selection should match the boundary condition used for the symmetry boundary. 
Using these settings, include the parts of the geometry that are not in the model for 
symmetry reasons in the far-field analysis.

From the Boundary relative to domain list, select Inside or Outside (the default) to define 
if the selected boundaries are defining the inside or outside of the far-field domain (that 
is, whether facing away from infinity or toward infinity).

Perfect Electric Conductor

The Perfect Electric Conductor boundary condition

is a special case of the electric field boundary condition that sets the tangential 
component of the electric field to zero. It is used for the modeling of a lossless metallic 
surface, for example a ground plane or as a symmetry type boundary condition. It 
imposes symmetry for magnetic fields and “magnetic currents” and antisymmetry for 
electric fields and electric currents. It supports induced electric surface currents and 
thus any prescribed or induced electric currents (volume, surface or edge currents) 

n E 0=
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flowing into a perfect electric conductor boundary is automatically balanced by 
induced surface currents.

The perfect electric conductor boundary condition is used on exterior and interior 
boundaries representing the surface of a lossless metallic conductor or (on exterior 
boundaries) representing a symmetry cut. The shaded (metallic) region is not part of the 
model but still carries effective mirror images of the sources. Note also that any current 
flowing into the boundary is perfectly balanced by induced surface currents. The 
tangential electric field vanishes at the boundary.

B O U N D A R Y  O R  E D G E  S E L E C T I O N

For a default node, the setting inherits the selection from the parent node, and cannot 
be edited; that is, the selection is automatically selected and is the same as for the 
interface. When nodes are added from the context menu, you can select Manual from 
the Selection list to choose specific boundaries or edges, or select All boundaries or All 

edges as required.

P A I R  S E L E C T I O N

If this node is selected from the Pairs menu, choose the pair to define. An identity pair 
has to be created first. Ctrl-click to deselect.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show button ( ) and select Advanced Physics Options. 
To Apply reaction terms on all dependent variables, select All physics (symmetric). 
Otherwise, select Current physics (internally symmetric) or Individual dependent 

variables to restrict the reaction terms as required. Select the Use weak constraints check 
box to replace the standard constraints with a weak implementation. 

I
I '

J

Js

Js

Show More Physics Options
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Perfect Magnetic Conductor

The Perfect Magnetic Conductor boundary condition

is a special case of the surface current boundary condition that sets the tangential 
component of the magnetic field and thus also the surface current density to zero. On 
external boundaries, this can be interpreted as a “high surface impedance” boundary 
condition or used as a symmetry type boundary condition. It imposes symmetry for 
electric fields and electric currents. Electric currents (volume, surface, or edge 
currents) are not allowed to flow into a perfect magnetic conductor boundary as that 
would violate current conservation. On interior boundaries, the perfect magnetic 
conductor boundary condition literally sets the tangential magnetic field to zero which 
in addition to setting the surface current density to zero also makes the tangential 
electric field discontinuous.

Figure 3-1: The perfect magnetic conductor boundary condition is used on exterior 
boundaries representing the surface of a high impedance region or a symmetry cut. The 
shaded (high impedance) region is not part of the model but nevertheless carries effective 
mirror images of the sources. Note also that any electric current flowing into the boundary 
is forbidden as it cannot be balanced by induced electric surface currents. The tangential 
magnetic field vanishes at the boundary. On interior boundaries, the perfect magnetic 
conductor boundary condition literally sets the tangential magnetic field to zero which in 
addition to setting the surface current density to zero also makes the tangential electric 
field (and in dynamics the tangential electric field) discontinuous.

B O U N D A R Y  S E L E C T I O N

From the Selection list, choose the boundaries to define.

n H 0=

I
I '

Js=0

J=0
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P A I R  S E L E C T I O N

If this node is selected from the Pairs menu, choose the pair to define. An identity pair 
has to be created first. Ctrl-click to deselect. 

Port

Use the Port node where electromagnetic energy enters or exits the model. A port can 
launch and absorb specific modes. Use the boundary condition to specify wave type 
ports. Ports support S-parameter calculations but can be used just for exciting the 
model. This node is not available with the Electromagnetic Waves, Transient interface.

In 3D, also right-click the Port node to select the:

• Circular Port Reference Axis to determine a reference direction for the modes. This 
subfeature is selected from the Points submenu when Circular is chosen as the type 
of port.

• Periodic Port Reference Point to uniquely determine reciprocal lattice vectors. This 
subfeature is selected from the Points submenu when Periodic is chosen as the type 
of port.

B O U N D A R Y  S E L E C T I O N

From the Selection list, choose the boundaries to define. 

P A I R  S E L E C T I O N

If this node is selected from the Pairs menu, choose the pair to define. An identity pair 
has to be created first. Ctrl-click to deselect.

PO R T  P R O P E R T I E S

Enter a unique Port name. It is recommended to use a numeric name as it is used to 
define the elements of the S-parameter matrix and numeric port names are also 
required for port sweeps and Touchstone file export.

Optical Scattering Off of a Gold Nanosphere: Model Library path 
Wave_Optics_Module/Optical_Scattering/scattering_nanosphere
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Select the Type of Port—User defined, Numeric, Rectangular, Periodic, Coaxial, or Circular. 

Wave Excitation at this Port
To set whether it is an inport or a listener port, select On or Off from the Wave excitation 

at this port list. If On is selected, enter a Port input power Pin (SI unit: W), and Port 

phase in (SI unit: rad). 

PO R T  M O D E  S E T T I N G S

The input is based on the Type of Port selected above—User Defined, Rectangular, 
Circular, or Periodic. No entry is required if Numeric or Coaxial are selected. The Port 

phase field in the previous section has no impact for this mode type because the phase 
is determined by the entered fields.

Periodic ports are available in 3D and 2D. Circular and Coaxial ports are 
available in 3D and 2D axisymmetry.

It is only possible to excite one port at a time if the purpose is to compute 
S-parameters. In other cases (for example, when studying microwave 
heating) more than one inport might be wanted, but the S-parameter 
variables cannot be correctly computed, so several ports are excited, the 
S-parameter output is turned off.

Numeric requires a Boundary Mode Analysis study type. It should appear 
before the frequency domain study node in the study branch of the model 
tree. If more than one numeric port is needed, use one Boundary Mode 
Analysis node per port and assign each to the appropriate port. Then, it is 
best to add all the studies; Boundary Mode Analysis 1, Boundary Mode 
Analysis 2,..., Frequency Domain 1, manually.

The Port Sweep Settings section in the Electromagnetic Waves, 
Frequency Domain interface cycles through the ports, computes the 
entire S-matrix and exports it to a Touchstone file. When using port 
sweeps, the local setting for Wave excitation at this port is overridden by 
the solver so only one port at a time is excited.
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User Defined 
If User defined is selected, specify the eigenmode of the port.

• Enter the amplitude coordinates of the Electric field E0 (SI unit: V/m) or the 
Magnetic field H0 (SI unit: A/m).

• Enter the Propagation constant (SI unit: rad/m). This is frequency dependent for 
all but TEM modes and a correct frequency-dependent expression must be used.

Rectangular
If Rectangular is selected, specify a unique rectangular mode.

Circular
If Circular is selected, specify a unique circular mode. 

• Select a Mode type—Transverse electric (TE) or Transverse magnetic (TM).

• Select the Mode number from the list.

In 3D, select a Mode type—Transverse electric (TE) or Transverse magnetic 

(TM). 

Enter the Mode number, for example, 10 for a TE10 mode, or 11 for a 
TM11 mode.

In 2D, to excite the fundamental mode, select the mode type Transverse 

electromagnetic (TEM), since the rectangular port represents a parallel-plate 
waveguide port that can support a TEM mode. 

Only TE modes are possible when solving for the out-of-plane vector 
component, and only TM and TEM modes are possible when solving for 
the in-plane vector components.

There is only a single mode number, which is selected from a list.

In 3D, enter the Mode number, for example, 11 for a TE11 mode, or 01 
for a TM01 mode.

When Circular is chosen as the type of port in 3D, also right-click the Port 
node to add the Circular Port Reference Axis subfeature that defines the 
orientation of fields on a port boundary.
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Periodic
If Periodic is selected, specify parameters for the incident wave and the periodic 
domain. When Periodic is chosen, also right-click the Port node to add a Diffraction 
Order port. 

• Select a Input quantity—Electric field or Magnetic field and define the field amplitude.

• Define the Angle of incidence.

In 2D axisymmetry, select whether the Azimuthal mode number is defined 
in the Physics interface or if it is User defined. If User defined is selected, 
define an integer constant or an integer parameter expression for the 
Azimuthal mode number. Note that the absolute value of the Azimuthal 

mode number must be less than 11.

For 2D models and if the Input quantity is set to Electric field, define the 
Electric field amplitude. For example, for a TE wave set the x, y, and z 
components to 0, 0, 1. Similarly, if the Input quantity is set to Magnetic 

field, define the Magnetic field amplitude. For a TM wave set the x, y, and 
z components to 0, 0, 1.

In 3D, define the Elevation angle of incidence and Azimuth angle of 

incidence. The Elevation angle of incidence 1 and Azimuth angle of incidence 
2 are used in the relations

where k is the wave vector, kparallel is the projection of k onto the port, 
kF is the k-vector for Floquet periodicity, n is the outward unit normal 
vector to the boundary, and a1 is one of the unit cell vectors from the 
periodic structure defined from the Periodic Port Reference Point.

k kparallel kperpendicular+=

kparallel kF k 1 a1 2cos n a1 2sin+ sin= =
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• Define the Refractive index at the boundary.

• Define the Maximum frequency. If a single frequency is used, insert the frequency, or 
if a frequency sweep is performed, insert the maximum frequency of the sweep.

• When all parameters are defined, click the Compute Diffraction Orders button to 
automatically create Diffraction Order ports as subnodes to the Periodic port. 

Circular Port Reference Axis

The Circular Port Reference Axis is available only in 3D. When the Type of port is set to 
Circular under Port Properties, right-click the Port node to add the Circular Port 

Reference Axis subfeature. Two points are used to define the orientation of fields on a 

In 2D, define the Angle of incidence. The Angle of incidence  is defined by 
the relation

where k is the projection of the wave vector in the xy-plane, n is the 
normalized normal vector to the boundary, k is the magnitude of the 
projected wave vector in the xy-plane, and z is the unit vector in the 
z-direction. Note that for a periodic structure with a top and a bottom 
side, the Angle of incidence for the two sides is of a different sign, since the 
normals point in opposite directions.

k n k zsin=

• S-Parameters and Ports

• S-Parameter Variables

Plasmonic Wire Grating: Model Library path 
Wave_Optics_Module/Gratings_and_Metamaterials/plasmonic_wire_grating
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port boundary. If there are more than two points on the selection list, the first and last 
points are used.

PO I N T  S E L E C T I O N

From the Selection list, choose the points to define.

Diffraction Order

The Diffraction Order port is available in 3D and 2D. When the Type of Port is set to 
Periodic under Port Properties, right-click the Port node to add this feature.

Use the Diffraction Order port to define diffraction orders from a periodic structure. 
Normally a Diffraction Order node is added automatically during the Periodic port 
setup. You can also right-click the Port node to add additional Diffraction Order ports.

B O U N D A R Y  S E L E C T I O N

From the Selection list, choose the boundaries to define.

PO R T  P R O P E R T I E S

Enter a unique Port name. It is recommended to use a numeric name as it is used to 
define the elements of the S-parameter matrix and numeric port names are also 
required for port sweeps and Touchstone file export.

The Diffraction Order port is a listener port feature. Enter a value or expression for the 
Port phase in (SI unit: rad). The default is 0 radians.

PO R T  M O D E  S E T T I N G S

These settings define the diffracted plane wave.

For the fundamental TE11 mode, the direction of the reference axis 
corresponds to the polarization of the electric field at the port center.
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Components
Select the Components setting for the port—In-plane vector (the default) or Out-of-plane 

vector. 

Diffraction Order
Specify an integer constant or and integer parameter expression for the Diffraction order 

setting. 

Periodic Port Reference Point

The Periodic Port Reference Point is available only in 3D. When the Type of Port is set 
to Periodic under Port Properties, right-click the Port node to add the Periodic Port 

Reference Point subfeature. 

The Periodic Port Reference Point is used to uniquely identify two reciprocal lattice 
vectors, G1 and G2. These reciprocal vectors are defined in terms of unit vectors, a1 
and a2, tangent to the edges shared between the port and the adjacent periodic 
boundary conditions. G1 and G2 are defined by the relation

In-plane vector is available when the settings for the physics interface is set 
to either In-plane vector or Three-component vector under Electric Field 
Components Solved For.

Out-of-plane vector is available when the settings for the physics interface 
is set to either Out-of-plane vector or Three-component vector under 
Electric Field Components Solved For.

• S-Parameters and Ports

• S-Parameter Variables

Plasmonic Wire Grating: Model Library path 
Wave_Optics_Module/Gratings_and_Metamaterials/plasmonic_wire_grating

a1 a2 n=
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 and 

where n is the outward unit normal vector to the port boundary. If there are multiple 
points defined in the selection list, only the last point will be used.

PO I N T  S E L E C T I O N

From the Selection list, choose the points to define.

Electric Field

The Electric Field boundary condition

specifies the tangential component of the electric field. It should in general not be used 
to excite a model. Consider using the Port or Scattering Boundary Condition instead. 
It is provided mainly for completeness and for advanced users who can recognize the 
special modeling situations when it is appropriate to use. The commonly used special 
case of zero tangential electric field is described in the Perfect Electric Conductor 
section.

B O U N D A R Y  O R  E D G E  S E L E C T I O N

From the Selection list, choose the geometric entity (boundaries or edges) to define.

P A I R  S E L E C T I O N

If this node is selected from the Pairs menu, choose the pair to define. An identity pair 
has to be created first. Ctrl-click to deselect.

E L E C T R I C  F I E L D

Enter the value or expression for the components of the Electric field E0 
(SI unit: V/m).

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show button ( ) and select Advanced Physics Options. 
To Apply reaction terms on all dependent variables, select All physics (symmetric). 
Otherwise, select Current physics (internally symmetric) or Individual dependent 

G1 2
a2 n

a1 a2 n
---------------------------= G2 2

n a1
a1 a2 n
---------------------------=

n E n E0=
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variables to restrict the reaction terms as required. Select the Use weak constraints check 
box to replace the standard constraints with a weak implementation.

Magnetic Field

The Magnetic Field node adds a boundary condition for specifying the tangential 
component of the magnetic field at the boundary:

B O U N D A R Y  S E L E C T I O N

From the Selection list, choose the boundaries to define.

P A I R  S E L E C T I O N

If this node is selected from the Pairs menu, choose the pair to define. An identity pair 
has to be created first. Ctrl-click to deselect.

M A G N E T I C  F I E L D

Enter the value or expression for the components of the Magnetic field H0 
(SI unit: A/m).

Scattering Boundary Condition

Use the Scattering Boundary Condition to make a boundary transparent for a scattered 
wave. The boundary condition is also transparent for an incoming plane wave. The 
scattered (outgoing) wave types for which the boundary condition is perfectly 
transparent are

Show More Physics Options

n H n H0=

E Esce
jk n r –

E0e
jk k r –

+= Plane scattered wave

E Esc
e

jk n r –

r
------------------------ E0e

jk k r –
+= Cylindrical scattered wave

E Esc
e

jk n r –

rs
------------------------ E0e

jk k r –
+= Spherical scattered wave
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The field E0 is the incident plane wave that travels in the direction k. The boundary 
condition is transparent for incoming (but not outgoing) plane waves with any angle 
of incidence.

• For cylindrical waves, specify around which cylinder axis the waves are cylindrical. 
Do this by specifying one point at the cylinder axis and the axis direction.

• For spherical waves, specify the center of the sphere around which the wave is 
spherical.

If the problem is solved for the eigenfrequency or the scattered field, the boundary 
condition does not include the incident wave.

B O U N D A R Y  S E L E C T I O N

From the Selection list, choose the boundaries to define.

S C A T T E R I N G  B O U N D A R Y  C O N D I T I O N

Select a Wave type for which the boundary is absorbing—Spherical wave, Cylindrical 

wave, or Plane wave. 

For all Wave types, enter coordinates for the Wave direction kdir (dimensionless).

• If Cylindrical wave is selected, also enter coordinates for the Source point ro 
(SI unit: m) and Source axis direction raxis (dimensionless).

• If Spherical wave is selected, enter coordinates for the Source point ro (SI unit: m).

The boundary is only perfectly transparent for scattered (outgoing) waves 
of the selected type at normal incidence to the boundary. That is, a plane 
wave at oblique incidence is partially reflected and so is a cylindrical wave 
or spherical wave unless the wave fronts are parallel to the boundary. For 
the Electromagnetic Waves, Frequency Domain interface, see Far-Field 
Calculation for a general way of modeling an open boundary.

Esc Esce
jk n r –

= Plane scattered wave

Esc Esc
e

jk n r –

r
------------------------= Cylindrical scattered wave

Esc Esc
e

jk n r –

rs
------------------------= Spherical scattered wave
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Select an Incident field—Wave given by E field or Wave given by H field. Enter the 
expressions for the components for the Incident electric field E0 or Incident magnetic 

field H0. This setting is not available in 2D axisymmetry.

Impedance Boundary Condition

The Impedance Boundary Condition

is used at boundaries where the field is known to penetrate only a short distance 
outside the boundary. This penetration is approximated by a boundary condition to 
avoid the need to include another domain in the model. Although the equation is 
identical to the one in the low-reflecting boundary condition, it has a different 
interpretation. The material properties are for the domain outside the boundary and 
not inside, as for low-reflecting boundaries. A requirement for this boundary condition 
to be a valid approximation is that the magnitude of the complex refractive index

where 1 and 1 are the material properties of the inner domain, is large, that is 
N  1.

The source electric field Es can be used to specify a source surface current on the 
boundary.

The impedance boundary condition is used on exterior boundaries representing the surface 
of a lossy domain. The shaded (lossy) region is not part of the model. The effective induced 
image currents are of reduced magnitude due to losses. Any current flowing into the 

0r
c

------------n H E n E n–+ n Es n Es–=

N
c
11
------------=

I
I '

J

Js

Js
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boundary is perfectly balanced by induced surface currents as for the perfect electric 
conductor boundary condition. The tangential electric field is generally small but non zero 
at the boundary.

B O U N D A R Y  S E L E C T I O N

From the Selection list, choose the boundaries to define. 

I M P E D A N C E  B O U N D A R Y  C O N D I T I O N

The following default material properties for the domain outside the boundary, which 
this boundary condition approximates, are all taken From material:

• Relative permeability r (dimensionless)

• Relative permittivity r (dimensionless)

• Electrical conductivity (SI unit: S/m)

Select User defined for any of these to enter a different value or expression.

Enter the values or expressions for the components of a Source electric field Es (SI unit: 
V/m). 

Surface Current

The Surface Current boundary condition

specifies a surface current density at both exterior and interior boundaries. The current 
density is specified as a three-dimensional vector, but because it needs to flow along 
the boundary surface, COMSOL Multiphysics projects it onto the boundary surface 
and neglects its normal component. This makes it easier to specify the current density 
and avoids unexpected results when a current density with a component normal to the 
surface is given. 

B O U N D A R Y  S E L E C T I O N

From the Selection list, choose the boundaries to define.

P A I R  S E L E C T I O N

If this node is selected from the Pairs menu, choose the pair to define. An identity pair 
has to be created first. Ctrl-click to deselect.

n H– Js=

n H1 H2–  Js=
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S U R F A C E  C U R R E N T

Enter values or expressions for the components of the Surface current density Js0 
(SI unit: A/m).

Transition Boundary Condition

The Transition Boundary Condition is used on interior boundaries to model a sheet of a 
medium that should be geometrically thin but does not have to be electrically thin. It 
represents a discontinuity in the tangential electric field. Mathematically it is described 
by a relation between the electric field discontinuity and the induced surface current 
density:

Where indices 1 and 2 refer to the different sides of the layer. This feature is not 
available with the Electromagnetic Waves, Transient interface.

B O U N D A R Y  S E L E C T I O N

From the Selection list, choose the boundaries to define.

TR A N S I T I O N  B O U N D A R Y  C O N D I T I O N

The following default material properties for the thin layer which this boundary 
condition approximates, are all taken From material:

• Relative permeability r (dimensionless)

• Relative permittivity r (dimensionless) 

• Electrical conductivity (SI unit: S/m). 

Select User defined for any of these to enter a different value or expression.Enter a 
Thickness d (SI unit: m). The default is 0.01 m.

Js1
ZSEt1 ZTEt2– 

ZS
2 ZT

2
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---------------------------------------------=
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ZSEt2 ZTEt1– 

ZS
2 ZT

2
–

---------------------------------------------=
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Periodic Condition

The Periodic Condition sets up a periodicity between the selected boundaries. 
Right-click to add a Destination Selection node as required.

B O U N D A R Y  S E L E C T I O N

From the Selection list, choose the boundaries to define. The software automatically 
identifies the boundaries as either source boundaries or destination boundaries.

PE R I O D I C I T Y  S E T T I N G S

Select a Type of periodicity—Continuity (the default), Antiperiodicity, or Floquet 

periodicity. Select:

• Continuity to make the electric field periodic (equal on the source and destination), 

• Antiperiodicity to make it antiperiodic, or 

• Floquet periodicity (The Electromagnetic Waves, Frequency Domain User Interface 
only) to use a Floquet periodicity (Bloch-Floquet periodicity). 

- If Floquet periodicity is selected, also enter the source for the k-vector for Floquet 

periodicity.

- If User defined is selected, specify the components of the k-vector for Floquet 

periodicity kF (SI unit: rad/m). 

- If From periodic port is selected the k-vector for Floquet periodicity kF is obtained 
from the Periodic Port settings.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show button ( ) and select Advanced Physics Options. 
To Apply reaction terms on all dependent variables, select All physics (symmetric). 
Otherwise, select Current physics (internally symmetric) or Individual dependent 

This works fine for cases like opposing parallel boundaries. To control the 
destination, right-click to add a Destination Selection node. By default it 
contains the selection that COMSOL Multiphysics has identified.
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variables to restrict the reaction terms as required. Select the Use weak constraints check 
box to replace the standard constraints with a weak implementation. 

Magnetic Current

The Magnetic Current node specifies a magnetic line current along one or more edges. 
For a single Magnetic Current source, the electric field is orthogonal to both the line 
and the distance vector from the line to the field point.

E D G E  O R  PO I N T  S E L E C T I O N

From the Selection list, choose the edges or points to define.

• Periodic Boundary Conditions

• Show More Physics Options

In the COMSOL Multiphysics Reference Manual:

• Periodic Condition and Destination Selection

• Periodic Boundary Conditions

• Fresnel Equations: Model Library path 
Wave_Optics_Module/Verification_Models/fresnel_equations

• Plasmonic Wire Grating: Model Library path 
Wave_Optics_Module/Gratings_and_Metamaterials/plasmonic_wire_gratin

g

For 2D and 2D axisymmetric models the Magnetic Current node is applied 
to Points, representing magnetic currents directed out of the model plane. 

For 3D models, the Magnetic Current is applied to Edges.
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M A G N E T I C  C U R R E N T

Enter a value for the Magnetic current Im (SI unit: V).

Edge Current

The Edge Current node specifies an electric line current along one or more edges.

E D G E  S E L E C T I O N

From the Selection list, choose the edges to define.

E D G E  C U R R E N T

Enter an Edge current I0 (SI unit: A).

Electric Point Dipole

PO I N T  S E L E C T I O N

From the Selection list, choose the points to define.

D I P O L E  S P E C I F I C A T I O N

Select a Dipole specification—Magnitude and direction or Dipole moment.

D I P O L E  P A R A M E T E R S

Based on the Dipole specification selection:

• If Magnitude and direction is selected, enter coordinates for the Electric current dipole 

moment direction np and Electric current dipole moment, magnitude p (SI unit: mA).

• If Dipole moment is selected, enter coordinates for the Electric current dipole moment 
p (SI unit: mA).

Add Electric Point Dipole nodes to 3D and 2D models. This represents the 
limiting case of when the length d of a current filament carrying uniform 
current I approaches zero while maintaining the product between I and 
d. The dipole moment is a vector entity with the positive direction set by 
the current flow.
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Magnetic Point Dipole

PO I N T  S E L E C T I O N

From the Selection list, choose the points to define. 

D I P O L E  S P E C I F I C A T I O N

Select a Dipole specification—Magnitude and direction or Dipole moment.

D I P O L E  P A R A M E T E R S

Based on the Dipole specification selection:

• If Magnitude and direction is selected, enter coordinates for the Magnetic dipole 

moment direction nm and Magnetic dipole moment, magnitude m (SI unit: m2A).

• If Dipole moment is selected, enter coordinates for the Magnetic dipole moment m 
(SI unit: m2A).

Line Current (Out-of-Plane)

PO I N T  S E L E C T I O N

From the Selection list, choose the points to define. 

Add a Magnetic Point Dipole to 3D and 2D models. The point dipole 
source represents a small circular current loop I in the limit of zero loop 
area a at a fixed product I*a.

 
Add a Line Current (Out-of-Plane) node to 2D or 2D axisymmetric models. 
This specifies a line current out of the modeling plane. In axially 
symmetric geometries this is the rotational direction, in 2D geometries it 
is the z direction.
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L I N E  C U R R E N T  ( O U T - O F - P L A N E )

Enter an Out-of-plane current I0 (SI unit: A).

Fabry-Perot Cavity: Model Library path 
Wave_Optics_Module/Verification_Models/fabry_perot
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Th e  E l e c t r omagne t i c  Wav e s ,  
T r a n s i e n t  U s e r  I n t e r f a c e

The Electromagnetic Waves, Transient (ewt) user interface ( ), found under the Wave 

Optics branch ( ) in the Model Wizard, solves a transient wave equation for the 
magnetic vector potential. 

When this interface is added, these default nodes are also added to the Model Builder—
Wave Equation, Electric, Perfect Electric Conductor, and Initial Values.

Right-click the Electromagnetic Waves, Transient node to add other features that 
implement, for example, boundary conditions and mass sources.

I N T E R F A C E  I D E N T I F I E R

The interface identifier is used primarily as a scope prefix for variables defined by the 
physics user interface. Refer to such interface variables in expressions using the pattern 
<identifier>.<variable_name>. In order to distinguish between variables 
belonging to different physics user interfaces, the identifier string must be unique. 
Only letters, numbers and underscores (_) are permitted in the Identifier field. The first 
character must be a letter.

The default identifier (for the first interface in the model) is ewt.

D O M A I N  S E L E C T I O N

The default setting is to include All domains in the model to define the dependent 
variables and the equations. To choose specific domains, select Manual from the 
Selection list.

Except where indicated, most of the settings are the same as for The 
Electromagnetic Waves, Frequency Domain User Interface.
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C O M P O N E N T S

Select the Electric field components solved for. Select:

• Three-component vector (the default) to solve using a full three-component vector 
for the electric field E.

• Out-of-plane vector to solve for the electric field vector component perpendicular to 
the modeling plane, assuming that there is no electric field in the plane.

• In-plane vector to solve for the electric field vector components in the modeling 
plane assuming that there is no electric field perpendicular to the plane.

D I S C R E T I Z A T I O N

To display this section, click the Show button ( ) and select Discretization. Select 
Quadratic (the default), Linear, or Cubic for the Magnetic vector potential. Specify the 
Value type when using splitting of complex variables—Real (the default) or Complex.

D E P E N D E N T  V A R I A B L E S

The dependent variable (field variable) is for the Magnetic vector potential A. The name 
can be changed but the names of fields and dependent variables must be unique within 
a model. 

This section is available for 2D and 2D axisymmetric models. 

• Show More Physics Options

• Domain, Boundary, Edge, Point, and Pair Nodes for the 
Electromagnetic Waves, Transient User Interface

• Theory for the Electromagnetic Waves User Interfaces
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Domain, Boundary, Edge, Point, and Pair Nodes for the 
Electromagnetic Waves, Transient User Interface

The Electromagnetic Waves, Transient User Interface shares most of its nodes with 
The Electromagnetic Waves, Frequency Domain User Interface. The domain, 
boundary, edge, point, and pair nodes are available as indicated.

D O M A I N

These nodes are unique for this interface and described in this section:

• Wave Equation, Electric

• Initial Values

B O U N D A R Y  C O N D I T I O N S

With no surface currents present the boundary conditions

need to be fulfilled. Depending on the field being solved for, it is necessary to analyze 
these conditions differently. When solving for A, the first condition can be formulated 
in the following way.

The tangential component of the magnetic vector potential is always continuous and 
thus the first condition is fulfilled. The second condition is equivalent to the natural 
boundary condition.

and is therefore also fulfilled. 

n2 E1 E2–  0=

n2 H1 H2–  0=

n2 E1 E2–  n2 t
A2

t
A1–

 
 
 


t
 n2 A2 A1–  = =

n– r
1–  A1 r

1–  A2–  n– r
1– H1 H2–  0= =
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These nodes and subnodes are available and described for the Electromagnetic Waves, 
Frequency Domain interface (listed in alphabetical order):

E D G E ,  PO I N T ,  A N D  P A I R

These edge, point, and pair nodes are available and described for the Electromagnetic 
Waves, Frequency Domain interface (listed in alphabetical order):

• Magnetic Field

• Perfect Electric Conductor

• Perfect Magnetic Conductor

• Periodic Condition

• Scattering Boundary Condition

• Surface Current

• Edge Current

• Electric Point Dipole (2D and 3D 
models)

• Line Current (Out-of-Plane) (2D 
and 2D axisymmetric models)

• Magnetic Point Dipole (2D and 3D 
models)

• Perfect Electric Conductor

• Perfect Magnetic Conductor

• Surface Current

For axisymmetric models, COMSOL Multiphysics takes the axial 
symmetry boundaries (at r = 0) into account and automatically adds an 
Axial Symmetry node to the model that is valid on the axial symmetry 
boundaries only.

In the COMSOL Multiphysics Reference Manual:

• Continuity on Interior Boundaries

• Identity and Contact Pairs 

To locate and search all the documentation, in COMSOL, select 
Help>Documentation from the main menu and either enter a search term 
or look under a specific module in the documentation tree.
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Wave Equation, Electric

The Wave Equation, Electric node is the main node for the Electromagnetic Waves, 
Transient interface. The governing equation can be written in the form

for transient problems with the constitutive relations B0rH and D0rE. Other 
constitutive relations can also be handled for transient problems. 

D O M A I N  S E L E C T I O N

For a default node, the setting inherits the selection from the parent node, and cannot 
be edited; that is, the selection is automatically selected and is the same as for the 
interface. When nodes are added from the context menu, you can select Manual from 
the Selection list to choose specific domains or select All domains as required.

M O D E L  I N P U T S

This section contains field variables that appear as model inputs, if the settings include 
such model inputs. By default, this section is empty. 

M A T E R I A L  TY P E

Select a Material type—Non-solid (the default), Solid, or From material.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Global coordinate system is selected by default. The Coordinate system list contains 
any additional coordinate systems that the model includes.

E L E C T R I C  D I S P L A C E M E N T  F I E L D

Select an Electric displacement field model—Relative permittivity, Refractive index (the 
default), Polarization, or Remanent electric displacement.

Relative Permittivity
When Relative permittivity is selected, the default Relative permittivity r 
(dimensionless) takes values From material. If User defined is selected, choose Isotropic, 
Diagonal, Symmetric, or Anisotropic and enter values or expressions in the field or 
matrix. 

Refractive Index
When Refractive index is selected, the default Refractive index n (dimensionless) and 
Refractive index, imaginary part k (dimensionless) take the values From material. To 

0 t
A 00 t

 r t
A

 
   r

1–  A + + 0=
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specify the real and imaginary parts of the refractive index and assume a relative 
permeability of unity and zero conductivity, for one or both of the options, select User 

defined then choose Isotropic, Diagonal, Symmetric, or Anisotropic. Enter values or 
expressions in the field or matrix.

Polarization
If Polarization is selected enter coordinates for the Polarization P (SI unit: C/m2).

Remanent Electric Displacement
If Remanent electric displacement is selected, enter coordinates for the Remanent electric 

displacement Dr (SI unit: C/m2). Then select User defined or From Material as above 
for the Relative permittivity r.

M A G N E T I C  F I E L D

This section is available if Relative permittivity, Polarization, or Remanent electric 

displacement are chosen as the Electric displacement field model.

Select the Constitutive relation—Relative permeability (the default), Remanent flux 

density, or Magnetization.

Relative Permeability
If Relative permeability is selected, the Relative permeability r uses values From 

material. If User defined is selected, choose Isotropic, Diagonal, Symmetric, or Anisotropic 
based on the characteristics of the magnetic field, and then enter values or expressions 
in the field or matrix. 

Remanent Flux Density
If Remanent flux density is selected, the Relative permeability r uses values From 

material. If User defined is selected, choose Isotropic, Diagonal, Symmetric, or Anisotropic 
based on the characteristics of the magnetic field, and then enter values or expressions 
in the field or matrix. Then enter coordinates for the Remanent flux density Br 
(SI unit: T).

Magnetization
If Magnetization is selected, enter coordinates for M (SI unit: A/m).

Beware of the time-harmonic sign convention requiring a lossy material 
having a negative imaginary part of the refractive index (see Introducing 
Losses in the Frequency Domain).
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C O N D U C T I O N  C U R R E N T

This section is available if Relative permittivity, Polarization, or Remanent electric 

displacement are chosen as the Electric displacement field model.

By default, the Electrical conductivity (SI unit: S/m) uses values From material. 

• If User defined is selected, choose Isotropic, Diagonal, Symmetric, or Anisotropic based 
on the characteristics of the current and enter values or expressions in the field or 
matrix.

• If Linearized resistivity is selected, the default values for the Reference temperature 
Tref (SI unit: K), Resistivity temperature coefficient (SI unit: 1/K), and Reference 

resistivity 0 (SI unit: m) use values From material. Select User defined to enter 
other values or expressions for any of these variables.

Initial Values

The Initial Values node adds an initial value for the magnetic vector potential and its 
time derivative that serves as initial conditions for the transient simulation.

D O M A I N  S E L E C T I O N

For a default node, the setting inherits the selection from the parent node, and cannot 
be edited; that is, the selection is automatically selected and is the same as for the 
interface. When nodes are added from the context menu, you can select Manual from 
the Selection list to choose specific domains or select All domains as required.

I N I T I A L  V A L U E S

Enter values or expressions for the initial values of the components of the magnetic 
vector potential A (SI unit: Wb/m) and its time derivative At (SI unit: V/m). The 
default values are 0 Wb/m and 0 V/m, respectively.
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Th e  E l e c t r omagne t i c  Wav e s ,  T ime 
Exp l i c i t  U s e r  I n t e r f a c e

The Electromagnetic Waves, Time Explicit (teew) user interface ( ), found under the 
Wave Optics branch ( ) in the Model Wizard, solves a transient wave equation for both 
the electric and magnetic fields. It is available for 3D, 2D axisymmetric, and 2D 
models.

When this interface is added, these default nodes are also added to the Model Builder—
Wave Equations, Perfect Electric Conductor, and Initial Values.

Right-click the Electromagnetic Waves, Time Explicit node to add other features that 
implement other boundary conditions.

I N T E R F A C E  I D E N T I F I E R

The interface identifier is used primarily as a scope prefix for variables defined by the 
physics user interface. Refer to such interface variables in expressions using the pattern 
<identifier>.<variable_name>. In order to distinguish between variables 
belonging to different physics user interfaces, the identifier string must be unique. 
Only letters, numbers and underscores (_) are permitted in the Identifier field. The first 
character must be a letter.

The default identifier (for the first interface in the model) is teew.

D O M A I N  S E L E C T I O N

The default setting is to include All domains in the model to define the dependent 
variables and the equations. To choose specific domains, select Manual from the 
Selection list.

C O M P O N E N T S

This section is available for 2D and 2D axisymmetric models. 
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Select the Field components solved for:

• Full wave (the default) to solve using a full three-component vector for the electric 
field E and the magnetic field H. 

• E in plane (TM wave) to solve for the electric field vector components in the modeling 
plane and one magnetic field vector component perpendicular to the plane, 
assuming that there is no electric field perpendicular to the plane and no magnetic 
field components in the plane.

• H in plane (TE wave) to solve for the magnetic field vector components in the 
modeling plane and one electric field vector component perpendicular to the plane.

D I S C R E T I Z A T I O N

To display this section, click the Show button ( ) and select Discretization. Select 
Cubic (the default), Linear, Quadratic or Quartic for the vector field components. Specify 
the Value type when using splitting of complex variables—Real (the default) or Complex.

D E P E N D E N T  V A R I A B L E S

The dependent variables (field variables) are for the Electric field vector E and for the 
Magnetic field vector H. The name can be changed but the names of fields and 
dependent variables must be unique within a model.

• Domain, Boundary, and Pair Nodes for the Electromagnetic Waves, 
Time Explicit User Interface

• Show More Physics Options

• Theory for the Electromagnetic Waves, Time Explicit User Interface
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Domain, Boundary, and Pair Nodes for the Electromagnetic Waves, 
Time Explicit User Interface 

The Electromagnetic Waves, Time Explicit User Interface has these domain and 
boundary nodes available and listed in alphabetical order.

Wave Equations

The Wave Equations node is the main node for the Electromagnetic Waves, Time 
Explicit interface. The governing transient equations can be written in the form

with the constitutive relations B0rH and D0rE, which reads

D O M A I N  S E L E C T I O N

For a default node, the setting inherits the selection from the parent node, and cannot 
be edited; that is, the selection is automatically selected and is the same as for the 

• Electric Field

• Electric Current Density

• Flux/Source

• Initial Values

• Low Reflecting Boundary

• Magnetic Field

• Magnetic Current Density

• Perfect Electric Conductor

• Perfect Magnetic Conductor

• Surface Current Density

• Wave Equations

For axisymmetric models, COMSOL Multiphysics takes the axial 
symmetry boundaries (at r = 0) into account and automatically adds an 
Axial Symmetry node to the model that is valid on the axial symmetry 
boundaries only.

 H E D
t

-------+=

 E B
t

-------–=

0r
E
t

------- – H E+ 0=

0r
H
t

-------- + E 0=
T H E  E L E C T R O M A G N E T I C  W A V E S ,  T I M E  E X P L I C I T  U S E R  I N T E R F A C E  |  109



110 |  C H A P T E
interface. When nodes are added from the context menu, you can select Manual from 
the Selection list to choose specific domains or select All domains as required.

M A T E R I A L  TY P E

Select a Material type—Non-solid (the default), Solid, or From material.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Global coordinate system is selected by default. The Coordinate system list contains 
any additional coordinate systems that the model includes.

M A T E R I A L  P R O P E R T I E S

The default Relative permittivity r (dimensionless), Relative permeability r 
(dimensionless), and Electrical conductivity (SI unit: S/m) take values From material. 
If User defined is selected for any of the properties, choose Isotropic, Diagonal, 
Symmetric, or Anisotropic and enter values or expressions in the field or matrix.

N U M E R I C A L  P A R A M E T E R S

The defaults for each parameter are as follows:

• Lax-Friedrichs flux parameter for E field E (SI unit: S), the default is 0.5/Z for 
Ampere’s law.

• Lax-Friedrichs flux parameter for H fieldH (SI unit:), the default is 0.5Z for 
Faraday’s law, where Z is the impedance of vacuum.

• Estimate of maximum wave speed cmax (SI unit: m/s) the default is taken from the 
speed of light in a vacuum c_const.

F I L T E R  P A R A M E T E R S

The filter provides higher-order smoothing of nodal discontinuous Galerkin 
formulations and is intended to be used for absorbing layers, but you can also use it to 
stabilize linear wave problems with highly varying coefficients. The filter is constructed 
by transforming the solution (in each global time step) to an orthogonal polynomial 
representation, multiplying with a damping factor and then transforming back to the 
(Lagrange) nodal basis. Select the Activate check box to use this filter.

The exponential filter can be described by the matrix formula

where V is a Vandermonde matrix induced by the node points, and  is a diagonal 
matrix with the exponential damping factors on the diagonal:

VV 1–
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where

and Np is the basis function and im the polynomial order for coefficient m.  (default 
value: 36), c (default value: 1), and s (default value: 3) are the filter parameters that 
you specify in the corresponding text fields. The damping is derived from an a spatial 
dissipation operator of order 2s. For s = 1, you obtain a damping that is related to the 
classical 2nd-order Laplacian. Higher order (larger s) gives less damping for the 
lower-order polynomial coefficients (a more pronounced low-pass filter), while 
keeping the damping property for the highest values of , which is controlled by . 
The default values 36 for a correspond to maximal damping for  = 1. It is important 
to realize that the effect of the filter is influenced by how much of the solution (energy) 
is represented by the higher-order polynomial coefficients. For a well resolved solution 
this will be a smaller part than for a poorly resolved solution. The effect will be stronger 
for poorly resolved solutions than for well resolved ones. This is one of the reasons why 
this filter is useful in an absorbing layer where the energy is transferred to the 
higher-order coefficients through a coordinate transformation. See Ref. 1 (Chapter 5) 
for more information.

 must be positive;  = 0 means no dissipation, and the maximum value is related to 
the machine precision, log(), which is approximately 36. c should be between 0 and 
1, where c = 0 means maximum filtering, and c = 1 means no filtering, even if 
filtering is active.

Reference
1. Jan S. Hesthaven and Tim Warburton, Nodal Discontinuous Galerkin Methods— 
Algorithms, Analysis, and Applications, Springer, 2008.

Initial Values

The Initial Values node adds the initial values for the Electric field and Magnetic field 
variables that serve as an initial condition for the transient simulation.

mm   
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D O M A I N  S E L E C T I O N

For a default node, the setting inherits the selection from the parent node, and cannot 
be edited; that is, the selection is automatically selected and is the same as for the 
interface. When nodes are added from the context menu, you can select Manual from 
the Selection list to choose specific domains or select All domains as required.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Global coordinate system is selected by default. The Coordinate system list contains 
any additional coordinate systems that the model includes.

I N I T I A L  V A L U E S

Enter values or expressions for the initial values of the components of the Electric field 

E (SI unit: V/m) and Magnetic field H (SI unit: A/m). The default values are 0 for all 
vector components.

Electric Current Density

The Electric Current Density node adds an external current density to the specified 
domains, which appears on the right-hand side of Ampere’s law

D O M A I N  S E L E C T I O N

From the Selection list, choose the domains to define.

M A T E R I A L  TY P E

Select a Material type—Non-solid (the default), Solid, or From material.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Global coordinate system is selected by default. The Coordinate system list contains 
any additional coordinate systems that the model includes.

If there is more than one type of domain, each with different initial values 
defined, it may be necessary to remove these domains from the selection. 
These are then defined in an additional Initial Values node.

0r
E
t

------- – H E+ Je–=
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E L E C T R I C  C U R R E N T  D E N S I T Y

Based on space dimension, enter the coordinates (x, y, and z for 3D models for 
example) of the Electric current density Je (SI unit: A/m2).

Magnetic Current Density

The Magnetic Current Density node adds an external current density to the specified 
domains, which appears on the right-hand side of Faraday’s law

D O M A I N  S E L E C T I O N

From the Selection list, choose the domains to define.

M A T E R I A L  TY P E

Select a Material type—Non-solid (the default), Solid, or From material.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Global coordinate system is selected by default. The Coordinate system list contains 
any additional coordinate systems that the model includes.

M A G N E T I C  C U R R E N T  D E N S I T Y

Based on space dimension, enter the coordinates (x, y, and z for 3D models for 
example) of the Magnetic current density Jm (SI unit: V/m2).

Electric Field

The Electric Field boundary condition

specifies the tangential component of the electric field. The commonly used special 
case of zero tangential electric field (perfect electric conductor) is described in the next 
section.

B O U N D A R Y  S E L E C T I O N

From the Selection list, choose the boundaries to define.

0r
H
t

-------- + E J– m=

n E n E0=
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M A T E R I A L  TY P E

Select a Material type—Non-solid (the default), Solid, or From material.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Global coordinate system is selected by default. The Coordinate system list contains 
any additional coordinate systems that the model includes.

E L E C T R I C  F I E L D

Enter values or expressions for the components of the Electric field E0 (SI unit: V/m).

Perfect Electric Conductor

The Perfect Electric Conductor boundary condition

is a special case of the electric field boundary condition that sets the tangential 
component of the electric field to zero. It is used for the modeling of a lossless metallic 
surface, for example a ground plane or as a symmetry type boundary condition. 

It imposes symmetry for magnetic fields and antisymmetry for electric fields and 
electric currents. It supports induced electric surface currents and thus any prescribed 
or induced electric currents (volume, surface or edge currents) flowing into a perfect 
electric conductor boundary is automatically balanced by induced surface currents.

B O U N D A R Y  S E L E C T I O N

For a default node, the setting inherits the selection from the parent node, and cannot 
be edited; that is, the selection is automatically selected and is the same as for the 
interface. When nodes are added from the context menu, you can select Manual from 
the Selection list to choose specific boundaries or select All boundaries as required.

M A T E R I A L  TY P E

Select a Material type—Non-solid (the default), Solid, or From material.

Magnetic Field

The Magnetic Field node adds a boundary condition for specifying the tangential 
component of the magnetic field at the boundary:

n E 0=

n H n H0=
R  3 :  T H E  O P T I C S  B R A N C H



B O U N D A R Y  S E L E C T I O N

From the Selection list, choose the boundaries to define.

M A T E R I A L  TY P E

Select a Material type—Non-solid (the default), Solid, or From material.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Global coordinate system is selected by default. The Coordinate system list contains 
any additional coordinate systems that the model includes.

M A G N E T I C  F I E L D

Enter values or expressions for the components of the Magnetic field H0 
(SI unit: A/m).

Perfect Magnetic Conductor

The Perfect Magnetic Conductor boundary condition

is a special case of the surface current boundary condition that sets the tangential 
component of the magnetic field and thus also the surface current density to zero. On 
external boundaries, this can be interpreted as a “high surface impedance” boundary 
condition or used as a symmetry type boundary condition. It imposes symmetry for 
electric fields and electric currents. Electric currents (volume, surface, or edge 
currents) are not allowed to flow into a perfect magnetic conductor boundary as that 
would violate current conservation. On interior boundaries, the perfect magnetic 
conductor boundary condition literally sets the tangential magnetic field to zero which 
in addition to setting the surface current density to zero also makes the tangential 
electric field discontinuous.

B O U N D A R Y  S E L E C T I O N

From the Selection list, choose the boundaries to define.

M A T E R I A L  TY P E

Select a Material type—Non-solid (the default), Solid, or From material.

Surface Current Density

The Surface Current Density boundary condition

n H 0=
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specifies a surface current density at both exterior and interior boundaries. The current 
density is specified as a three-dimensional vector, but because it needs to flow along 
the boundary surface, COMSOL Multiphysics projects it onto the boundary surface 
and neglects its normal component. This makes it easier to specify the current density 
and avoids unexpected results when a current density with a component normal to the 
surface is given.

B O U N D A R Y  S E L E C T I O N

From the Selection list, choose the boundaries to define.

M A T E R I A L  TY P E

Select a Material type—Non-solid (the default), Solid, or From material.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Global coordinate system is selected by default. The Coordinate system list contains 
any additional coordinate systems that the model includes.

S U R F A C E  C U R R E N T

Enter values or expressions for the components of the Surface current Js0 (SI unit: 
A/m). The defaults are 0 A/m for all vector components.

Low Reflecting Boundary

The Low-Reflecting Boundary condition

specifies the tangential component of both electric and magnetic fields.

B O U N D A R Y  S E L E C T I O N

From the Selection list, choose the boundaries to define.

M A T E R I A L  TY P E

Select a Material type—Non-solid (the default), Solid, or From material.

n H– Js=

n H1 H2–  Js=

n E Z0H=
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C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Global coordinate system is selected by default. The Coordinate system list contains 
any additional coordinate systems that the model includes.

I M P E D A N C E

Enter the value or expression for the medium Impedance Z0 (SI unit: ). By default, 
the Z0 uses the value of the vacuum’s impedance. Then choose Isotropic, Diagonal, 
Symmetric, or Anisotropic based on the material characteristics and enter values or 
expressions in the field or matrix.

Flux/Source

The Flux/Source boundary condition

specifies the tangential component of both electric and magnetic fields.

B O U N D A R Y  S E L E C T I O N

From the Selection list, choose the boundaries to define.

M A T E R I A L  TY P E

Select a Material type—Non-solid (the default), Solid, or From material.

C O O R D I N A T E  S Y S T E M  S E L E C T I O N

The Global coordinate system is selected by default. The Coordinate system list contains 
any additional coordinate systems that the model includes.

B O U N D A R Y  F L U X / S O U R C E

Enter values or expressions for the components of the tangential Electric field E0 
(SI unit: V/m) and the tangential Magnetic field H0 (SI unit: A/m).

n E E0=

n H H0=
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Th e  E l e c t r omagne t i c  Wav e s ,  B e am 
En v e l o p e s  U s e r  I n t e r f a c e

The Electromagnetic Waves, Beam Envelopes (ewbe) user interface ( ), found under 
the Wave Optics branch ( ) in the Model Wizard, solves the electric field based 
time-harmonic wave equation. The electric field is defined as the product of a slowly 
varying envelope function and a rapidly varying phase function. The phase function has 
a prescribed variation, so it is only the envelope function that is solved for. It is 
advantageous to use this interface for problems where the envelope function has a 
spatial variation on length scales much longer than the wavelength.

The physics interface supports the study types Frequency domain, Eigenfrequency, and 
Boundary mode analysis. The frequency domain study type is used for source driven 
simulations for a single frequency or a sequence of frequencies. The Eigenfrequency 
study type is used to find resonance frequencies and their associated eigenmodes in 
cavity problems.

When this interface is added, these default nodes are also added to the Model Builder—
Wave Equation, Beam Envelopes, Perfect Electric Conductor, and Initial Values.

Right-click the Electromagnetic Waves, Beam Envelopes node to add other features that 
implement, for example, boundary conditions. The following sections provide 
information about all feature nodes in the interface.

I N T E R F A C E  I D E N T I F I E R

The interface identifier is used primarily as a scope prefix for variables defined by the 
physics user interface. Refer to such interface variables in expressions using the pattern 
<identifier>.<variable_name>. In order to distinguish between variables 
belonging to different physics user interfaces, the identifier string must be unique. 
Only letters, numbers and underscores (_) are permitted in the Identifier field. The first 
character must be a letter.

The default identifier (for the first interface in the model) is ewbe.

D O M A I N  S E L E C T I O N

The default setting is to include All domains in the model to define the dependent 
variables and the equations. To choose specific domains, select Manual from the 
Selection list.
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C O M P O N E N T S

Select the Electric field components solved for—Three-component vector (the default), 
Out-of-plane vector, or In-plane vector. Select:

• Three-component vector to solve using a full three-component vector for the electric 
field envelope(s) E1 (and E2).

• Out-of-plane vector to solve for the electric field envelope vector component 
perpendicular to the modeling plane, assuming that there is no electric field in the 
plane.

• In-plane vector to solve for the electric field envelope vector components in the 
modeling plane assuming that there is no electric field perpendicular to the plane.

WA VE  VE C T O R S

Select the Number of directions—Bidirectional (the default) or Unidirectional. 

In the tables, enter values or expressions for the Wave vector, first wave k1 (SI unit: 
rad/m) and, if Bidirectional is selected, for Wave vector, second wave k2 (SI unit: 
rad/m).

When Unidirectional is selected, the electric field is expressed as

,

where E1 is the electric field envelope that is solved for and exp(-jk1·r) is the 
prescribed rapidly varying phase function.

The solution for the electric field envelope E1 is as exact as the solution for the total 
electric field E, as is done for the The Electromagnetic Waves, Frequency Domain 
User Interface. The advantage is that the mesh only need to resolve the spatial variation 
of the field envelope E1 and not the rapid variation of the phase factor. On the other 
hand, for problems involving reflections and scattering there is a rapid spatial variation 
also for the field envelope. Then there is a no advantage of using the Unidirectional 

formulation.

This section is available for 2D and 2D axisymmetric models. 

E r  E1 r  jk1 r– exp=
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When Bidirectional is selected, the electric field is expressed as

,

where E2 and exp(-jk2·r) are the electric field envelope and the prescribed phase 
function for the second wave.

The Bidirectional formulation is good to use when there are boundaries reflecting the 
wave in another direction than that of the incident wave. The direction for the reflected 
beam is typically in the opposite direction to the incident beam. The boundary 
conditions at these internal and/or external boundaries couple the electric field 
envelopes E1 and E2.

Notice, however, that there is no coupling between E1 and E2 within domains, unless 
weak expressions are explicitly added to the domains in the Model Builder. For more 
information about how to add weak domain expressions, see Show More Physics 
Options.

PO R T  S W E E P  S E T T I N G S

Select the Activate port sweep check box to switch on the port sweep. When selected, 
this invokes a parametric sweep over the ports/terminals in addition to the 
automatically generated frequency sweep. The generated lumped parameters are in the 
form of an impedance or admittance matrix depending on the port/terminal settings 
which consistently must be of either fixed voltage or fixed current type.

If Activate port sweep is selected, enter a Sweep parameter name to assign a specific 
name to the variable that controls the port number solved for during the sweep.

E r  E1 r  jk1 r– exp E2 r  jk2 r– exp+=

For 2D and 3D, the default value for k1 represents a wave vector pointing 
in the x-direction.

The default value for k2 represents the wave vector for a plane wave 
reflected from a plane normal to the x-direction. Thus, the x-component 
is negated, whereas the other components are the same as for wave vector 
of the incident wave.

For 2D axisymmetry, the default value for k1 represents a wave vector 
pointing in the z-direction, whereas k2 points in the opposite direction to 
k1.
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For this interface, the lumped parameters are subject to Touchstone file export. Click 
Browse to locate the file, or enter a file name and path. Select an Parameter format 

(value pairs)—Magnitude angle, Magnitude (dB) angle, or Real imaginary.

Select an option from the If file exists list—Overwrite (the default) or Create new.

Enter a Reference impedance, Touchstone file export. The default is 50 ohm.

D I S C R E T I Z A T I O N

To display this section, click the Show button ( ) and select Discretization. Select 
Linear, Quadratic (the default), or Cubic for the Electric field envelope, first wave and 
Electric field envelope, second wave. The second wave is applicable if the Wave Vectors 
are bidirectional. Specify the Value type when using splitting of complex variables—Real 
or Complex (the default).

D E P E N D E N T  V A R I A B L E S

The dependent variables (field variables) are for the:

• Electric field envelope, first wave E1 and its components (in the Electric field envelope 

components, first wave fields). 

• Electric field envelope, second wave E2 and its components (in the Electric field 

envelope components, second wave fields). The second wave is applicable if the Wave 
Vectors are bidirectional.

The name can be changed but the names of fields and dependent variables must be 
unique within a model. 

Domain, Boundary, Edge, and Point Nodes for the Electromagnetic 
Waves, Beam Envelopes Interface

The Electromagnetic Waves, Beam Envelopes User Interface has these domain, 
boundary, edge, point, and pair nodes and subnodes available.

• Show More Physics Options

• Domain, Boundary, Edge, and Point Nodes for the Electromagnetic 
Waves, Beam Envelopes Interface
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D O M A I N

• Initial Values

• Wave Equation, Electric

B O U N D A R Y  C O N D I T I O N S

With no surface currents present, the following boundary conditions for the electric 
and magnetic fields need to be fulfilled

,

where the roman numerals denote the fields and normals on the two sides of the 
boundary.

For the unidirectional formulation, the electric field is given by the product of the 
electric field envelope E1 and the phase function (see Wave Vectors). Because E1 is 
being solved for and the phase function is continuous across boundaries, the tangential 
component of the electric field is always continuous, and thus the first condition is 
automatically fulfilled. The second condition is equivalent to the natural boundary 
condition for the unidirectional formulation

and is therefore also fulfilled.

For the bidirectional formulation the transverse electric and magnetic field envelopes 
are not necessarily continuous across boundaries. Thus, the continuity of the transverse 
electric and magnetic fields are enforced using weak expressions and constraints 
applied on the boundary.

The following boundary conditions are available for this interface:

• Diffraction Order

• Electric Field

• Magnetic Field

• Perfect Electric Conductor

• Perfect Magnetic Conductor

• Periodic Condition

• Port

• Scattering Boundary Condition 

• Surface Current

nII EI EII–  0=

nII HI HII–  0=

n r
1–  E I r

1–  E II– – n j0 HI HII–  0= =
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Of the boundary conditions above, the following features are described for the The 
Electromagnetic Waves, Frequency Domain User Interface:

Wave Equation, Beam Envelopes

The Wave Equation, Beam Envelopes node is the main node for the Electromagnetic 
Waves, Beam Envelopes interface. The electric field is factorized into the product

,

for Wave Vectors set to unidirectional. Inserting this electric field formulation into the 
Maxwell’s equations results in the following wave equation for the envelope function

for time-harmonic and eigenfrequency problems. The wave number k is defined by

,

where n is the refractive index and the wave number of free space k0 is defined as

.

Here c0 is the speed of light in vacuum.

When Wave Vectors are set to bidirectional, the electric field is defined as the sum of 
two fields

.

The second field adds an additional wave equation to solve

.

• Diffraction Order

• Perfect Electric Conductor

• Perfect Magnetic Conductor

• Periodic Condition

• Port

E r  E1 r  jk1 r– exp=

 jk1–   jk1–  E1  k2E1– 0=

k k0n=

k0  00

c0
-----= =

E r  E1 r  jk1 r– exp E2 r  jk2 r– exp+=

 jk2–  r
1–  jk2–  E2  k2E2– 0=
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When solving the equations as an eigenfrequency problem the eigenvalue is the 
complex eigenfrequency j, where  is the damping of the solution. The 
Q-factor is given from the eigenvalue by the formula

.

Initial Values

The Initial Values node adds initial values for the electric field envelopes for the first and 
second waves, which can serve as an initial guess for a nonlinear solver. Right-click to 
add additional Initial Values node from the Other menu.

D O M A I N  S E L E C T I O N

For a default node, the setting inherits the selection from the parent node, and cannot 
be edited; that is, the selection is automatically selected and is the same as for the 
interface. When nodes are added from the context menu, you can select Manual from 
the Selection list to choose specific domains or select All domains as required.

I N I T I A L  V A L U E S

Enter values or expressions for the initial values of the components of the Electric field 

envelope, first wave E1 and Electric field envelope, second wave E2 (SI unit: V/m). The 
default values are 0 V/m. The second wave is applicable if the Wave Vectors are 
bidirectional.

Electric Field

The Electric Field boundary condition

specifies the tangential component of the electric field. It should in general not be used 
to excite a model. Consider using the Port or Scattering Boundary Condition instead. 
It is provided mainly for completeness and for advanced users who can recognize the 
special modeling situations when it is appropriate to use. The commonly used special 

Qfact


2 
---------=

The settings for the Wave Equation, Beam Envelopes feature node are the 
same as Wave Equation, Electric.

n E n E0=
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case of zero tangential electric field is described in the Perfect Electric Conductor 
section.

B O U N D A R Y  O R  E D G E  S E L E C T I O N

From the Selection list, choose the geometric entity (boundaries or edges) to define.

P A I R  S E L E C T I O N

If this node is selected from the Pairs menu, choose the pair to define. An identity pair 
has to be created first. Ctrl-click to deselect.

E L E C T R I C  F I E L D

Enter the value or expression for the components of the Electric field, first wave E01 
(SI unit: V/m). When Wave Vectors is set to bidirectional, also set the Electric field, 

second wave E02.

C O N S T R A I N T  S E T T I N G S

To display this section, click the Show button ( ) and select Advanced Physics Options. 
To Apply reaction terms on all dependent variables, select All physics (symmetric). 
Otherwise, select Current physics (internally symmetric) or Individual dependent 

variables to restrict the reaction terms as required. Select the Use weak constraints check 
box to replace the standard constraints with a weak implementation.

Magnetic Field

The Magnetic Field node adds a boundary condition for specifying the tangential 
component of the magnetic field at the boundary:

B O U N D A R Y  S E L E C T I O N

From the Selection list, choose the boundaries to define.

Show More Physics Options

n H n H0=
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M A G N E T I C  F I E L D

Enter the value or expression for the components of the Magnetic field, first wave H01 
(SI unit: A/m). When Wave Vectors are set to bidirectional, also set the Magnetic field, 

second wave H02.

Scattering Boundary Condition

Use the Scattering Boundary Condition to make a boundary transparent for a scattered 
wave. The boundary condition is also transparent for an incoming plane wave. The 
scattered (outgoing) wave types for which the boundary condition is perfectly 
transparent are

The field E0 is the incident plane wave that travels in the direction k. The boundary 
condition is transparent for incoming (but not outgoing) plane waves with any angle 
of incidence. When Wave Vectors are set to unidirectional, the direction k is provided 
automatically from the wave vector k1 specified for the interface. When Wave Vectors 
are set to bidirectional, the user selects whether the direction k is provided from the 
wave vector for the first wave k1 or the wave vector for the second wave k2.

• For cylindrical waves, specify around which cylinder axis the waves are cylindrical. 
Do this by specifying one point at the cylinder axis and the axis direction.

• For spherical waves, specify the center of the sphere around which the wave is 
spherical.

• When Wave Vectors are set to bidirectional, specify which wave the specified input 
field is associated with.

E Esce
jk n r –

E0e
jk k r –

+= Plane scattered wave

E Esc
e

jk n r –

r
------------------------ E0e

jk k r –
+= Cylindrical scattered wave

E Esc
e

jk n r –

rs
------------------------ E0e

jk k r –
+= Spherical scattered wave

The boundary is only perfectly transparent for scattered (outgoing) waves 
of the selected type at normal incidence to the boundary. That is, a plane 
wave at oblique incidence is partially reflected and so is a cylindrical wave 
or spherical wave unless the wave fronts are parallel to the boundary.
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If the problem is solved for the eigenfrequency or 2D axisymmetric geometry, the 
boundary condition does not include the incident wave.

B O U N D A R Y  S E L E C T I O N

From the Selection list, choose the boundaries to define.

S C A T T E R I N G  B O U N D A R Y  C O N D I T I O N

When Wave Vectors is set to bidirectional, you specify with Input wave which wave the 
specified input electric field is associated with.

Select Incident field to specify whether the input wave is specified by the electric field 
(Wave given by E field) or the magnetic field (Wave given by H field).

Specify the Incident electric field E0 (SI unit: V/m) or Incident magnetic field H0 (SI 
unit: A/m), depending on the setting of Incident field.

Select a Wave type for which the boundary is absorbing—Spherical wave, Cylindrical 

wave, or Plane wave. 

• If Cylindrical wave is selected, also enter coordinates for the Source point ro 
(SI unit: m) and Source axis direction raxis (dimensionless).

• If Spherical wave is selected, enter coordinates for the Source point ro (SI unit: m).

Surface Current

The Surface Current boundary condition

specifies a surface current density at both exterior and interior boundaries. The current 
density is specified as a three-dimensional vector, but because it needs to flow along 
the boundary surface, COMSOL Multiphysics projects it onto the boundary surface 
and neglects its normal component. This makes it easier to specify the current density 

Esc Esce
jk n r –

= Plane scattered wave

Esc Esc
e

jk n r –

r
------------------------= Cylindrical scattered wave

Esc Esc
e

jk n r –

rs
------------------------= Spherical scattered wave

n H– Js=

n H1 H2–  Js=
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and avoids unexpected results when a current density with a component normal to the 
surface is given. 

B O U N D A R Y  S E L E C T I O N

From the Selection list, choose the boundaries to define.

P A I R  S E L E C T I O N

If this node is selected from the Pairs menu, choose the pair to define. An identity pair 
has to be created first. Ctrl-click to deselect.

S U R F A C E  C U R R E N T

Enter values or expressions for the components of the Surface current density, first wave 

Js01 (SI unit: A/m). When Wave Vectors are set to bidirectional, also specify the 
expression for the Surface current density, second wave Js02.
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Th eo r y  f o r  t h e  E l e c t r omagne t i c  
Wav e s  U s e r  I n t e r f a c e s

The Electromagnetic Waves, Frequency Domain User Interface, The Electromagnetic 
Waves, Beam Envelopes User Interface, and The Electromagnetic Waves, Transient 
User Interface theory is described in this section:

• Introduction to the User Interface Equations

• Frequency Domain Equation

• Time Domain Equation

• Vector Elements

• Eigenfrequency Calculations

Introduction to the User Interface Equations

Formulations for high-frequency waves can be derived from Maxwell-Ampère’s and 
Faraday’s laws,

Using the constitutive relations for linear materials DE and BH as well as a 
current JE, these two equations become

Frequency Domain Equation

Writing the fields on a time-harmonic form, assuming a sinusoidal excitation and linear 
media,

 H J D
t

-------+=

 E B
t

-------–=

 H E E
t

----------+=

 E  H
t

--------–=
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the two laws can be combined into a time harmonic equation for the electric field, or 
a similar equation for the magnetic field

The first of these, based on the electric field is used in The Electromagnetic Waves, 
Frequency Domain User Interface. 

Using the relation r = n2, where n is the refractive index, the equation can 
alternatively be written

 (3-1)

The wave number in vacuum k0 is defined by

where c0 is the speed of light in vacuum.

When the equation is written using the refractive index, the assumption is that r = 1 
and  = 0 and only the constitutive relations for linear materials are available. When 
solving for the scattered field the same equations are used but EEscEi and Esc is 
the dependent variable.

For the The Electromagnetic Waves, Beam Envelopes User Interface the electric field 
is written as a product of an envelope function E1 and a rapidly varying phase factor 
with a prescribed wave vector k1,

.

When inserting this expression into Equation 3-1, the following wave equation for the 
electric field envelope E1 is obtained

.  (3-2)

It is assumed that the envelope function E1 has a much slower spatial variation than 
the exponential phase factor. Thus, the mesh can be much coarser when solving 

E x y z t    E x y z  ejt
=

H x y z t    H x y z  ejt
=

  1–  E  2cE– 0=

 c
1–  H  2H– 0=

  E  k0
2n2E– 0=

k0  00

c0
-----= =

E r  E1 r  jk1 r– exp=

 jk1–   jk1–  E1  k0
2n2E1– 0=
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Equation 3-2 than when solving Equation 3-1. Thereby it is possible do simulation on 
domains that are much larger than the wavelength. Notice, however, that the 
assumption of a slowly varying envelope function is never implemented in 
Equation 3-2. Thus, the solution of Equation 3-2 is as exact as the solution of 
Equation 3-1.

E I G E N F R E Q U E N C Y  A N A L Y S I S

When solving the frequency domain equation as an eigenfrequency problem the 
eigenvalue is the complex eigenfrequency j, where  is the damping of the 
solution. The Q-factor is given from the eigenvalue by the formula

M O D E  A N A L Y S I S  A N D  B O U N D A R Y  M O D E  A N A L Y S I S

In mode analysis and boundary mode analysis COMSOL Multiphysics solves for the 
propagation constant. The time-harmonic representation is almost the same as for the 
eigenfrequency analysis, but with a known propagation in the out-of-plane direction

The spatial parameter, zj, can have a real part and an imaginary part. The 
propagation constant is equal to the imaginary part, and the real part, z, represents 
the damping along the propagation direction. When solving for all three electric field 
components the allowed anisotropy of the optionally complex relative permittivity and 
relative permeability is limited to:

 

Qfact


2 
---------=

E r t  Re E
˜

rT ejt jz–  Re E
˜

r ejt z– = =

rc

rxx rxy 0

ryx ryy 0

0 0 rzz

= r

rxx rxy 0

ryx ryy 0

0 0 rzz

=

Limiting the electric field component solved for to the out-of-plane 
component for TE modes, requires that the medium is homogeneous, 
that is,  and  are constant. When solving for the in-plane electric field 
components for TM modes,  may vary but  must be constant. It is 
strongly recommended to use the most general approach, that is solving 
for all three components which is sometimes referred to as “perpendicular 
hybrid-mode waves”.
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Variables Influenced by Mode Analysis
The following table lists the variables that are influenced by the mode analysis:

P R O P A G A T I N G  WA V E S  I N  2 D

In 2D, the electric field varies with the out-of-plane wave number kz as (this 
functionality is not available for the The Electromagnetic Waves, Beam Envelopes User 
Interface)

.

The wave equation is thereby rewritten as

,

where z is the unit vector in the out-of-plane z-direction.

Similarly, in 2D axisymmetry, the electric field varies with the azimuthal mode number 
m as

and the wave equation is expressed as

,

where  is the unit vector in the out-of-plane -direction.

NAME EXPRESSION CAN BE COMPLEX DESCRIPTION

beta imag(-lambda) No Propagation constant

dampz real(-lambda) No Attenuation constant

dampzdB 20*log10(exp(1))*
dampz

No Attenuation per meter in dB

neff j*lambda/k0 Yes Effective mode index

In 2D, different polarizations can be chosen by selecting to solve for a 
subset of the 3D vector components. When selecting all three 
components, the 3D equation applies with the addition that out-of-plane 
spatial derivatives are evaluated for the prescribed out-of-plane wave 
vector dependence of the electric field.

E x y z   E
˜

x y  ikzz– exp=

 ikzz–  r
1–  ikzz–  E

˜
  k0

2rcE
˜

– 0=

E r  z   E
˜

r z  im– exp=

 im
r
-----– 

  r
1–  im

r
-----– 

  E
˜

 k0
2rcE

˜
– 0=
R  3 :  T H E  O P T I C S  B R A N C H



In-plane Hybrid-Mode Waves
Solving for all three components in 2D is referred to as “hybrid-mode waves”. The 
equation is formally the same as in 3D with the addition that out-of-plane spatial 
derivatives are evaluated for the prescribed out-of-plane wave vector dependence of the 
electric field

In-plane TM Waves
The TM waves polarization has only one magnetic field component in the z direction, 
and the electric field lies in the modeling plane. Thus the time-harmonic fields can be 
obtained by solving for the in-plane electric field components only. The equation is 
formally the same as in 3D, the only difference being that the out-of-plane electric field 
component is zero everywhere and that out-of-plane spatial derivatives are evaluated 
for the prescribed out-of-plane wave vector dependence of the electric field.

In-plane TE Waves
As the field propagates in the modeling xy-plane a TE wave has only one non zero 
electric field component, namely in the z direction. The magnetic field lies in the 
modeling plane. Thus the time-harmonic fields can be simplified to a scalar equation 
for Ez,

where

To be able to write the fields in this form, it is also required that r, , and r are non 
diagonal only in the xy-plane. r denotes a 2-by-2 tensor, and rzz and zz are the 
relative permittivity and conductivity in the z direction.

Axisymmetric Hybrid-Mode Waves
Solving for all three components in 2D is referred to as “hybrid-mode waves”. The 
equation is formally the same as in 3D with the addition that spatial derivatives with 
respect to  are evaluated for the prescribed azimuthal mode number dependence of 
the electric field.

Axisymmetric TM Waves
A TM wave has a magnetic field with only a  component and thus an electric field 
with components in the rz-plane only. The equation is formally the same as in 3D, the 
only difference being that the  component is zero everywhere and that spatial 

 ̃r Ez  rzzk0
2Ez–– 0=

̃r
r

T

det r 
-------------------=






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derivatives with respect to  are evaluated for the prescribed azimuthal mode number 
dependence of the electric field.

Axisymmetric TE Waves
A TE wave has only an electric field component in the  direction, and the magnetic 
field lies in the modeling plane. Given these constraints, the 3D equation can be 
simplified to a scalar equation for . To write the fields in this form, it is also required 
that r and r are non diagonal only in the rz-plane. r denotes a 2-by-2 tensor, and 

 and  are the relative permittivity and conductivity in the  direction.

I N T R O D U C I N G  L O S S E S  I N  T H E  F R E Q U E N C Y  D O M A I N

Electric Losses
The frequency domain equations allow for several ways of introducing electric losses. 
Finite conductivity results in a complex permittivity,

The conductivity gives rise to ohmic losses in the medium. 

A more general approach is to use a complex permittivity,

where ' is the real part of r, and all losses are given by ''. This dielectric loss model 
can be combined with a finite conductivity resulting in:

The complex permittivity may also be introduced as a loss tangent:

For the The Electromagnetic Waves, Beam Envelopes User Interface, the refractive 
index is the default electric displacement field model instead of the permittivity. In 
materials where r is 1, the relation between the complex refractive index





E

r  

c  j

----–=

c 0 ' j''– =

c 0 ' j 
0
--------- ''+ 
 – 

 =

c 0' 1 j tan– =

When specifying losses through a loss tangent, conductivity is not allowed 
as an input.
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and the complex relative permittivity is

that is

The inverse relations are

The parameter  represents a damping of the electromagnetic wave. When specifying 
the refractive index, conductivity is not allowed as an input.

Magnetic Losses
The frequency domain equations allow for magnetic losses to be introduced as a 
complex relative permeability.

The complex relative permeability may be combined with any electric loss model 
except refractive index.

n n j–=

rc n
2

=

'r n2 2
–=

''r 2n=

n2 1
2
--- 'r 'r

2 ''r
2

++ =

2 1
2
--- 'r– 'r

2 ''r
2

++ =

In the physics and optics literature, the time harmonic form is often 
written with a minus sign (and “i” instead of “j”):

This makes an important difference in how loss is represented by complex 
material coefficients like permittivity and refractive index, that is, by 
having a positive imaginary part rather than a negative one. Therefore, 
material data taken from the literature may have to be conjugated before 
using in a model.

E x y z t    E x y z  e i– t
=

r ' j''– =
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Time Domain Equation

The relations HA and EAt make it possible to rewrite 
Maxwell-Ampère’s law using the magnetic potential.

This is the equation used by The Electromagnetic Waves, Transient User Interface. It 
is suitable for the simulation of non-sinusoidal waveforms or non linear media.

Using the relation r = n2, where n is the refractive index, the equations can 
alternatively be written

WA V E S  I N  2 D

In-plane Hybrid-Mode Waves
Solving for all three components in 2D is referred to as “hybrid-mode waves”. The 
equation form is formally the same as in 3D with the addition that out-of-plane spatial 
derivatives are set to zero.

In-plane TM Waves
The TM waves polarization has only one magnetic field component in the z direction, 
and thus the electric field and vector potential lie in the modeling plane. Hence it is 
obtained by solving only for the in-plane vector potential components. The equation 
is formally the same as in 3D, the only difference being that the out-of-plane vector 
potential component is zero everywhere and that out-of-plane spatial derivatives are 
set to zero.

In-plane TE Waves
As the field propagates in the modeling xy-plane a TE wave has only one non zero 
vector potential component, namely in the z direction. The magnetic field lies in the 

0 t
A 0 t

 
t

A  r
1–  A + + 0=

00 t
 n2

t
A

 
    A + 0=

In 2D, different polarizations can be chosen by selecting to solve for a 
subset of the 3D vector components. When selecting all three 
components, the 3D equation applies with the addition that out-of-plane 
spatial derivatives are set to zero.
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modeling plane. Thus the equation in the time domain can be simplified to a scalar 
equation for Az:

Using the relation r = n2, where n is the refractive index, the equation can 
alternatively be written

When using the refractive index, the assumption is that r = 1 and  = 0 and only the 
constitutive relations for linear materials can be used.

Axisymmetric Hybrid-Mode Waves
Solving for all three components in 2D is referred to as “hybrid-mode waves”. The 
equation form is formally the same as in 3D with the addition that spatial derivatives 
with respect to  are set to zero.

Axisymmetric TM Waves
TM waves have a magnetic field with only a  component and thus an electric field 
and a magnetic vector potential with components in the rz-plane only. The equation 
is formally the same as in 3D, the only difference being that the  component is zero 
everywhere and that spatial derivatives with respect to  are set to zero.

Axisymmetric TE Waves
A TE wave has only a vector potential component in the  direction, and the magnetic 
field lies in the modeling plane. Given these constraints, the 3D equation can be 
simplified to a scalar equation for . To write the fields in this form, it is also required 
that r and r are non diagonal only in the rz-plane. r denotes a 2-by-2 tensor, and 

 and  are the relative permittivity and conductivity in the  direction.

Vector Elements

Whenever solving for more than a single vector component, it is not possible to use 
Lagrange elements for electromagnetic wave modeling. The reason is that they force 
the fields to be continuous everywhere. This implies that the interface conditions, 
which specify that the normal components of the electric and magnetic fields are 
discontinuous across interior boundaries between media with different permittivity 
and permeability, cannot be fulfilled. To overcome this problem, the Electromagnetic 

0 t
Az 00 t

 r t
Az

 
   r

1– Az  + + 0=

00 t
 n2

t
Az

 
   Az + 0=










A

r  
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Waves, Frequency Domain physics interface uses vector elements, which do not have 
this limitation.

The solution obtained when using vector elements also better fulfills the divergence 
conditions  · D0 and  · B0 than when using Lagrange elements.

Eigenfrequency Calculations

When making eigenfrequency calculations, there are a few important things to note:

• Nonlinear eigenvalue problems appear for impedance boundary conditions with 
nonzero conductivity and for scattering boundary conditions adjacent to domains 
with nonzero conductivity. Such problems have to be treated specially.

• Some of the boundary conditions, such as the surface current condition and the 
electric field condition, can specify a source in the eigenvalue problem. These 
conditions are available as a general tool to specify arbitrary expressions between the 
H field and the E field. Avoid specifying solution-independent sources for these 
conditions because the eigenvalue solver ignores them anyway.

Using the default parameters for the eigenfrequency study, it might find a large 
number of false eigenfrequencies, which are almost zero. This is a known consequence 
of using vector elements. To avoid these eigenfrequencies, change the parameters for 
the eigenvalue solver in the Study settings. Adjust the settings so that the solver 
searches for eigenfrequencies closer to the lowest eigenfrequency than to zero.
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Th eo r y  f o r  t h e  E l e c t r omagne t i c  
Wav e s ,  T ime Exp l i c i t  U s e r  I n t e r f a c e

The Electromagnetic Waves, Time Explicit User Interface theory is described in this 
section:

• The Equations

• In-plane E Field or In-plane H Field

• Fluxes as Dirichlet Boundary Conditions

The Equations

Maxwell’s equations are a set of equations, written in differential or integral form, 
stating the relationships between the fundamental electromagnetic quantities. These 
quantities are the:

• Electric field intensity E

• Electric displacement or electric flux density D

• Magnetic field intensity H

• Magnetic flux density B

• Current density J

• Electric charge density 

For general time-varying fields, the differential form of Maxwell’s equations can be 
written as

 (3-3)

The first two equations are also called Maxwell-Ampere’s law and Faraday’s law, 
respectively. Equation three and four are two forms of Gauss’ law, the electric and 
magnetic form, respectively. 

 H J D
t

-------+=

 E B
t

-------–=

 D =

 B 0=
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C O N S T I T U T I V E  R E L A T I O N S

To obtain a closed system of equations, the constitutive relations describing the 
macroscopic properties of the medium are included. These are given as

 (3-4)

Here 0 is the permittivity of a vacuum, 0 is the permeability of a vacuum, and  the 
electric conductivity of the medium. In the SI system, the permeability of a vacuum is 
chosen to be 4·107 H/m. The velocity of an electromagnetic wave in a vacuum is 
given as c0 and the permittivity of a vacuum is derived from the relation

The electric polarization vector P describes how the material is polarized when an 
electric field E is present. It can be interpreted as the volume density of electric dipole 
moments. P is generally a function of E. Some materials might have a nonzero P also 
when there is no electric field present.

The magnetization vector M similarly describes how the material is magnetized when 
a magnetic field H is present. It can be interpreted as the volume density of magnetic 
dipole moments. M is generally a function of H. Permanent magnets, for example, 
have a nonzero M also when there is no magnetic field present.

To get a wave equation for the E field, for example, take the curl of the second 
equation in Equation 3-3 (previously divided by 0), and insert it into the time 
derivative of the first row in Equation 3-3

this is referred as curl-curl formulation in the literature (second order time derivatives 
and second order space derivatives).

L I N E A R  M A T E R I A L S

In the simplest case linear materials, the polarization is directly proportional to the 
electric field, that is

 and 

D 0E P+=

B 0 H M+ =

J E=

0
1

c0
20

---------- 8.854 10 12–  F/m 1
36
--------- 10 9–  F/m= =

–
1
0
----- E M

t
--------+ 

   E
t

------- 0
2E
t2
---------- 2P

t2
----------+ +=

P E 0e= P 0eE=
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where e is the electric susceptibility (which can be a scalar or a second-rank tensor). 
Similarly, the magnetization is directly proportional to the magnetic field, or

 and 

where m is the magnetic susceptibility.

As a consequence, for linear materials, the constitutive relations in Equation 3-4 can 
be written as

Here, 0r and 0r are the permittivity and permeability of the material. The 
relative permittivity r and the relative permeability r are usually scalar properties but 
these can be second-rank symmetric (Hermitian) tensors for a general anisotropic 
material.

For general time-varying fields, Maxwell’s equations in linear materials described in 
Equation 3-3 can be simplified to Maxwell-Ampere's law and Faraday’s law:

 (3-5)

The electric conductivity  can also be a scalar or a second rank tensor. Another 
important assumption is that the relative permittivity r, the relative permeability r 
and the electric conductivity  might change with position and orientation 
(inhomogeneous or anisotropic materials) but not with time. 

F I R S T  O R D E R  I M P L E M E N T A T I O N  O F  M A X W E L L  E Q U A T I O N S

In order to accommodate Maxwell’s equations in the coefficients for the Wave Form 
PDE interface in the form

the curl of a vector is written in divergence form as

M H m= M mH=

D 0E P+ 0 1 e+ E 0rE= = =

B 0 H M+  0 1 m+ H 0rH= = =

 H E 0r
E
t

-------+=

 E 0r
H
t

--------–=

da t
u +  u  f=
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 (3-6)

where the divergence is applied on each row of the flux u.

Maxwell’s equations in 3D 

are then accommodated to the Wave Form PDE as

with the “mass” coefficients

 and 

the “flux” terms

 and 

and the “source” term fE.

T H E  L A X - F R I E D R I C H S  F L U X  P A R A M E T E R S

 u 

0 u3 u– 2

u– 3 0 u1

u2 u– 1 0

=

0r
E
t

-------  H– E–=

0r
H
t

--------  E+ 0=

dE
E
t

-------  E H + f=

dH
H
t

--------  H E + 0=

dE 0r= dH 0r=

E H 

0 h3 h– 2

h– 3 0 h1

h2 h– 1 0

–= H E 

0 e3 e– 2

e– 3 0 e1

e2 e– 1 0

=

When using SI units (or other) for the electromagnetic fields and material 
properties, the Lax-Friedrichs Flux Parameter are not dimensionless, and 
must have units of E1/(2Z) for Ampere’s law, and HZ/2 for 
Faraday’s law, where Z is the impedance of the medium.
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In-plane E Field or In-plane H Field

In the general case, in 2D and 2D axisymmetric, solving for three variables for each 
field is still required. The “in-plane H” or “in-plane E” assumption simplifies the 
problem to only three dependent variables.

T M  WA V E S  I N  2 D

For TM waves in 2D, solve for an in-plane electric field vector and one out-of-plane 
variable for the magnetic field. Maxwell’s equations then read

 (3-7)

with the flux terms

 and  (3-8)

The divergence on EH is applied row-wise. The conductivity and permittivity 
tensors  and r represent in-plane material properties, while the relative permeability 
r is an out-of-plane scalar property.

The default Lax-Friedrichs flux parameters are E1/(2Z) for Ampere law, and the 
scalar HZ/2 for Faraday’s law, where Z is the impedance of a vacuum.

T E  WA V E S  I N  2 D

For TE waves in 2D, solve for an in-plane magnetic field vector and one out-of-plane 
variable for the electric field. Maxwell’s equations then read

 (3-9)

with the flux terms

 and  (3-10)

0r
E
t

-------  E H +  E–=

0r
H
t

--------  H E + 0=

E H 
0 h– 3

h3 0
= H E  e2 e– 1=

0r
E
t

-------  E H + E–=

0r
H
t

--------  H E + 0=

E H  h– 2 h1= H E 
0 e3

e– 3 0
=
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The divergence of HE is applied row-wise. The tensor of relative permeability r 
represents in-plane material properties, while the relative permittivity r and 
conductivity  are out-of-plane scalar properties.

The default Lax-Friedrichs flux parameters are E1/(2Z) for Ampere law, and two 
scalar HZ/2 for Faraday’s law, where Z is the impedance of a vacuum.

Fluxes as Dirichlet Boundary Conditions

Consider Maxwell’s equations in 3D 

with the flux terms

 and 

and the divergence on EH and HE applied row-wise.

For Ampere’s law, the normal to the flux term on exterior boundaries reads

and for Faraday’s law

which means that normal fluxes on external boundaries can only prescribe tangential 
components for the fields.

B O U N D A R Y  C O N D I T I O N S

The boundary conditions for outer boundaries are computed from the normal fluxes 
n·HE and n·EH.

• Perfect electric conductor , or zero tangential components for E, is 
obtained by setting n·HE0.

0r
E
t

-------  E H + E–=

0r
H
t

--------  H E + 0=

E H 

0 h– 3 h2

h3 0 h– 1

h– 2 h1 0

= H E 

0 e3 e– 2

e– 3 0 e1

e2 e– 1 0

=

n E H  n– H=

n H E  n E=

n E 0=
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• Perfect magnetic conductor , or zero tangential components for H, is 
obtained by prescribing .

• Electric field , or n·HEn×E0.

• Magnetic field , or n·EHn×H0.

• For external boundaries, the surface currents BC means , or 
n·EHJs.

A B S O R B I N G  B O U N D A R Y  C O N D I T I O N

A simple absorbing boundary can be implemented by setting .

n H 0=

n  E H  0=

n E n E0=

n H n H0=

n H Js=

n E ZH=
T H E O R Y  F O R  T H E  E L E C T R O M A G N E T I C  W A V E S ,  T I M E  E X P L I C I T  U S E R  I N T E R F A C E  |  145
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 4
G l o s s a r y  
This Glossary of Terms contains finite element modeling terms in an 
electromagnetic waves context. For mathematical terms as well as geometry and 
CAD terms specific to the COMSOL Multiphysics® software and documentation, 
please see the glossary in the COMSOL Multiphysics Reference Manual. For 
references to more information about a term, see the index.
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absorbing boundary   A boundary that lets an electromagnetic wave propagate through 
the boundary without reflections.

anisotropy   Variation of material properties with direction.

constitutive relation   The relation between the D and E fields and between the B and 
H fields. These relations depend on the material properties.

cutoff frequency   The lowest frequency for which a given mode can propagate 
through, for example, a waveguide or optical fiber.

edge element   See vector element.

eigenmode   A possible propagating mode of, for example, a waveguide or optical fiber.

electric dipole   Two equal and opposite charges +q and q separated a short distance 
d. The electric dipole moment is given by p = qd, where d is a vector going from q 
to +q.

gauge transformation   A variable transformation of the electric and magnetic potentials 
that leaves Maxwell’s equations invariant.

magnetic dipole   A small circular loop carrying a current. The magnetic dipole 
moment is m = IAe, where I is the current carried by the loop, A its area, and e a unit 
vector along the central axis of the loop.

Maxwell’s equations    A set of equations, written in differential or integral form, stating 
the relationships between the fundamental electromagnetic quantities.

Nedelec’s edge element   See vector element.

perfect electric conductor (PEC)   A material with high electrical conductivity, modeled 
as a boundary where the electric field is zero.

perfect magnetic conductor   A material with high permeability, modeled as a boundary 
where the magnetic field is zero.
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phasor   A complex function of space representing a sinusoidally varying quantity.

quasi-static approximation   The electromagnetic fields are assumed to vary slowly, so 
that the retardation effects can be neglected. This approximation is valid when the 
geometry under study is considerably smaller than the wavelength.

surface current density   Current density defined on the surface. The component 
normal to the surface is zero. The unit is A/m.

vector element   A finite element often used for electromagnetic vector fields. The 
tangential component of the vector field at the mesh edges is used as a degree of 
freedom. Also called Nedelec’s edge element or just edge element.
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wave equations 73

2D axisymmetry

wave equations 73

2D modeling techniques 15–16

3D modeling techniques 16

A advanced settings 7

anisotropic materials 50

antiperiodicity, periodic boundaries and 

41

applying electromagnetic sources 18

axisymmetric models 16

axisymmetric waves theory 133, 137

B Bloch-Floquet periodicity 95

boundary conditions

nonlinear eigenfrequency problems 

and 62

perfect electric conductor 80

perfect magnetic conductor 81

periodic 41

theory 52

using efficiently 17

boundary nodes

electromagnetic waves, beam enve-

lopes 121

electromagnetic waves, frequency do-

main interface 70

electromagnetic waves, time explicit 

109

electromagnetic waves, transient 102

boundary selection 8

C calculating

S-parameters 60

Cartesian coordinates 15

circular port reference axis (node) 86

complex permittivity, electric losses and 

134

complex relative permeability, magnetic 

losses and 135

consistent stabilization settings 8

constitutive relations 140

constitutive relations, theory 47–48

constraint settings 8

continuity, periodic boundaries and 41

coordinate system selection 8

curl-curl formulation 140

cylindrical coordinates 16

cylindrical waves 91, 126

D Debye dispersion model 76

dielectric medium theory 52

diffraction order (node) 87

discretization 7

dispersive materials 50

documentation 9

domain nodes

electromagnetic waves, beam enve-

lopes 121

electromagnetic waves, frequency do-

main interface 70

electromagnetic waves, time explicit 

109

domain selection 8

Drude-Lorentz dispersion model 75

E E (PMC) symmetry 43

edge current (node) 97

edge nodes

electromagnetic waves, beam enve-

lopes 121

edge selection 8

eigenfrequency analysis 61
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eigenfrequency calculations theory 138

eigenfrequency study 131

eigenvalue (node) 62

electric current density (node) 112

electric field (node) 89, 113, 124

electric losses theory 134

electric point dipole (node) 97

electric scalar potential 48

electric susceptibility 141

electrical conductivity 47

electromagnetic energy theory 49

electromagnetic quantities 65

electromagnetic sources, applying 18

electromagnetic waves, beam envelopes 

interface 118

electromagnetic waves, frequency do-

main interface 68

theory 129

electromagnetic waves, time explicit in-

terface 107

theory 139

electromagnetic waves, transient inter-

face 100

theory 129

emailing COMSOL 11

equation view 7

expanding sections 7

exponential filter, for wave problems 110

external current density (node) 77

F far field variables 44

Faraday’s law 139

far-field calculation (node) 78

far-field calculations 43, 57

far-field domain (node) 78

far-field variables 43

file, Touchstone 70, 121

Floquet periodicity 41, 95

flux/source (node) 117

free-space variables 72, 123

frequency domain equation 129

G Gauss’ law 139

geometric entity selection 8

H H (PEC) symmetry 43

hide button 7

hybrid-mode waves

in-plane 133, 136–137

perpendicular 131

I impedance boundary condition (node) 

92

inconsistent stabilization settings 8

inhomogeneous materials 50

initial values (node)

electromagnetic waves, beam enve-

lopes 124

electromagnetic waves, frequency do-

main interface 77

electromagnetic waves, transient 106

in-plane TE waves theory 133, 136

in-plane TM waves 133

inports 83

Internet resources 9

K knowledge base, COMSOL 11

L line current (out-of-plane) (node) 98

linearization point 62

listener ports 83

losses, electric 134

losses, magnetic 135

low-reflecting boundary (node) 116

M magnetic current (node) 96

magnetic current density (node) 113

magnetic field (node) 90, 114, 125

magnetic losses theory 135

magnetic point dipole (node) 98

magnetic scalar potential 49



magnetic susceptibility 48, 141

material properties 50–51

Maxwell’s equations 46

Maxwell-Ampere’s law 139

mesh resolution 18

mode analysis 63, 131

Model Library 10

Model Library examples

diffraction order 88

Drude-Lorentz dispersion model 77

far-field calculations 43, 45

line current (out-of-plane) 99

perfect magnetic conductor 82

periodic boundary condition 96

periodic boundary conditions 41

port 86

modeling tips 14

MPH-files 10

N nonlinear materials 50

numeric modes 83

O override and contribution 7–8

P pair nodes

electromagnetic waves, beam enve-

lopes 121

pair selection 9

PEC. see perfect electric conductor

perfect conductors theory 52

perfect electric conductor (node) 114

boundaries 79

perfect magnetic conductor (node) 81, 

115

periodic boundary conditions 41

periodic condition (node) 95

periodic port reference point (node) 88

permeability

anisotropic 131

permeability of vacuum 47

permittivity

anisotropic 131

permittivity of vacuum 47

phasors theory 52

PMC. see perfect magnetic conductor

point nodes

electromagnetic waves, beam enve-

lopes 121

point selection 8

polarization, 2D and 2D axisymmetry 16

port (node) 82

port boundary conditions 60

potentials theory 48

Poynting’s theorem 49

Q quality factor (Q-factor) 61, 131

R refractive index 73

refractive index theory 134

relative electric field 42

relative permeability 48

relative permittivity 48

S scattered fields, definition 42

scattering boundary condition (node) 90, 

126

scattering parameters. see S-parameters

selecting

mesh resolution 18

solver sequences 19

study types 3, 5

Sellmeier dispersion model 76

settings windows 7

show button 7

SI units 65

skin effect, meshes and 18

solver sequences, selecting 19

space dimensions 4, 15

S-parameter calculations

electric field and 59
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theory 54

spherical waves 91, 126

stabilization settings 8

study types 3

boundary mode analysis 83

eigenfrequency 61, 131

frequency domain 129

mode analysis 63, 131

surface charge density 52

surface current (node) 93, 127

surface current density (node) 115

symbols for electromagnetic quantities 

65

symmetry in E (PMC) or H (PEC) 43

symmetry planes, far-field calculations 43

symmetry, axial 16

T TE axisymmetric waves theory 133, 137

TE waves theory 56

technical support, COMSOL 11

TEM waves theory 56

theory

constitutive relations 47–48

dielectrics and perfect conductors 52

electric and magnetic potentials 48

electromagnetic energy 49

electromagnetic waves 129

electromagnetic waves, time explicit 

interface 139

far-field calculations 57

Maxwell equations 46

phasors 52

S-parameters 54

surface charges 52

time domain equation, theory 136

TM waves

axisymmetric 129

TM waves theory 56

Touchstone file 70, 121

transition boundary condition (node) 94

TW axisymmetric waves theory 133, 137

U units, SI 65

user community, COMSOL 11

V variables

eigenfrequency analysis and 61

far-field 43

for far fields 44

mode analysis 63, 132

S-parameters 60

vector elements theory 137

W wave equation, beam envelopes (node) 

123

wave equation, electric (node) 72, 104

wave equations (node) 109

wave excitation 83

wave impedance theory 56

wave number, free-space 72, 123

wavelength, meshes and 19

weak constraint settings 8

web sites, COMSOL 11


	Contents
	Chapter 1: Introduction
	About the Wave Optics Module 2
	Overview of the User’s Guide 12

	Chapter 2: Wave Optics Modeling
	Preparing for Wave Optics Modeling 14
	Simplifying Geometries 15
	An Example — A Directional Coupler 20
	Periodic Boundary Conditions 41
	Scattered Field Formulation 42
	Modeling with Far-Field Calculations 43
	Maxwell’s Equations 46
	Special Calculations 54
	S-Parameters and Ports 59
	Lossy Eigenvalue Calculations 61
	Electromagnetic Quantities 65

	Chapter 3: The Optics Branch
	The Electromagnetic Waves, Frequency Domain User Interface 68
	The Electromagnetic Waves, Transient User Interface 100
	The Electromagnetic Waves, Time Explicit User Interface 107
	The Electromagnetic Waves, Beam Envelopes User Interface 118
	Theory for the Electromagnetic Waves User Interfaces 129
	Theory for the Electromagnetic Waves, Time Explicit User Interface 139

	Chapter 4: Glossary
	Glossary of Terms 148


	Introduction
	About the Wave Optics Module
	About the Wave Optics Module
	What Problems Can You Solve?
	The Wave Optics Module Physics Guide
	Selecting the Study Type
	Comparing the Time Dependent and Frequency Domain Studies
	comparing the electromagnetic waves, frequency domain and the electromagnetic waves, beam envelopes interfaces

	The Wave Optics Module Modeling Process
	Even after a model is defined, you can edit input data, equations, boundary conditions, geometry—the equations and boundary conditions are still available through associative geometry—and mesh settings. You can restart the solver, for example, us...
	Show More Physics Options
	Other Common Settings

	Where Do I Access the Documentation and Model Library?
	The Documentation
	The Model Library
	Contacting COMSOL by Email
	COMSOL WebSites


	Overview of the User’s Guide
	Modeling with the Wave optics Module
	optics


	Wave Optics Modeling
	Preparing for Wave Optics Modeling
	Simplifying Geometries
	2D Models
	Cartesian Coordinates
	Axial Symmetry (Cylindrical Coordinates)
	Polarization in 2D

	3D Models
	Using Efficient Boundary Conditions
	Applying Electromagnetic Sources
	Meshing and Solving
	Solvers
	In most cases the solver sequence generated by COMSOL Multiphysics can be used. The choice of solver is optimized for the typical case for each physics interface and study type in this module. However, in special cases tuning the solver settings may ...


	An Example — A Directional Coupler
	Introduction
	Model Definition
	Results and Discussion
	Reference
	Modeling Instructions
	Model Wizard
	Global Definitions
	Geometry 1
	Definitions
	Materials
	Electromagnetic Waves, Beam Envelopes
	Mesh 1
	Study 1
	Results
	Study 1
	Results
	Electromagnetic Waves, Beam Envelopes
	Study 1
	Results


	Periodic Boundary Conditions
	Scattered Field Formulation
	Scattered Fields Setting

	Modeling with Far-Field Calculations
	Far-Field Support in the Electromagnetic Waves, Frequency Domain User Interface
	The Far Field Plots

	Maxwell’s Equations
	Introduction to Maxwell’s Equations
	Constitutive Relations
	Generalized Constitutive Relations

	Potentials
	Electromagnetic Energy
	Material Properties
	Material Properties and the Material Browser

	Boundary and Interface Conditions
	Interface Between a Dielectric and a Perfect Conductor

	Phasors

	Special Calculations
	S-Parameter Calculations
	S-Parameters in Terms of Power Flow
	Power Flow Normalization

	Far-Field Calculations Theory
	References

	S-Parameters and Ports
	S-Parameters in Terms of Electric Field
	S-Parameter Calculations: Ports
	S-Parameter Variables
	Port Sweeps and Touchstone Export

	Lossy Eigenvalue Calculations
	Eigenfrequency Analysis
	Variables Affected by Eigenfrequency Analysis
	Nonlinear Eigenfrequency Problems

	Mode Analysis
	Variables Influenced by Mode Analysis


	Electromagnetic Quantities

	The Optics Branch
	The Electromagnetic Waves, Frequency Domain User Interface
	Interface Identifier
	Domain Selection
	Settings
	Electric Field Components Solved For
	Out-of-Plane Wave Number
	Port Sweep Settings
	Discretization
	Dependent Variables
	Domain, Boundary, Edge, Point, and Pair Nodes for the Electromagnetic Waves, Frequency Domain Interface
	Domain
	Boundary Conditions
	Edge, Point, and Pair

	Wave Equation, Electric
	Domain Selection
	Model Inputs
	Material Type
	Coordinate System Selection
	Electric Displacement Field
	Magnetic Field
	Conduction Current

	Initial Values
	Domain Selection
	Initial Values

	External Current Density
	Domain Selection
	Material Type
	Coordinate System Selection
	External Current Density

	Far-Field Domain
	Domain Selection

	Far-Field Calculation
	Boundary Selection
	Far-Field Calculation

	Perfect Electric Conductor
	Boundary or Edge Selection
	Pair Selection
	Constraint Settings

	Perfect Magnetic Conductor
	Boundary Selection
	Pair Selection

	Port
	Boundary Selection
	Pair Selection
	Port Properties
	Port Mode Settings

	Circular Port Reference Axis
	Point Selection

	Diffraction Order
	Boundary Selection
	Port Properties
	Port Mode Settings

	Periodic Port Reference Point
	Point Selection

	Electric Field
	Boundary or Edge Selection
	Pair Selection
	Electric Field
	Constraint Settings

	Magnetic Field
	Boundary Selection
	Pair Selection
	Magnetic Field

	Scattering Boundary Condition
	Boundary Selection
	Scattering Boundary Condition

	Impedance Boundary Condition
	Boundary Selection
	Impedance Boundary Condition

	Surface Current
	Boundary Selection
	Pair Selection
	Surface Current

	Transition Boundary Condition
	Boundary Selection
	Transition Boundary Condition

	Periodic Condition
	Boundary Selection
	Periodicity Settings
	Constraint Settings

	Magnetic Current
	Edge or Point Selection
	Magnetic Current

	Edge Current
	Edge Selection
	Edge Current

	Electric Point Dipole
	Point Selection
	Dipole Specification
	Dipole Parameters

	Magnetic Point Dipole
	Point Selection
	Dipole Specification
	Dipole Parameters

	Line Current (Out-of-Plane)
	Point Selection
	Line Current (Out-of-Plane)


	The Electromagnetic Waves, Transient User Interface
	Interface Identifier
	Domain Selection
	Components
	Discretization
	Dependent Variables
	Domain, Boundary, Edge, Point, and Pair Nodes for the Electromagnetic Waves, Transient User Interface
	Domain
	Boundary Conditions
	Edge, Point, and Pair

	Wave Equation, Electric
	Domain Selection
	Model Inputs
	Material Type
	Coordinate System Selection
	Electric Displacement Field
	Magnetic Field
	Conduction Current

	Initial Values
	Domain Selection
	Initial Values


	The Electromagnetic Waves, Time Explicit User Interface
	Interface Identifier
	Domain Selection
	Components
	Discretization
	Dependent Variables
	Domain, Boundary, and Pair Nodes for the Electromagnetic Waves, Time Explicit User Interface
	Wave Equations
	Domain Selection
	Material Type
	Coordinate System Selection
	Material Properties
	Numerical parameters
	Filter Parameters

	Initial Values
	Domain Selection
	Coordinate System Selection
	Initial Values

	Electric Current Density
	Domain Selection
	Material Type
	Coordinate System Selection
	Electric Current Density

	Magnetic Current Density
	Domain Selection
	Material Type
	Coordinate System Selection
	Magnetic Current Density

	Electric Field
	Boundary Selection
	Material Type
	Coordinate System Selection
	Electric Field

	Perfect Electric Conductor
	Boundary Selection
	Material Type

	Magnetic Field
	Boundary Selection
	Material Type
	Coordinate System Selection
	Magnetic Field

	Perfect Magnetic Conductor
	Boundary Selection
	Material Type

	Surface Current Density
	Boundary Selection
	Material Type
	Coordinate System Selection
	Surface Current

	Low Reflecting Boundary
	Boundary Selection
	Material Type
	Coordinate System Selection
	Impedance

	Flux/Source
	Boundary Selection
	Material Type
	Coordinate System Selection
	Boundary Flux/Source


	The Electromagnetic Waves, Beam Envelopes User Interface
	Interface Identifier
	Domain Selection
	Components
	Wave Vectors
	Port Sweep Settings
	Discretization
	Dependent Variables
	Domain, Boundary, Edge, and Point Nodes for the Electromagnetic Waves, Beam Envelopes Interface
	Domain
	Boundary Conditions

	Wave Equation, Beam Envelopes
	Initial Values
	Domain Selection
	Initial Values

	Electric Field
	Boundary or Edge Selection
	Pair Selection
	Electric Field
	Constraint Settings

	Magnetic Field
	Boundary Selection
	Magnetic Field

	Scattering Boundary Condition
	Boundary Selection
	Scattering Boundary Condition

	Surface Current
	Boundary Selection
	Pair Selection
	Surface Current


	Theory for the Electromagnetic Waves User Interfaces
	Introduction to the User Interface Equations
	Frequency Domain Equation
	Eigenfrequency Analysis
	Mode Analysis and Boundary Mode Analysis
	Propagating Waves in 2D
	Introducing Losses in the Frequency Domain

	Time Domain Equation
	Waves in 2D

	Vector Elements
	Eigenfrequency Calculations

	Theory for the Electromagnetic Waves, Time Explicit User Interface
	The Equations
	Constitutive Relations
	Linear Materials
	First order Implementation of Maxwell Equations
	The Lax-Friedrichs Flux Parameters

	In-plane E Field or In-plane H Field
	TM Waves in 2D
	TE Waves in 2D

	Fluxes as Dirichlet Boundary Conditions
	Boundary Conditions
	Absorbing Boundary Condition



	Glossary
	Glossary of Terms

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W




