

COMSOL Multiphysics®

User's Guide

COMSOL Multiphysics User's Guide

© 1998–2012 COMSOL

Protected by U.S. Patents 7,519,518; 7,596,474; and 7,623,991. Patents pending.

This Documentation and the Programs described herein are furnished under the COMSOL Software License Agreement (www.comsol.com/sla) and may be used or copied only under the terms of the license agreement.

COMSOL, COMSOL Desktop, COMSOL Multiphysics, and LiveLink are registered trademarks or trademarks of COMSOL AB. Other product or brand names are trademarks or registered trademarks of their respective holders.

Version:

May 2012

COMSOL 4.3

Contact Information

Visit www.comsol.com/contact for a searchable list of all COMSOL offices and local representatives. From this web page, search the contacts and find a local sales representative, go to other COMSOL websites, request information and pricing, submit technical support queries, subscribe to the monthly eNews email newsletter, and much more.

If you need to contact Technical Support, an online request form is located at www.comsol.com/support/contact.

Other useful links include:

- Technical Support www.comsol.com/support
- Software updates: www.comsol.com/support/updates
- Online community: www.comsol.com/community
- Events, conferences, and training: www.comsol.com/events
- Tutorials: www.comsol.com/products/tutorials
- Knowledge Base: www.comsol.com/support/knowledgebase

Part No. CM020002

Contents

Chapter I: Introduction

About COMSOL Multiphysics	34
The COMSOL Modules	37
AC/DC Module	. 38
Acoustics Module	. 39
Batteries & Fuel Cells Module	. 40
CFD Module	. 41
Chemical Reaction Engineering Module	. 42
Corrosion Module	. 43
Geomechanics Module	. 44
Heat Transfer Module	. 45
MEMS Module	. 45
Microfluidics Module	. 46
Nonlinear Structural Materials Module	. 47
Optimization Module	. 47
Particle Tracing Module	. 48
Pipe Flow Module	. 49
Plasma Module	. 51
RF Module	. 52
Structural Mechanics Module	. 53
Subsurface Flow Module	. 54
CAD Import and LiveLink Connections	. 55
LiveLink for MATLAB	. 56
Overview of the User's Guide	57
The COMSOL Documentation Set	61
Where Do I Access the Documentation and Model Library?	. 62
Checking for Software Updates	. 63
Typographical Conventions	. 64

Chapter 2: The COMSOL Modeling Environment

The COMSOL Desktop Environment	68
Introduction	68
Changing the COMSOL Desktop Layout	69
Moving Between Windows and Sections on the COMSOL Desktop $\ . \ . \ .$	70
Changing the COMSOL Desktop Language	71
Printing from the COMSOL Desktop	72
The Main Menu and Toolbar	73
Introduction to the Model Wizard and the Model Builder	76
The Model Wizard	76
Basic Steps to Build a Model	79
The Model Builder Window	80
About Sequencing in COMSOL Multiphysics	84
Opening a Context Menu to Add Nodes	85
Moving Nodes in the Model Tree	87
Going to the Source Node	88
Copying, Pasting, and Duplicating Nodes	88
Expanding and Collapsing All Nodes	90
Undoing and Redoing Operations	90
Clearing All Meshes and Clearing all Solutions	90
Sorting Nodes by Space Dimension and Type	91
Introduction to the COMSOL Windows	95
The Node Settings Windows	95
The Graphics Window	96
Plot Windows	97
The Messages Window	97
The Progress Window.	98
The Log Window	98
The Results Window	99
The Help Window	100
	106
The Material Browser Window	108
The External Process Window.	108
Errors and Warnings	109

The About COMSOL Multiphysics Box	110
Keyboard Shortcuts	
Key to the Nodes and Toolbar Buttons	113

Chapter 3: Global and Local Definitions

About Global and Local Definitions 12	20
Global Definitions	20
Local Definitions	21
Load Group	22
Constraint Group	23
About Building Expressions	23
Operators, Functions, and Variables Reference	25
Unary and Binary Operators	26
Special Operators	26
Mathematical Functions	41
Physical Constants	43
Reference	44
Global Parameters	45
About the Global Parameters	45
Defining, Saving, or Importing Global Parameters	45
Loading Parameters from a Text File	46
Variables 14	47
About Global and Local Variables	47
Predefined Physics Interface Variables	49
Variable Naming Convention and Scope	50
Variable Classification and Geometric Scope	51
Specifying Varying Coefficients and Material Properties	52
Variables for Time, Frequency, and Eigenvalues	53
Geometric Variables	55
Shape Function Variables	60

Solver Variables
Entering Ranges and Vector-Valued Expressions
Adding Global Variables to the Model Builder
Adding Local Variables to Individual Models
Assigning Geometric Scope to a Variable
Adding Variable Definitions
Editing Variable Definitions
Saving Variable Definitions to a Text File
Loading Variable Definitions from a Text File
Summary of Common Predefined Variables
Global and Local Functions 170
About Global and Local Functions
Analytic Functions
Elevation Functions
External Functions (Global Only)
Gaussian Pulse Functions
Image Functions
Interpolation Functions
MATLAB Functions (Global Only)
Piecewise Functions
Ramp Functions
Random Functions
Rectangle Functions
Step Functions
Triangle Functions
Waveform Functions
Specifying Discontinuous Functions
Model Couplings 195
About Model Couplings and Coupling Operators
About Extrusion Model Coupling and Operators.
About Projection Model Couplings and Operators
About Scalar Model Couplings and Operators
Defining a General Extrusion Model Coupling
Defining a Linear Extrusion Model Coupling
Defining a Boundary Similarity Model Coupling
Defining One-Point, Two-Point, or Edge Maps (3D)

Defining an Identity Mapping Model Coupling
Defining a General Projection Model Coupling
Defining a Linear Projection Model Coupling
Defining an Integration Model Coupling
Defining an Average Model Coupling
Defining Maximum and Minimum Model Couplings
Coordinate Systems 224
About Coordinate Systems
About Base Vector Coordinate Systems
Defining a Base Vector System
About Boundary Coordinate Systems
Defining a Boundary System
About Cylindrical Coordinate Systems
Defining a Cylindrical System
About Mapped Coordinate Systems
Defining a Mapped System
About Rotated Coordinate Systems
Defining a Rotated System
About Spherical Coordinate Systems
Defining a Spherical System
About Scaling Coordinate Systems
Defining a Scaling System
About Infinite Element Domains and Perfectly Matched Layers 238
Identity and Contact Pairs 244
About Pairs
Identity Pairs
Contact Pairs
Probes 249
About Probes
Domain Probes, Boundary Probes, and Edge Probes
Defining a Domain Point Probe and Adding a Point Probe Expression
Defining a Boundary Point Probe and Adding a Point Probe Expression . 254
Global Variable Probes

Chapter 4: Visualization and Selection Tools

Working with Geometry	258
About Using Geometry in COMSOL Multiphysics	258
About Geometric Entities	259
About Selecting Geometric Entities	261
The Graphics Toolbar Buttons	263
Using the Selection List Window	266
Selecting and Deselecting Geometric Entities	269
Zooming In and Out in the Graphics Window	274
Changing Views in the Graphics Window	274
Moving Around and Rotating 3D Geometry in the Graphics Window . $% \mathcal{A}_{\mathrm{S}}$.	275
Lighting, Transparency, and Wireframe Rendering	276
Hiding and Showing Geometric Entities	277
User-Defined Selections	279
About the Selections Node	279
Opening an Example Model	281
Creating User-Defined Selection Nodes	282
Defining an Explicit Selection Node	283
Defining a Boolean Selection Node	285
Defining an Adjacent Selection Node	286
Defining a Box or Ball Selection Node	287
Duplicating a Selection Node from the Definitions Node Level	288
Creating a Selection Node from the Selection List Window	288
Creating a Selection Node from a Settings Window	289
Creating Selections From Geometric Primitives and Features	290
Pasting Selections	291
User-Defined Views	292
The View Nodes	292
Editing the 2D View and Axis Nodes	293
About 3D Views	294
About the 3D View Light Sources and Attributes	295
Editing the 3D View Node	301
Editing the 3D View Camera Node	302
Editing the 3D View Light Source Nodes	303

Hiding Geometry Objects and Geometric Entities in a View	•	•	•		•	306
--	---	---	---	--	---	-----

308

Capturing and Copying Screenshots

Chapter 5: Geometry Modeling and CAD Tools

Creating a Geometry for Successful Analysis	312
Working with the Geometry Sequence	314
Adding a Model Geometry	314
Adding and Building Nodes	314
Editing Nodes	316
The Current Node	317
Errors and Warnings	318
The COMSOL Multiphysics Geometry and CAD Environment	320
Overview of Geometry Modeling Concepts	321
Geometric Primitives	322
General Geometry Features	324
Boolean Operations	325
Geometry Object Transforms	326
Geometry Object Conversions	326
The Geometry Toolbar Buttons	327
Selecting the Space Dimension for the Model Geometry	331
About Selecting the Space Dimension and Coordinate System	333
Creating Composite Geometry Objects	335
Adding Affine Transformations to Geometry Objects	336
Creating an Array of Identical Geometry Objects	338
Copying and Pasting Geometry Objects	338
Converting Geometry Objects	340
Editing 2D Geometry Objects	341
Splitting Geometry Objects	344
Deleting Objects, Entities, and Sequences	345
Creating 3D Geometries From 2D Work Planes and 3D Faces	345
Drawing on the 2D Work Plane in 3D	346
Finalizing the Geometry	350

Removing Interior Boundaries	351
Creating a ID Geometry Model	352
Creating a 2D Geometry Model	353
Creating a 3D Geometry Model	363
Creating 3D Geometries Using the Model Builder	363
Using Virtual Geometry Operations	375
Virtual Geometry Operations	375
Importing a Virtual Geometry	376
Example 1: Forming Composite Edge and Face by Ignoring Vertex and	
Edges	376
Example 2: Merging Vertices by Collapsing Edge	382

Chapter 6: Materials

Materials Overview	388
About the Material Databases	388
About Using Materials in COMSOL	390
Opening the Material Browser	393
Using Material Properties	394
About the Material Browser	395
The Material Browser Window	396
The Material Page	397
Errors Relating to the Material Nodes	40 I
Property Groups	402
Adding Predefined Materials	405
Working in the Material Browser	405
Working on the Material Page	406
Customizing the Appearance of a Material in the Graphics Window $\ . \ .$	409
Working on the Property Group Page	412
Adding a User-Defined Property Group	413

User-Defined Materials and Libraries	414
Adding User-Defined Materials to a Model	414
Adding an External Material Library	415
Creating Your Own User-Defined Libraries	415
Restoring a Deleted User-Defined Library	417
Material Properties Reference	418
About the Output Materials Properties	418
Model Input Properties	423
Predefined Built-In Materials for all COMSOL Modules	424
Material Property Groups Descriptions	427
Using Functions	43 I
Adding a Function to the Material	43 I
Example of Defining an Analytic Function	432

Chapter 7: Building a COMSOL Model

The Model Wizard and Model Builder	436
The Model Nodes in the Model Builder	437
Adding Nodes to the Model Builder	439
Deleting, Disabling, and Enabling Nodes	440
Model Administration	441
About the COMSOL Model File Formats.	441
Saving COMSOL Multiphysics Model Files	443
Reverting to the Last Saved Model File	444
Saving a Model Thumbnail Image	444
Resetting the Model History	444
Saving Recovery Files	444
Working with Remote Servers	445
Editing Node Properties, Names, and Identifiers	446
Opening and Searching the Model Library	449
Changing the Model Library Root Folder	45 I
Updating the Model Library Using Model Library Update	452
Adding a User Model Library	453

Editing Preferences Settings	453
Checking and Controlling Products and Licenses Used	467
Borrowing Licenses	468
Information About Memory Use	469
Viewing Node Names, Identifiers, Types, and Tags	469
Showing and Expanding Advanced Physics Sections 4	72
Resetting to Default	473
Resetting from Preferences	473
Setting as Preferences	473
Expanding Sections	473
Expanding the Equation Sections	474
Show Equation Sections	474
Show Equation View	475
Show Override and Contribution	475
Show Discretization	475
Show Stabilization	477
	479
Show Advanced Physics Options—Context Menu Equation-Based Feature	
Nodes	479
	479 481
Show Advanced Study Options	
Show Advanced Study Options	48 I
Show Advanced Study Options 4 Show Advanced Results Options 4	48 I
Show Advanced Study Options	48 I 48 I
Show Advanced Study Options	48 48 1 83
Show Advanced Study Options	48 48 1 83 483
Show Advanced Study Options	48 48 1 83 483 484
Show Advanced Study Options	48 48 483 483 484 485
Show Advanced Study Options 4 Show Advanced Results Options 4 The Physics Feature Nodes 4 Specifying Physics Settings 4 Physics Node Context Menu Layout 4 Physics Nodes by Space Dimension 4 Physics Exclusive and Contributing Feature Node Types 4 Physics Node Status 4	48 48 483 483 484 485 487
Show Advanced Study Options 4 Show Advanced Results Options 4 The Physics Feature Nodes 4 Specifying Physics Settings 4 Physics Node Context Menu Layout 4 Physics Nodes by Space Dimension 4 Physics Exclusive and Contributing Feature Node Types 4 Physics Node Status 4 Physics Default Feature Nodes 4	48 48 483 483 484 485 487 487 49
Show Advanced Study Options 4 Show Advanced Results Options 4 The Physics Feature Nodes 4 Specifying Physics Settings 4 Physics Node Context Menu Layout 4 Physics Nodes by Space Dimension 4 Physics Exclusive and Contributing Feature Node Types 4 Physics Node Status 4 Physics Default Feature Nodes 4 Physics Boundary Types 4	481 481 483 483 484 485 487 491 492
Show Advanced Study Options 4 Show Advanced Results Options 4 The Physics Feature Nodes 4 Specifying Physics Settings 4 Physics Node Context Menu Layout 4 Physics Nodes by Space Dimension 4 Physics Nodes by Space Dimension 4 Physics Node Status 4 Physics Node Status 4 Physics Default Feature Nodes 4 Physics Boundary Types 4 Continuity on Interior Boundaries 4	481 481 483 483 484 485 487 491 492 493
Show Advanced Study Options 4 Show Advanced Results Options 4 The Physics Feature Nodes 4 Specifying Physics Settings 4 Physics Node Context Menu Layout 4 Physics Nodes by Space Dimension 4 Physics Node Status 4 Physics Node Status 4 Physics Default Feature Nodes 4 Physics Boundary Types 4 Physics Axial Symmetry Node 4	481 481 483 483 484 485 487 491 492 493 494
Show Advanced Study Options 4 Show Advanced Results Options 4 The Physics Feature Nodes 4 Specifying Physics Settings 4 Physics Node Context Menu Layout 4 Physics Nodes by Space Dimension 4 Physics Node Status 4 Physics Node Status 4 Physics Default Feature Nodes 4 Physics Boundary Types 4 Physics Axial Symmetry Node 4 Specifying Boundary Conditions for Identity Pairs 4	481 481 483 483 484 485 487 491 492 493 494 495
Show Advanced Study Options 4 Show Advanced Results Options 4 The Physics Feature Nodes 4 Specifying Physics Settings 4 Physics Node Context Menu Layout 4 Physics Nodes by Space Dimension 4 Physics Node Status 4 Physics Node Status 4 Physics Default Feature Nodes 4 Physics Boundary Types 4 Physics Axial Symmetry Node 4 Specifying Boundary Conditions for Identity Pairs 4	481 483 483 484 485 487 491 492 493 494 495 495
Show Advanced Study Options 4 Show Advanced Results Options 4 The Physics Feature Nodes 4 Specifying Physics Settings 4 Physics Node Context Menu Layout 4 Physics Nodes by Space Dimension 4 Physics Exclusive and Contributing Feature Node Types 4 Physics Default Feature Nodes 4 Physics Boundary Types 4 Physics Axial Symmetry Node 4 Specifying Boundary Conditions for Identity Pairs 4 Phequation View Node. 4	481 483 483 484 485 487 491 492 493 494 495 495

Modeling Anisotropic Materials	502
Periodic Boundary Conditions	504
Using Periodic Boundary Conditions	504
Periodic Boundary Condition Example.	504
Calculating Accurate Fluxes	508
Flux Computation Example—Equation-Based Model	509
Flux Calculation Example—Heat Transfer Model	511
Using Load Cases	514
Defining Load Groups and Constraint Groups	514
Defining and Evaluating Load Cases	515
Using Units	517
Unit Systems in COMSOL Multiphysics	517
Selecting a Unit System	519
Using Standard Unit Prefixes and Syntax	520
SI Base, Derived, and Other Units	523
Special British Engineering Units	527
Special CGSA Units	528
Special EMU Units	528
Special ESU Units	529
Special FPS Units	530
Special IPS Units	53 I
Special MPa Units	53 I
Special Gravitational IPS Units	53 I
Switching Unit System	532
About Temperature Units	532
About Editing Geometry Length and Angular Units	533
Indication of Unexpected, Unknown, or Inconsistent Units	534
Units and Space Dimensions	535

Chapter 8: Overview of the Physics Interfaces

The COMSOL Multiphysics Physics Interfaces	538
Introduction to the Physics Interfaces	538
Physics Interfaces Groups in the Model Wizard	539
Physics List in COMSOL Multiphysics	540
Selecting a Physics Interface	544
Show More Physics Options	545
Modeling Guidelines	548
Using Symmetries	548
Effective Memory Management	549
Selecting an Element Type	550
Analyzing Model Convergence and Accuracy	55 I
Achieving Convergence When Solving Nonlinear Equations	551
Avoiding Strong Transients	552
Physics-Related Checks and Guidelines	553
Results With Small Unphysical Values	554
Equations for the Physics Interfaces	558
Physics Nodes—Equation Section	558
Physics Nodes Advanced Settings	560

Chapter 9: The AC/DC Branch

The Electromagnetics Interfaces	562
Fundamentals of Electromagnetics	563
Maxwell's Equations	563
Constitutive Relations	564
Potentials	566
Material Properties	566
About the Boundary and Interface Conditions	567
Electromagnetic Forces	568
References for Electromagnetic Theory	568

Theory of Electric Fields	569
Charge Relaxation Theory	569
	F70
Theory for the Electrostatics Interface	572
Electrostatics Equations	572
Theory for the Electric Currents Interface	574
Electric Currents Equations in Steady State	574
	•••
Theory of Magnetic and Electric Fields	575
Maxwell's Equations	575
Magnetic and Electric Potentials	575
Gauge Transformations	576
Selecting a Particular Gauge	577
The Gauge and the Equation of Continuity for Dynamic Fields	577
Time-Harmonic Magnetic Fields	577
Theory for the Magnetic Fields Interface	579
Magnetostatics Equation	579
Frequency Domain Equation	580
Transient Equation	580
The Electrostatics Interface	581
Domain, Boundary, Edge, Point, and Pair Conditions for the	500
Electrostatics Interface.	582
Charge Conservation	585
Space Charge Density	586
Initial Values	586
Ground	586
Electric Potential	587
Surface Charge Density	588
External Surface Charge Accumulation	588
Floating Potential	589
Electric Displacement Field	590
Periodic Condition	590
Zero Charge	591
Thin Low Permittivity Gap	591
Line Charge	592

Line Charge (on Axis)	. 593
Line Charge (Out-of-Plane)	. 593
Point Charge	. 594
Point Charge (on Axis)	. 595
Change Cross-Section	. 596
Change Thickness (Out-of-Plane).	. 596
Infinite Elements	. 597
The Electric Currents Interface	598
Domain, Boundary, Edge, Point, and Pair Features for the Electric	
Currents Interface	. 600
Current Conservation	. 602
Floating Potential	. 603
External Current Density	. 604
Current Source	. 605
Initial Values	. 605
Boundary Current Source	. 605
Normal Current Density	. 606
Distributed Impedance	. 607
Electric Insulation	. 607
Contact Impedance	. 608
Sector Symmetry.	. 610
Line Current Source	. 611
Line Current Source (on Axis)	. 611
Point Current Source	. 612
Point Current Source (on Axis)	. 613
The Magnetic Fields Interface	614
Domain, Boundary, Point, and Pair Conditions for the Magnetic Fields	
Interface	. 616
Ampère's Law	. 618
External Current Density	. 620
Velocity (Lorentz Term)	. 621
Initial Values	. 622
Magnetic Insulation	. 622
Magnetic Field	. 623
Surface Current	. 624
Magnetic Potential	. 624

Perfect Magnetic Conductor		•							625
Line Current (Out-of-Plane)									626

Chapter 10: The Acoustics Branch

Fundamentals of Acoustics	628
Acoustics Explained	628
Examples of Standard Acoustics Problems	629
Mathematical Models for Acoustic Analysis	630
Theory for the Pressure Acoustics, Frequency Domain Interface	
Frequency Domain Study	631
Eigenfrequency Study	633
References for the Pressure Acoustics, Frequency Domain Interface	633
The Pressure Acoustics, Frequency Domain Interface	635
Domain, Boundary, Edge, Point, and Pair Features for the Pressure	
Acoustics, Frequency Domain Interface	638
Pressure Acoustics Model	639
Monopole Source	639
Dipole Source	640
Initial Values	640
Sound Hard Boundary (Wall)	640
Normal Acceleration	641
Sound Soft Boundary	641
Pressure	642
Impedance	643
Plane, Spherical, and Cylindrical Radiation Boundary Conditions	643
Plane Wave Radiation	645
Spherical Wave Radiation	645
Cylindrical Wave Radiation	646
Periodic Condition	646
Incident Pressure Field	647
Interior Sound Hard Boundary (Wall)	648
Axial Symmetry	648
Continuity	649

Chapter II: The Chemical Species Transport Branch

52
52
53
54
55
58
59
60
61
61
62
63
63
64
64
65
65
66
67

Chapter 12: The Fluid Flow Branch

Theory for the Laminar Flow Interface	670
General Single-Phase Flow Theory	670
Compressible Flow	673
The Mach Number Limit	673
Incompressible Flow	674
The Reynolds Number	674
Numerical Stability—Stabilization Techniques for the Fluid Flow	
Interfaces	675
Pseudo Time Stepping for Laminar Flow Models	677

The Projection Method for the Navier-Stokes Equations
The Boussinesq Approximation
Theory for the Slip Wall Boundary Condition
Theory for the Sliding Wall Boundary Condition
Prescribing Inlet and Outlet Conditions
Theory for the Pressure, No Viscous Stress Boundary Condition 684
Theory for the Normal Stress Boundary Condition
Discontinuous Galerkin Formulation
Particle Tracing in Fluid Flow
References for the Single-Phase Flow, Laminar Flow Interfaces
The Laminar Flow Interface 689
Domain, Boundary, Point, and Pair Features for the Single-Phase Flow
Interfaces
Fluid Properties
Volume Force
Initial Values
Wall
Inlet
Outlet
Symmetry
Open Boundary
Boundary Stress
Periodic Flow Condition
Flow Continuity
Pressure Point Constraint

Chapter 13: The Heat Transfer Branch

About the Heat Transfer Interfaces									
Theory for the Heat Transfer Interfaces				709					
What is Heat Transfer?				709					
The Heat Equation				710					
A Note About Heat Flux				712					
Heat Flux Variables and Heat Sources				714					

About the Boundary Conditions for the	He	at	Trai	nsfe	er I	nte	erfa	ice	s	·	·	·	7
Radiative Heat Transfer in Transparent N	1ed	ia					•	•	•	•	•		7
Consistent and Inconsistent Stabilization	۱M	eth	ods	foi	r tł	ne	He	at	Tra	ans	sfe	r	
nterfaces	•	•		•	•		•	•	•	•	•	•	7
References for the Heat Transfer Interfa	ces	•								•	•	•	7
The Heat Transfer Interface													72
Domain, Boundary, Edge, Point, and Pair	· Fe	atu	res	for	• th	ne l	He	at					
Fransfer Interfaces													7
Heat Transfer in Solids	•				•	•	•	•	•	•	•		7
Franslational Motion	•	•								•	•	•	7
Heat Transfer in Fluids	•	•								•	•	•	7
Heat Source	•												7
nitial Values	•												7
Femperature													7
Thermal Insulation													7
Dutflow													7
Symmetry													7
Heat Flux													7
Surface-to-Ambient Radiation													7-
Periodic Heat Condition													7-
Boundary Heat Source													7-
Pair Boundary Heat Source													7
Continuity													7
Pair Thin Thermally Resistive Layer													7-
Thin Thermally Resistive Layer													7-
ine Heat Source													7
Point Heat Source													7-
Continuity on Interior Boundary													7-
Reaction Heat Flux													7
The Joule Heating Interface													74
Domain, Boundary, Edge, Point, and Pair	- Fe	atu	res	for	• th	ne J	ou	le	He	ati	ng		
nterface						-					-		7
oule Heating Model													7.
Electromagnetic Heat Source													7.
Boundary Electromagnetic Heat Source													7.
nitial Values													7

Chapter 14: The Structural Mechanics Branch

Solid Mechanics Geometry and Structural Mechanics Physics Symbols
756
3D Solid Geometry
2D Geometry
Axisymmetric Geometry
Physics Symbols for Boundary Conditions
About Coordinate Systems and Physics Symbols
Displaying Physics Symbols in the Graphics Window—An Example 760
The Solid Mechanics Interface 763
Domain, Boundary, Edge, Point, and Pair Features for the Solid
Mechanics Interface
Linear Elastic Material
Change Thickness
Damping
Initial Values
About the Body, Boundary, Edge, and Point Loads
Body Load
Boundary Load
Edge Load
Point Load
Free
Fixed Constraint
Prescribed Displacement
Symmetry
Antisymmetry
Roller
Periodic Condition
Perfectly Matched Layers
Theory for the Solid Mechanics Interface 780
Material and Spatial Coordinates
Coordinate Systems.
, Lagrangian Formulation
About Linear Elastic Materials 783

Strain-Displacement Relationship								787
Stress-Strain Relationship								790
Plane Strain and Plane Stress Cases								791
Axial Symmetry	•					•		791
Loads	•						•	794
Pressure Loads	•	•					•	795
Equation Implementation	•					•		795
Setting up Equations for Different Studies	•					•		796
Damping Models	•	•		•				799

Chapter 15: Equation-Based Modeling

The Mathematics Interfaces

PDE Interfaces Notational Conventions Periodic Condition Interpreting Boundary Conditions

Bidirectional and Unidirectional Constraints	838
PDE Interface Variables	840
PDE Coefficients and Boundary Conditions with Time Derivatives	841
Element Types and Discretization	842
Weak Form Modeling	844
About Weak Form Modeling	844
The Weak Form Interfaces	845
Weak Form PDE	847
The Weak Contribution Node	847
The Weak Contributions on Mesh Boundaries Node	849
Auxiliary Dependent Variable	849
Modeling with PDEs on Boundaries, Edges, and Points.	850
Specifying PDEs in Weak Form	850
Using Weak Constraints	852
About Weak Constraints	852
The Weak Constraint Node	853
The Pointwise Constraint Node	855
Bidirectional and Unidirectional Constraints	856
Constraint Forces for PDEs	858
Limitations of Weak Constraints	859
Solving ODEs and DAEs	861
Adding ODEs, DAEs, and Other Global Equations	861
The ODEs and DAEs Interface.	862
The Global Equations Node	862
The Global Constraint Node	864
The Weak Contribution (ODEs and DAEs) Node	864
The Discretization Node	865
Presenting Results for Global Equations	866
Solving ODEs	866
Solving Algebraic and Transcendental Equations	866
Distributed ODEs and DAEs	867
The Distributed ODEs and DAEs Interfaces.	867
Distributed ODE	869
Algebraic Equation	869
The Events Interface	870

Discrete States	870
Indicator States	870
Explicit Event	871
Implicit Event	871
Reinitialization on Domains	872
The Wall Distance Interface	873
Distance Equation	874
Initial Values	874
Boundary Conditions for the Wall Distance Interface	875
Wall	875
Theory for the Wall Distance Interface	876
The Eikonal Equation	
Modified Eikonal Equation	876
Reference for the Wall Distance Interface	877

Chapter 16: Sensitivity Analysis

Theory for the Sensitivity Interface	880
About Sensitivity Analysis	880
Sensitivity Problem Formulation	881
Theory for Stationary Sensitivity Analysis	881
Specification of the Objective Function	883
Choosing a Sensitivity Method	884
Issues to Consider Regarding the Control Variable	885
Issues to Consider Regarding the Objective Function	886
The Sensitivity Interface	888
Integral Objective	889
Probe Objective	889
Control Variable Field	890
Global Objective	891
Global Control Variables	891
Adding a Sensitivity Interface to a Model	891

Chapter 17: Multiphysics Modeling

Creating Multiphysics Models	894
Multiphysics Modeling Approaches	894
Using Predefined Multiphysics Interfaces	894
Acoustics	897
Fluid Flow	898
Heat Transfer	899
Plasma	900
Structural Mechanics	90 I
Adding Physics Sequentially	903
Building a Multiphysics Model Directly	904
Adding Multiphysics Couplings	904
Deleting Physics Interfaces	905

Chapter 18: The Deformed Geometry and Moving Mesh Interfaces

Deformed Mesh Fundamentals 9	08
About Deformed Meshes	908
Deformed Geometry vs. Moving Mesh	909
Arbitrary Lagrangian-Eulerian Formulation (ALE)	909
Frames)
Mathematical Description of the Mesh Movement	13
Derivatives of Dependent Variables	15
Smoothing Methods	16
Limitations of the ALE Method	17
Tips for Modeling Using Deformed Meshes	18
Remeshing a Deformed Mesh	19
Remeshing a Deformed Geometry—A Quick Example	22
The Moving Mesh Interface 9	27
Moving Mesh	928
Fixed Mesh	929
Free Deformation	929

Prescribed Deformation			•		•	 •			•				930
Prescribed Mesh Displacement .			•		•	 •			•				930
Prescribed Mesh Velocity					•	 •			•				931
Prescribed Normal Mesh Velocity			•		•								931
Zero Normal Mesh Velocity			•		•	 •			•				932
Zero Normal Mesh Displacement					•								933
The Deformed Geometry Inte	erfa	ace	e										934
The Deformed Geometry Into													
Deformed Geometry	•						•					•	934
Deformed Geometry				•		 	•	•	•	•	•		934 936 936
Deformed Geometry .						 							934 936 936 936

Chapter 19: Meshing

Creating Meshes	940
About Mesh Elements for ID, 2D, and 3D Geometries	940
The Meshing Toolbar and Features	94 I
Meshing Techniques	946
Free Meshing	949
About Free Meshing	949
Generating a 2D Free Mesh	950
Generating a 3D Free Tetrahedral Mesh	954
Troubleshooting Free Tetrahedral Mesh Generation	958
Structured Meshes	960
About 2D Mapped Meshing	960
About 2D and 3D Boundary Layer Meshes	961
Generating a Boundary Layer Mesh	962
About 3D Swept Meshes	963
Generating a 3D Swept Mesh	964

Mesh Control Entities	968
About Mesh Control Entities	968
Using Mesh Control Entities to Control Element Size	968
Using Structured and Unstructured Mesh with Boundary Layers	970
Clearing Meshes and Deleting Meshing Sequences	974
Displaying Mesh Element Quality and Size	975
Introduction	975
Displaying Mesh Element Quality and the Mesh Element Size \ldots .	975
Avoiding Inverted Mesh Elements	977
Inverted Mesh Elements	977
Using Linear Geometry Shape Order	978
Modifying the Geometry or Mesh	978
Visualizing Inverted Mesh Elements	978

Chapter 20: Solvers and Study Types

Solver Studies and Study Types	980
Introduction to Solvers and Studies	980
Adding a Study	981
Available Study Types	982
Adding Study Steps	986
Working With Study Steps	988
Generating Solver Configurations and Job Configurations	989
Editing Solver Configurations	989
Clearing, Deleting, Disabling, and Enabling a Solver or Solutions	990
Selecting a Stationary, a Time-Dependent, or an Eigenvalue Solver	991
Linear Solvers vs. Nonlinear Solvers	992
Remarks on Solver-Related Model Characteristics	993
Computing a Solution	995
Updating the Model	995
Computing the Initial Values	996
Getting Results While Solving	997
Progress and Log Information	997

Convergence Plots	1001
Harmonic Perturbation, Prestressed Analysis, and Small-Signa	
Analysis	1004
Frequency-Domain Perturbation Study and Study Step	1005
Harmonic Perturbation—Exclusive and Contributing Nodes	1006
Prestressed Frequency Analyses Study	1007

Chapter 21: Results Evaluation and Visualization

Processing an	d Analyzing	Results	
i rocessing an	u Analyzing	Results	

1010

Defining Data Sets 1012
About Data Sets
Average Evaluation or Integral Evaluation Data Sets
Contour 2D Data Sets
Cut Line 2D and 3D Data Sets
Cut Plane Data Sets
Cut Point ID, 2D, and 3D Data Sets
Edge 2D and 3D Data Sets
Function ID, 2D, and 3D Data Sets
Isosurface Data Sets
Join Data Sets
Maximum Evaluation and Minimum Evaluation Data Sets
Mesh Data Sets
Mirror 2D and Mirror 3D Data Sets
Parameterized Curve 2D and 3D Data Sets
Parameterized Surface Data Sets
Parametric Extrusion ID and 2D Data Sets
Particle Data Sets
Revolution ID and 2D Data Sets
Sector 2D and Sector 3D Data Sets
Solution Data Sets
Surface Data Sets

About Plot Groups and Plotting

Common Plot Settings	1040
Color Coding for Plot Groups and Plot Types	. 1041
Adding Plot Windows	. 1041
Specifying the Window to Plot In	. 1042
Locking Plot Windows	. 1042
Selecting a Data Set for Plots	. 1042
Selecting Solutions for Parametric Sweeps	. 1043
Expressions and Predefined Quantities.	. 1044
Plot Titles for Plot Groups and Plot Types	. 1046
Using Special Formats and Symbols in Titles	. 1047
Legends	. 1049
Arrow Positioning	. 1050
Principal Components and Positioning	. 1050
Defining the Number of Levels	. 1051
Selecting Color Tables	. 1051
Defining the Color and Data Ranges	. 1053
Defining the Coloring and Style	. 1053
Defining Element Filters	. 1059
Defining Shrinking of Elements	. 1059
Entering Quality Settings for Plot Settings Windows	. 1060
	. 1061
Small-Signal Analysis, Prestressed Analysis, and Harmonic Perturbation	
Plot Settings	. 1062
Creating ID, 2D, 3D, and Polar Plots	1065
ID Plot Groups	. 1066
Polar Plot Groups	. 1069
2D Plot Groups and 3D Plot Groups	. 1069
Common Plot Settings Cross References.	. 1077
Arrow Line Plots	. 1079
Arrow Surface Plots	. 1081
Arrow Volume Plots	. 1083
Contour Plots	. 1084
Coordinate System Volume, Surface, and Line Plots	. 1087
Far Field Plots	. 1089
Global Plots	. 1092

Histogram
Isosurface Plots
Line Graphs
Line Plots
Max/Min Volume, Max/Min Surface, and Max/Min Line Plots
Mesh Plots
Multislice Plots
Nyquist Plot
Particle Tracing Plots
Particle Tracing with Mass Plots
Particle Trajectories Plots
Filter Node for Particle Trajectories
Phase Portrait Plots
Poincaré Map Plots
Point Graphs
Principal Stress Volume Plots
Principal Stress Surface Plots
Scatter Surface and Scatter Volume Plots
Slice Plots
Streamline Plots
Surface Plots
Table Graph. . <th.< th=""> . . <th< td=""></th<></th.<>
Table Surface Plots
Volume Plots
Color Expressions
Deformations
Filters
Filters
Height Expressions
Height Expressions 1156 Creating Cross-Section Plots and Combining Plots 1160 Plotting and Cross-Section Interactive Toolbar. 1161 ID, 2D, and 3D Cross-Section Point Plots 1164 2D Cross-Section Line Plots 1166 3D Cross-Section Surface Plot. 1168
Height Expressions

Defining Derived Values and Tables	1175
Derived Values	1175
Adding A Derived Value Node	1178
Derived Values Common Settings	1179
Volume Average, Surface Average, and Line Average Derived Values $\ . \ .$	1181
Volume Integration, Surface Integration, and Line Integration Derived	
Values	1182
Volume, Surface, and Line Maximums and Minimums for Derived Values .	1183
Point Evaluation Derived Values	1184
Global Evaluation Derived Values	1185
Global Matrix Evaluation	1185
Particle Evaluation	1186
Adding and Evaluating Tables for a Derived Value	1188
Editing and Organizing Results Tables	1190
Getting Numerical Results Directly	9
Exporting Data and Images	1192
Export Feature Types	1192
Animation Export	1193
Data Export	1197
Mesh Export	1199
Table Export . <t< td=""><td>1200</td></t<>	1200
Plot ID, 2D, or 3D Image Export	1201
Plot Export	1203
Player Export	1204
Creating Reports	1208
About the Report Generator	1208
Report Feature Types	1209
Generating a Model Report	1210
Basic Report Components	1210
Model Report Components	1211

Chapter 22: Running the COMSOL Software

	214
COMSOL Client/Server	214
Parallel COMSOL	215
COMSOL API	217
COMSOL Batch	217
LiveLink for MATLAB	218
COMSOL Client/Server Architecture	219
Standalone COMSOL	219
Running COMSOL as a Client/Server	219
Running COMSOL with MATLAB	220
Running COMSOL Client/Server	222
Advantages of Using COMSOL Client/Server	222
Running COMSOL Client/Server	222
Running COMSOL in Parallel	225
Shared-Memory Parallel COMSOL	225
COMSOL and BLAS	226
Distributed-Memory Parallel COMSOL	227
Benefits of Running COMSOL in a Distributed Mode	228

Chapter 23: Glossary

Glossary of Terms

1234

Introduction

Welcome to COMSOL Multiphysics®! This *User's Guide* details features and techniques that help you throughout all of your COMSOL Multiphysics modeling in Version 4.3 using the COMSOL Desktop environment. For example, detailed information about how to build model geometries in COMSOL Multiphysics, how to create a mesh for the finite elements, how to create parameters and variables used within a model, how to add the physics and material properties, and how to solve and display the results, are all explained. The full set of documentation shows you, step by step, how to tap into many functions and capabilities available in the COMSOL environment.

This introductory chapter provides an overview of COMSOL Multiphysics and its product family and includes these topics:

- About COMSOL Multiphysics
- The COMSOL Modules
- Overview of the User's Guide
- The COMSOL Documentation Set

About COMSOL Multiphysics

COMSOL Multiphysics is a powerful interactive environment for modeling and solving all kinds of scientific and engineering problems. The software provides a powerful integrated desktop environment with a *Model Builder* where you get full overview of the model and access to all functionality. With COMSOL Multiphysics you can easily extend conventional models for one type of physics into multiphysics models that solve coupled physics phenomena—and do so simultaneously. Accessing this power does not require an in-depth knowledge of mathematics or numerical analysis.

Using the built-in *physics interfaces* and the advanced support for material properties, it is possible to build models by defining the relevant physical quantities—such as material properties, loads, constraints, sources, and fluxes—rather than by defining the underlying equations. You can always apply these variables, expressions, or numbers directly to solid and fluid domains, boundaries, edges, and points independently of the computational mesh. COMSOL Multiphysics then internally compiles a set of equations representing the entire model.

You access the power of COMSOL Multiphysics as a standalone product through a flexible graphical user interface (GUI) or by script programming in Java or the MATLAB® language (requires the COMSOL LiveLink for MATLAB).

Using these physics interfaces, you can perform various types of studies including:

- · Stationary and time-dependent (transient) studies
- · Linear and nonlinear studies
- · Eigenfrequency, modal, and frequency response studies

When solving the models, COMSOL Multiphysics uses the proven *finite element method* (*FEM*). The software runs the finite element analysis together with adaptive meshing (if selected) and error control using a variety of numerical solvers. The studies can make use of multiprocessor systems and cluster computing, and you can run batch jobs and parametric sweeps. A more detailed description of this mathematical and numerical foundation is in the *COMSOL Multiphysics Reference Guide*.

COMSOL Multiphysics creates *sequences* to record all steps that create the geometry, mesh, studies and solver settings, and visualization and results presentation. It is therefore easy to parameterize any part of the model: Simply change a node in the model tree and re-run the sequences. The program remembers and reapplies all other information and data in the model.

Partial differential equations (PDEs) form the basis for the laws of science and provide the foundation for modeling a wide range of scientific and engineering phenomena. You can use COMSOL Multiphysics in many application areas, for example:

- Acoustics
- Bioscience
- Chemical reactions
- Corrosion and corrosion protection
- Diffusion
- Electrochemistry
- Electromagnetics
- Fluid dynamics
- Fuel cells and electrochemistry
- Geophysics
- Heat transfer
- Microelectromechanical systems (MEMS)
- Microfluidics
- Microwave engineering
- Optics
- Particle tracing
- Photonics
- Plasma physics
- · Porous media flow
- Quantum mechanics
- Radio-frequency components
- Semiconductor devices
- Structural mechanics
- Transport phenomena
- · Wave propagation

Many real-world applications involve simultaneous couplings in a system of PDEs *multiphysics*. For instance, the electric resistance of a conductor often varies with temperature, and a model of a conductor carrying current should include resistive-heating effects. The Multiphysics Modeling section discusses multiphysics modeling techniques. Many predefined multiphysics interfaces provide easy-to-use entry points for common multiphysics applications.

In its base configuration, COMSOL Multiphysics offers modeling and analysis power for many application areas. For several of the key application areas there are also optional modules (see The COMSOL Modules). These application-specific modules use terminology and solution methods specific to the particular discipline, which simplifies creating and analyzing models. The modules also include comprehensive model libraries with example models that show the use of the product within its application areas.

The COMSOL Modules

The optional modules are optimized for specific application areas and offer discipline-standard terminology and physics interfaces. For some modules, additional material libraries, specialized solvers, element types, and visualization tools are also available. This section briefly describes these modules:

- AC/DC Module
- Acoustics Module
- Batteries & Fuel Cells Module
- CFD Module (Computational Fluid Dynamics)
- Chemical Reaction Engineering Module
- Corrosion Module
- Geomechanics Module
- Heat Transfer Module
- MEMS Module
- Microfluidics Module
- Nonlinear Structural Materials Module
- Optimization Module
- Particle Tracing Module
- Pipe Flow Module
- Plasma Module
- RF Module
- Structural Mechanics Module
- Subsurface Flow Module

The CAD Import Module enables you to import CAD data using these formats: IGES, SAT (ACIS), Parasolid, STEP, SolidWorks, Pro/ENGINEER, and Inventor. An additional add-on provides support for CATIA V5. There are also LiveLinks (bidirectional interfaces) for SolidWorks, Creo Parametric, Pro/ENGINEER, Autodesk Inventor, AutoCAD, and SpaceClaim. See CAD Import and LiveLink Connections.

You can build models of all types in the COMSOL Multiphysics user interface. For additional flexibility, COMSOL also provides LiveLink for MATLAB, a seamless

interface to MATLAB. This gives you the freedom to combine multiphysics modeling, simulation, and analysis with other modeling techniques. See LiveLink for MATLAB.

AC/DC Module

The AC/DC Module provides a unique environment for simulation of AC/DC electromagnetics in 2D and 3D. The module is a powerful tool for detailed analysis of coils, capacitors, and electrical machinery. With this module you can run static, quasi-static, transient, and time-harmonic simulations in an easy-to-use graphical user interface.

The available physics interfaces cover the following types of electromagnetics field simulations:

- Electrostatics
- · Electric currents in conductive media
- Magnetostatics
- Low-frequency electromagnetics

Material properties include inhomogeneous and fully anisotropic materials, media with gains or losses, and complex-valued material properties. Infinite elements makes it possible to model unbounded domains. In addition to the standard results and visualization functionality, the module supports direct computation of lumped parameters such as capacitances and inductances as well as electromagnetic forces.

Like all COMSOL modules, there is a library of ready-to-run models that make it quicker and easier to analyze discipline-specific problems. In addition, any model you develop is described in terms of the underlying partial differential equations, offering a unique way to see the underlying physical laws of a simulation.

The interfaces are fully multiphysics enabled—couple them to any other interface in COMSOL Multiphysics or the other modules. For example, to find the heat distribution in a motor, first find the current in the coils using one of the quasi-static interfaces in this module and then couple it to a heat equation in the main COMSOL Multiphysics package or the Heat Transfer Module. This forms a powerful *multiphysics* model that solves all the equations simultaneously.

COMSOL Multiphysics also has an interface to the MATLAB technical computing environment. If you have a MATLAB license, save it as a Model M-file—a script file that runs in MATLAB. This module also provides interfaces for modeling electrical circuits and importing ECAD drawings.

🔐 Tip

For more information go to www.comsol.com/products/acdc

Acoustics Module

The Acoustics Module is a collection of physics interfaces for COMSOL Multiphysics adapted to a broad category of acoustics simulations in fluids and solids. This module is useful even if you are not familiar with computational techniques. It can serve equally well as an excellent tool for educational purposes.

The module supports time-harmonic, modal, and transient studies for fluid pressure as well as static, transient, eigenfrequency, and frequency-response analyses for structures. The available physics interfaces include the following functionality:

- Frequency-domain and transient pressure acoustics
- Acoustic-structure interactions
- Aeroacoustics
- · Boundary mode acoustics
- Thermoacoustics
- Aeroacoustics with flow
- Compressible potential flow
- Solid mechanics
- Piezoelectricity

For the pressure acoustics applications, you can choose to analyze the scattered wave in addition to the total wave. PMLs (perfectly matched layers) provide accurate simulations of open pipes and other models with unbounded domains. The modeling domain can include dipole sources as well as monopole sources, and it is easy to specify point sources in terms of flow, intensity, or power. The module also includes modeling support for several types of damping. For results evaluation of pressure acoustics models, you can compute the far field. Typical application areas for the Acoustics Module include:

- Automotive applications such as mufflers and car interiors
- Modeling of loudspeakers and microphones
- Aeroacoustics
- Underwater acoustics

Using the full multiphysics couplings within the COMSOL Multiphysics environment, you can couple the acoustic waves to, for example, an electromagnetic analysis or a structural analysis for acoustic-structure interaction. The module smoothly integrates with all of the COMSOL Multiphysics functionality.

For more information go to www.comsol.com/products/acoustics

Batteries & Fuel Cells Module

The Batteries & Fuel Cells Module provides customized physics interfaces for modeling of batteries and fuel cells. These physics interfaces provide tools for building detailed models of the configuration of the electrodes and electrolyte in electrochemical cells. They include descriptions of the electrochemical reactions and the transport properties that influence the performance of batteries, fuel cells, and other electrochemical cells.

The physics interfaces are organized in primary, secondary and tertiary current density distributions physics interfaces. These are available for solid nonporous electrodes and for porous electrodes. In addition to these generic physics interfaces, the module contains a dedicated physics interface for the modeling of Li-ion batteries.

The tailored physics interfaces mentioned above are also complemented with extended functionality in other physics interfaces for chemical species transport, heat transfer, and fluid flow.

The physics interfaces for chemical species transport of neutral species are extended by adding nodes that directly couple to electrochemical reactions defined in the physics interfaces for electrochemical cells. A typical example is the transport and reactions of gaseous species in gas diffusion electrodes and gas channels in fuel cells.

The heat transfer physics interfaces include heat sources that describe ohmic losses in the electrodes and electrolyte and heat sources due to electrochemical reactions in electrochemical cells.

The fluid flow capabilities are extended for laminar flow, where the chemical species transport and the energy balances influence the properties of the flow.

For more information go to www.comsol.com/products/ batteries-fuel-cells

CFD Module

The CFD Module is an optional package that extends the COMSOL Multiphysics modeling environment with customized user interfaces and functionality optimized for the analysis of all types of fluid flow. Ready-to-use interfaces let you model laminar and turbulent flows in single or multiple phases. Functionality for treating coupled free and porous media flow, stirred vessels, and fluid-structure interaction are also included.

- Laminar and turbulent flow using several established turbulence models
- Single-phase and multiphase flow
- Isothermal and non-isothermal flow
- Compressible and incompressible flow
- Newtonian and non-Newtonian flow

The ready coupling of heat and mass transport to fluid flow enables modeling of a wide range of industrial applications such as heat exchangers, turbines, separations units, and ventilation systems.

Together with COMSOL Multiphysics, the CFD Module takes flow simulations to a new level, allowing for arbitrary coupling to physics interfaces describing other physical phenomena, such as structural mechanics, electromagnetics, or even user-defined transport equations.

For more information go to www.comsol.com/products/cfd

Chemical Reaction Engineering Module

The reaction engineering tools use reaction formulas to create models of reacting systems. In this context, a model means the material (mass), energy (heat), and momentum balances for a system. The Chemical Reaction Engineering Module not only defines these balances, it can also solve the material and energy balances for space-independent models (that is, for models where the composition and temperature in the reacting system vary only in time) and space-dependent models. This makes it possible to create models involving material, energy, and momentum balances in COMSOL Multiphysics directly from a set of reaction formulas.

Included in these models are the kinetic expressions for the reacting system, which are automatically or manually defined in the module. You also have access to a variety of ready-made expressions in order to calculate a system's thermodynamic and transport properties.

The module presents a powerful way of modeling equipment and processes in chemical engineering. It provides customized physics interfaces and formulations for momentum, mass, and heat transport coupled with chemical reactions for applications such as:

- · Reaction engineering and design
- Heterogeneous catalysis
- Separation processes
- Fuel cells and industrial electrolysis
- Process control

COMSOL Multiphysics excels in solving systems of coupled nonlinear PDEs that can include:

- Heat transfer
- · Mass transfer through diffusion, convection, and migration
- · Fluid dynamics
- Chemical reaction kinetics
- · Varying material properties

The multiphysics capabilities of COMSOL can fully couple and simultaneously model fluid flow, mass and heat transport, and chemical reactions.

In fluid dynamics you can model fluid flow through porous media, characterize flow with the incompressible Navier-Stokes equations. It is easy to represent chemical reactions by source or sink terms in mass and heat balances. These terms can be of arbitrary order. The physics interfaces in this module cover the following areas:

- Chemical Species Transport
 - Reaction engineering
 - Transport of diluted species through diffusion, convection, and migration in electric fields
 - Transport of concentrated species using one of the following diffusion models: mixture-averaged, Maxwell-Stefan, or Fick's law
 - Nernst-Planck transport equations
- · Heat Transfer in fluids, solids and porous media
- Fluid Flow
 - Single-phase flow (incompressible Navier-Stokes equations)
 - Darcy's law
 - Brinkman equations
 - Free and porous media flow

For more information go to www.comsol.com/products/ chemical-reaction-engineering

Corrosion Module

The Corrosion Module is intended for the modeling of corrosion and corrosion protection. The descriptions made available by the module are based on current and potential distribution in galvanic cells. Its modeling capabilities covers galvanic corrosion, cathodic protection, andic protection, and sacrificial anode protection.

The module consists of a number of chemical species transport, fluid flow, heat transfer, electrochemistry, and corrosion interfaces. These physics interfaces describe the potential in the electrolyte and in the corroding or protected metallic structure. The electrode reactions can be described using arbitrary electrode kinetic expressions of the overpotential for the anodic and cathodic reactions. The potential and current distribution can also include the influence of mass transport and heat transfer, which means that the Corrosion Module makes it possible to model composition and temperature in a corrosion cell in detail. The ability to account for mass transport in

the electrolyte allows for modeling of corrosion caused by variations in, for example, salt concentration, oxygen concentration, and pH.

The basis of the Corrosion Module is the mass and current balances in the electrolyte an in the corroding or protected metal structure. In the electrolyte, the current balance is defined together with individual species balances for the charged species and the electroneutrality condition. In the metallic structure, the current balance is described using Ohm's law for the current density. The electron transfer reactions, at the interface between the metallic structure and the electrolyte, couple the transport processes in the electrolyte with the current flowing in the metallic structure. The module contains predefined formulations for the above-mentioned processes. In addition, the module modifies the Heat Transfer interfaces so that predefined terms for heat sources caused by losses in the electrochemical process are described properly.

<mark>т</mark>р

For more information go to www.comsol.com/products/corrosion

Geomechanics Module

The Geomechanics Module is an optional package that extends the Structural Mechanics Module to the quantitative investigation of geotechnical processes. It is designed for researchers, engineers, developers, teachers, and students, and suits both single-physics and interdisciplinary studies within geomechanics and soil mechanics.

The module includes an extensive set of fundamental material models, such as the Drucker-Prager and Mohr-Coulomb criteria and the Cam-Clay model in soil mechanics. These material models can also couple to any new equations created, and to physics interfaces (for example, heat transfer, fluid flow, and solute transport in porous media) already built into COMSOL Multiphysics and its other specialized modules.

₩ Tip

For more information go to www.comsol.com/products/geomechanics

Heat Transfer Module

The Heat Transfer Module supports all fundamental mechanisms of heat transfer, including *conductive*, *convective*, and *radiative* heat transfer (both *surface-to-surface* and *surface-to-ambient* radiation). Using the physics interfaces in this module along with inherent multiphysics capabilities of COMSOL Multiphysics you can model a temperature field in parallel with other physics—a powerful combination that makes your models even more accurate and representative of the real world.

Available physics interfaces include functionality for:

- General heat transfer by conduction, convection, and surface-to-surface radiation (including external radiation sources)
- Bioheat equation for heat transfer in biomedical systems
- Heat transfer in porous media
- · Heat radiation in participating media
- Highly conductive layer for modeling of heat transfer in thin structures
- Non-isothermal incompressible fluid flow
- Turbulent flow using the *k*-ε and k-ω turbulence models

The Heat Transfer Module Model Library contains models, many with multiphysics couplings, that cover applications in electronics and power systems, process industries, and manufacturing industries. This Model Library also provides tutorial and benchmark models.

<mark>т</mark>р

For more information go to www.comsol.com/products/heat-transfer

MEMS Module

The MEMS Module is a collection of physics interfaces and predefined models for COMSOL Multiphysics with which you can model various MEMS devices and applications.

It includes interfaces for modeling with electrostatics, structural mechanics, piezoelectricity, film damping, and other thin-film flow. The module also includes predefined multiphysics interfaces for thermal-structural interaction, Joule heating

with thermal stress or thermoelectromechanical (TEM) interactions, and fluid-structure interaction (FSI).

The MEMS Module Model Library contains a suite of models of MEMS devices such as sensors and actuator systems. The models demonstrate a variety of multiphysics couplings and techniques for moving boundaries. This module also provides interfaces for circuit modeling, a SPICE interface, and support for importing ECAD drawings.

The combination of the models and documentation provides an outline for the theoretical basis of MEMS-specific phenomena and the interfaces in the module, and it contains step-by-step instructions for creating models. The software is uniquely transparent because the model equations are always visible, and you have complete freedom in the definition of phenomena that are not predefined in the module.

In MEMS, the operation of devices are often affected by several physical phenomena that are coupled by some mechanism. Traditionally, these couplings are described pairwise using, for example, electro-structural, fluid-structural, and thermo-mechanical couplings, but there are also couplings across these types of physics such as thermal-electric-structural interaction. Although COMSOL Multiphysics does not pose any limitations on the number or type of such couplings, these couplings are important building blocks in complex multiphysics models containing any number of coupled physical phenomena.

<mark>г</mark> Тір

For more information go to www.comsol.com/products/mems

Microfluidics Module

The Microfluidics Module is a collection of tailored physics interfaces for the simulation of microfluidic devices. It has a range of tools to address the specific challenges of modeling micro- and nanoscale flows. Physics interfaces that address laminar flow, multiphase flow, flow in porous media, and rarefied flow such as free molecular flow, slip flow, and transitional flow are available. Enhanced capabilities to treat chemical reactions between dilute species are also included. In addition to the standard tools for modeling fluid flow, interfaces between fluids can be modeled by the Level Set, Phase Field, and Moving Mesh physics interfaces, making it possible to model surface tension and multiphase flow at the microscale.

The Model Library and supporting documentation explain how to use the interfaces to model a range of microfluidic devices.

🔐 Tip

For more information go to www.comsol.com/products/microfluidics

Nonlinear Structural Materials Module

The Nonlinear Structural Materials Module is an optional package that extends the Structural Mechanics Module to studies that include structural mechanics with nonlinear material behavior. It is designed for researchers, engineers, developers, teachers, and students that want to simulate nonlinear structural materials, including a full range of possible multiphysics couplings.

The module provides an extensive set of nonlinear structural material models, including the following materials:

- Predefined and user-defined hyperelastic materials: neo-Hookean, Mooney-Rivlin, Saint-Venant Kirchhoff, and others.
- Small-strain and large-strain plasticity models using different hardening models.
- Predefined and user-defined creep and viscoplastic material models: Norton, Garofalo, Anand, potential, volumetric, deviatoric, and others.

Optimization Module

The Optimization Module can be used throughout the COMSOL Multiphysics product family—it is a general interface for calculating optimal solutions to engineering problems. Any model inputs, be it geometric dimensions, part shapes, material properties, or material distribution, can be treated as control variables, and any model output can be an objective function.

There are two optimization algorithms available in the module. The first algorithm is based on the SNOPT code developed by Philip E. Gill of the University of California San Diego, and Walter Murray and Michael A. Saunders of Stanford University. When using SNOPT, the objective function can have any form and any constraints can be applied. The algorithm uses a gradient-based optimization technique to find optimal designs and when the underlying PDE is stationary or time-dependent, analytic sensitivities of the objective function with respect to the control variables can be used. The second algorithm is a Levenberg-Marquardt solver. When this solver is used, the objective function must be of least squares type. Also, constraints are not supported. Since the Levenberg-Marquardt method is derived to solve problems of least squares type, it typically converges faster than SNOPT for such problems.

Simulation is a powerful tool in science and engineering for predicting the behavior of physical systems, particularly those governed by partial differential equations. In many cases a single or a few simulations are not enough to provide sufficient understanding of a system. Two important classes of problems whose resolution relies on a more systematic exploratory process are:

- *Design problems* with a single objective. Here, the problem is to find the values of control variables or design variables that yield the best performance of the output of a simulation model when the latter is quantified by means of a single function. Problems of this kind arise, for example, in structural optimization, antenna design, and process optimization.
- Inverse problems, and in particular parameter estimation in multiphysics models. Here, the problem is to reliably determine the values of a set of parameters that provide simulated data which best matches measured data. Such problems arise in, for example, geophysical imaging, nondestructive testing, and biomedical imaging.

It is often possible to reformulate problems of the above type as *optimization problems*. The Optimization interface in COMSOL Multiphysics is useful for solving design problems as well as inverse problems and parameter estimation.

For more information go to www.comsol.com/products/optimization

Particle Tracing Module

T

Tiþ

The Particle Tracing Module is a general purpose, flexible tool that allows you to trace the trajectories of particles in the presence of an external field.

A custom interface is available for modeling the trajectory of electrons and ions in an electromagnetic field. This makes it possible to model devices such as magnetic lenses, electron guns, and mass spectrometers. There are a number of tools available to extract typical quantities of interest and to make plots of the particle trajectories, including phase portraits and Poincaré maps. It is also possible to model particle-field

interactions provided that the particle trajectories and electromagnetic fields are computed simultaneously.

There is also a dedicated interface for tracing particle trajectories in a fluid system. There are predefined forces for drag, gravity, and other forces, which can be conveniently be added to your model.

A mathematical-based particle tracing interface gives you complete freedom and flexibility over the equations of motion governing particle trajectories. There are a number of different formulations available that makes it possible to specify, for example, a Lagrangian or Hamiltonian that dictates the motion of the particles.

All of the interfaces provide many different ways of releasing particles, either on the boundary or domain level. Particles can also be released at multiple different times. There are several options available for describing how the particles interact with the wall, including specular reflection. The interfaces can all be used with COMSOL Multiphysics but tracing charged particles benefits from the AC/DC Module, as it makes it possible to model complex alternating or direct current systems. Similarly, tracing particles in a fluid system benefits from the CFD Module or the Microfluidics Module due to the number of advanced fluid flow features available in those modules.

₩ Ţip

For more information go to www.comsol.com/products/particle-tracing

Pipe Flow Module

The Pipe Flow Module is intended for the modeling and simulation of flow of incompressible fluids in pipe and channel systems, as well as compressible hydraulic transients and acoustics waves. Typical simulations yield the velocity, pressure variation, and temperature in systems of pipes and channels. Hydraulic transients resulting from a valve that is closed rapidly in a pipe network is referred to water hammer, which can be modeled too. The module can be used to design and optimize complex cooling systems in turbines, ventilation systems in buildings, pipe systems in chemical processes, and pipelines in the oil and gas industry.

In common for pipes and channels that can be modeled is that the pipe length is large enough so that the flow inside can be considered fully developed. Piping components such as bends, valves, T-junctions, contractions/expansions and pumps are also available in the module.

The module includes seven physics:

- The *Pipe Flow* physics computes the pressure and velocity field in isothermal pipe systems.
- The *Heat Transfer in Pipes* physics computes the energy balance in pipe systems but receives the flow field as a value or as a known solved field. Wall heat transfer to the surroundings is included.
- The *Transport of Diluted Species in Pipes* physics solves a mass balance equation for pipes in order to compute the concentration distribution of a solute in a dilute solution, considering diffusion, dispersion, convection, and chemical reactions.
- The *Non-Isothermal Pipe Flow* physics is a multiphysics interface that solves the flow, pressure, and temperature simultaneously and fully coupled.
- The *Reacting Pipe Flow* physics is a multiphysics interface that solves the flow, pressure, temperature, and reacting species transport simultaneously and fully coupled.
- The *Water Hammer* physics solves rapid hydraulic transients in pipe systems, taking the elastic properties of both the fluid and pipe wall into account.
- The *Pipe Acoustics, Transient* physics models sound waves in flexible pipe systems.

The physics in the module define the conservation of momentum, energy, and mass of an fluid inside a pipe or channel system. The flow, pressure, temperature, and concentration fields across the pipe cross sections are modeled as cross-section averaged quantities, which only vary along the length of the pipes and channels. The pressure losses along the length of a pipe or in a pipe component are described using friction factor expressions. A broad range of built-in expressions for Darcy friction factors are used that cover the entire flow regime from laminar to turbulent flow, Newtonian and non-Newtonian fluids, different cross-sectional geometries, and a wide range of relative surface roughness values. In addition to the continuous frictional pressure drop along pipe stretches, pressure drops due to momentum changes in components such as as bends, contractions, expansions, T-junctions and valves are computed through an extensive library of industry standard loss coefficients. Pumps are also available as components.

<mark>тр</mark> Тір

For more information go to www.comsol.com/products/pipe-flow

Plasma Module

The Plasma Module is based on a series of scientific publications on numerical modeling of non-equilibrium discharges. These papers are referenced throughout the documentation. The physics interfaces can model low temperature, non-equilibrium discharges such as:

- Inductively coupled plasmas (ICP)
- Capacitively coupled plasmas (CCP)
- Microwave plasmas
- Light sources
- Electrical breakdown
- Space thrusters
- DC discharges
- Chemical vapor deposition (CVD)
- Plasma-enhanced chemical vapor deposition (PECVD)
- Dielectric barrier discharges (DBD)
- Electron cyclotron resonance (ECR)
- Reactive gas generators

The complexity of plasma modeling lies in the fact that it combines elements of reaction engineering, statistical physics, fluid mechanics, physical kinetics, heat transfer, mass transfer, and electromagnetics. The net result is a true multiphysics problem involving complicated coupling between the different physics. The module is designed to simplify the process of setting up a self-consistent model of a low-temperature plasma.

The physics interfaces include all the necessary tools to model plasma discharges, beginning with a Boltzmann Equation, Two-Term Approximation solver that

computes the electron transport properties and source coefficients from a set of electron impact collision cross sections. This interface makes it possible to determine many of the interesting characteristics of a discharge by providing input properties such as the electric field and the electron impact reactions that make up the plasma chemistry, without solving a space-dependent problem.

For space-dependent models, the reactions and species which make up the plasma chemistry are conveniently managed in the Model Builder. When the fluid velocity and gas temperature are of interest, there are physics interfaces available for laminar flow and heat transfer. There are several options available when coupling the charged species transport to the electromagnetic fields. Poisson's equation for the electrostatic potential is always solved. Modeling inductively coupled plasmas where induction currents are responsible for sustaining the plasma requires the AC/DC Module. For wave-heated discharges (microwave plasmas), the RF Module is required.

<mark>т</mark>р

For more information go to www.comsol.com/products/plasma

RF Module

The RF Module solves problems in the general field of electromagnetic waves, such as RF and microwave applications, optics, and photonics. The underlying equations for electromagnetics are automatically available in all of the physics interfaces—a feature unique to COMSOL Multiphysics. This also makes nonstandard modeling easily accessible.

The module is useful for component design in virtually all areas where you find electromagnetic waves, such as:

- Antennas
- Waveguides and cavity resonators in microwave engineering
- · Optical fibers
- · Photonic waveguides
- · Photonic crystals
- Active devices in photonics

The physics interfaces cover the following types of electromagnetics field simulations and handle time-harmonic, time-dependent, and eigenfrequency/eigenmode problems:

- In-plane, axisymmetric, and full 3D electromagnetic wave propagation
- Full vector mode analysis in 2D and 3D

Material properties include inhomogeneous and fully anisotropic materials, media with gains or losses, and complex-valued material properties. In addition to the standard postprocessing features, the module supports direct computation of S-parameters and far-field patterns. You can add ports with a wave excitation with specified power level and mode type, and add PMLs (perfectly matched layers) to simulate electromagnetic waves that propagate into an unbounded domain. For time-harmonic simulations, you can use the scattered wave or the total wave.

Using the multiphysics capabilities of COMSOL Multiphysics you can couple simulations with heat transfer, structural mechanics, fluid flow formulations, and other physical phenomena.

This module also has interfaces for circuit modeling, a SPICE interface, and support for importing ECAD drawings.

For more information go to www.comsol.com/products/rf

Structural Mechanics Module

The Structural Mechanics Module solves problems in the fields of structural and solid mechanics, adding special physics interfaces for modeling shells and beams, for example.

The physics interfaces in this module are fully multiphysics enabled, making it possible to couple them to any other physics interfaces in COMSOL Multiphysics or the other modules. Available physics interfaces include:

- · Solid mechanics for 2D plane stress and plane strain, axial symmetry, and 3D solids
- Piezoelectric modeling
- Beams in 2D and 3D, Euler theory

- Truss and cable elements
- · Shells and plates

The module's study capabilities include static, eigenfrequency, time dependent (transient), frequency response, and parametric studies, as well as contact and friction. There are also predefined interfaces for linear elastic and viscoelastic materials. Materials can be isotropic, orthotropic, or fully anisotropic, and you can use local coordinate systems to specify material properties. Large deformations can also be included in a study.

Coupling structural analysis with thermal analysis is one example of multiphysics easily implemented with the module, which provides predefined multiphysics interfaces for thermal stress and other types of multiphysics. Piezoelectric materials, coupling the electric field and strain in both directions are fully supported inside the module through special multiphysics interfaces solving for both the electric potential and displacements. Piezoelectric materials can also be analyzed with the constitutive relations on either stress-charge or strain-charge form. Structural mechanics couplings are common in simulations done with COMSOL Multiphysics and occur in interaction with, for example, fluid flow (fluid-structure interaction, FSI), chemical reactions, acoustics, electric fields, magnetic fields, and optical wave propagation.

For more information go to www.comsol.com/products/ structural-mechanics

Subsurface Flow Module

The earth and surrounding planets are a giant laboratory filled with an unlimited array of basic physics and multiphysics interactions. Whether in concert or alone, these physical phenomena alter our access to important resources, affect the quality of the environment, shape the ground beneath our feet on earth, and form other planets.

The Subsurface Flow Module is used in the quantitative investigation of geophysical and environmental phenomena, especially within the area of subsurface flow. The module combines physics interfaces for fundamental processes and links to COMSOL Multiphysics and the other modules for structural mechanics and electromagnetics analyses. New physics represented include heating from radiogenic decay that produces the geotherm, which is the increase in background temperature with depth. You can use the variably saturated flow interfaces to analyze unsaturated zone processes (important to environmentalists) and two-phase flow (of particular interest in the petroleum industry as well as steam-liquid systems). Important in subsurface flow, the heat transfer and chemical transport interfaces explicitly account for physics in the liquid, solid, and gas phases.

The interfaces, options, and functions are tailored to account for subsurface flow and geologic process terminology. The Heat Transfer branch of the Model Wizard, for example, include features to superpose a background geotherm without incorporating it as a boundary condition. These interfaces also include options to automate the calculation of effective thermal properties for multicomponent systems.

The Fluid Flow branch represent a wide range of possibilities. The Richards' Equation interface describes nonlinear flow in variably saturated porous media. The options for saturated porous media include the Darcy's Law interface for slow flow and the Brinkman Equations interface where shear is non-negligible. The Single-Phase Flow, Laminar interface uses the Navier-Stokes equations to cover free flows and the Fracture Flow interface is used for modeling flow in fractures.

The module also treats the transport of chemicals and their reactions with the Chemical Species Transport branch. The Solute Transport interface account for chemical transfer in solid, liquid, and gas phases for free, saturated, and variably saturated fluid flows. The Subsurface Flow Module Model Library has a number examples linking these interfaces together.

For more information go to www.comsol.com/products/subsurface-flow

CAD Import and LiveLink Connections

<mark>т</mark>р

COMSOL includes packages for importing CAD files into COMSOL Multiphysics and LiveLinks, which provide bidirectional interfaces to SolidWorks®, Creo[™] Parametric, Pro/ENGINEER®, Autodesk Inventor®, AutoCAD®, and SpaceClaim®. The following products are available:

- CAD Import Module, for file import of CAD drawings in Parasolid, SAT (ACIS®), STEP, IGES, SolidWorks, Pro/ENGINEER, and Inventor formats.
- CATIA V5 Import Module, which requires the CAD Import Module, imports CAD drawings in the CATIA V5 format.

- COMSOL LiveLink for SolidWorks, which provides a fully-associative bidirectional link to SolidWorks.
- COMSOL LiveLink for Creo Parametric, which provides a fully-associative bidirectional link to Creo Parametric.
- COMSOL LiveLink for Pro/ENGINEER, which provides a fully-associative bidirectional link to Pro/ENGINEER.
- COMSOL LiveLink for Inventor, which provides a fully-associative bidirectional link to Autodesk Inventor.
- COMSOL LiveLink for AutoCAD, which provides a fully-associative bidirectional link to AutoCAD.
- COMSOL LiveLink for SpaceClaim, which provides a fully-associative bidirectional link to SpaceClaim.

LiveLink for MATLAB

The LiveLink for MATLAB® gives you access to all modeling functionality in COMSOL and its add-ons through MATLAB. The interface in the LiveLink is based on the COMSOL API. The product includes utility functions for producing graphics in MATLAB figure windows, accessing COMSOL data, and performing general results analysis and other postprocessing.

Overview of the User's Guide

The *COMSOL Multiphysics User's Guide* gets you started with modeling using COMSOL Multiphysics. See the individual module User's Guides for information specific to a specialized module (see The COMSOL Modules for a list).

As detailed in the section Where Do I Access the Documentation and Model Library? this information is also searchable from the COMSOL Multiphysics software **Help** menu.

TABLE OF CONTENTS, GLOSSARY, AND INDEX

To help you navigate through this guide, see the Contents, Glossary, and Index.

ENVIRONMENT

The COMSOL Modeling Environment chapter provides an overview of the COMSOL modeling environment as controlled by COMSOL Desktop and the tools and windows it provides. Topics include the The COMSOL Desktop Environment and an Introduction to the Model Wizard and the Model Builder.

DEFINITIONS

The chapter describes the global and local (model) definitions features. Depending on the geometric scope, you add the feature nodes described in this section to either the Global Definitions node or under the Definitions node for a particular model. Topics include Operators, Functions, and Variables Reference, Variables, Global and Local Functions, and Coordinate Systems.

VISUALIZE

The Visualization and Selection Tools chapter describes the tools used to visualize and control how you view models and select parts of the model geometry in the Graphics window and the settings windows. Important topics include Working with Geometry, User-Defined Selections, and User-Defined Views.

GEOMETRY

The Geometry Modeling and CAD Tools chapter covers geometry modeling in 1D, 2D, and 3D with examples of solid modeling, boundary modeling, Boolean operators, and other CAD tools in COMSOL Multiphysics. In addition, it shows how to use the

tools for exploring geometric properties, such as volumes and surfaces. There is also information about using external CAD data. Topics include Creating a Geometry for Successful Analysis, The COMSOL Multiphysics Geometry and CAD Environment, and Creating a 3D Geometry Model.

MATERIAL

The Materials chapter introduces you to the material databases included with COMSOL Multiphysics. Topics include a Materials Overview, Adding Predefined Materials, User-Defined Materials and Libraries, and Using Functions.

MODELING

Building a COMSOL Model explains a range of methods and topics used when building models in COMSOL Multiphysics: Topics include more information about The Model Wizard and Model Builder, details about Model Administration, The Physics Feature Nodes, Specifying Model Equation Settings, Periodic Boundary Conditions, Calculating Accurate Fluxes. and Using Units.

PHYSICS INTERFACES

The Overview of the Physics Interfaces chapter briefly describes The COMSOL Multiphysics Physics Interfaces as well as some general Modeling Guidelines for effective modeling. The last section describes the Equations for the Physics Interfaces.

AC/DC

The AC/DC Branch chapter explains the physics interfaces available for modeling electromagnetics, which you find under the AC/DC branch () in the Model Wizard. It also contains sections about general fundamentals and theory for electric fields.

ACOUSTICS

The Acoustics Branch chapter describes how to use the Pressure Acoustics, Frequency Domain interface, found under the Acoustics branch ())) in the Model Wizard, for modeling and simulation of acoustics and vibrations.

CHEMICAL SPECIES TRANSPORT

The Chemical Species Transport Branch chapter explains how to use the Transport of Diluted Species interface, found under the Chemical Species Transport branch (******) in the Model Wizard, to model and simulate mass transfer by diffusion and convection based on Fick's law of diffusion.

FLUID FLOW

HEAT TRANSFER

The Heat Transfer Branch chapter describes the different types of Heat Transfer interfaces (Heat Transfer in Solids and Heat Transfer in Fluids), and the Joule Heating interface, all found under the Heat Transfer branch ($\frac{11}{100}$) in the Model Wizard.

SOLID MECHANICS

The Structural Mechanics Branch chapter explains how to use the Solid Mechanics interface, found under the Structural Mechanics branch () in the Model Wizard, to simulate and analyze applications involving solid mechanics. The interface is used for stress analysis and general solid mechanics simulation.

EQUATION BASED

The Equation-Based Modeling chapter describes the use of the mathematics interfaces, found under the Mathematics branch (Δu) in the Model Wizard, which are used for equation-based modeling. With those interfaces you can solve various types of PDEs using different formulations. You can also solve ODEs and other global equations.

SENSITIVITY

The Sensitivity Analysis chapter describes how to perform sensitivity analysis using the Sensitivity interface, found under the Mathematics>Optimization and Sensitivity (

MULTIPHYSICS

Multiphysics Modeling discusses how to use COMSOL Multiphysics for multiphysics modeling and coupled-field analyses. It describes various ways to build multiphysics models and includes an overview of the available predefined multiphysics interfaces in COMSOL Multiphysics and the add-on modules. Topics include Multiphysics Modeling Approaches, Using Predefined Multiphysics Interfaces, Adding Physics Sequentially, Building a Multiphysics Model Directly, Adding Multiphysics Couplings, and Deleting Physics Interfaces.

DEFORMED MESHES

The Deformed Geometry and Moving Mesh Interfaces chapter explains how to use the modeling interfaces that control mesh deformation. It also contains fundamentals about deformed meshes and information about the Eulerian and Lagrangian formulations of the physics, the frame types that support these formulations, and the arbitrary Lagrangian-Eulerian (ALE) method.

MESH

The Meshing chapter summarizes how to create and control your mesh for 1D, 2D, and 3D geometries in COMSOL Multiphysics. It also explains the possibilities for importing and exporting meshes in different formats. Topics include Creating Meshes, Free Meshing, Structured Meshes, and Clearing Meshes and Deleting Meshing Sequences.

SOLVER

The Solvers and Study Types chapter lists the various types of solvers and studies in COMSOL Multiphysics and explains the study steps and solver configurations. It also describes the major solvers and settings as well as batch jobs, parametric sweeps, and cluster computing. See also the COMSOL Multiphysics Reference Guide and the Optimization Module User's Guide for other supplementary information

RESULTS

The Results Evaluation and Visualization chapter helps you analyze results in COMSOL Multiphysics and describes numerous result-evaluation and visualization tools, including advanced graphics, data display, and export functions. Topics include Processing and Analyzing Results, Defining Data Sets, Creating 1D, 2D, 3D, and Polar Plots, Creating Cross-Section Plots and Combining Plots, Defining Derived Values and Tables, and Exporting Data and Images.

RUNNING

The last chapter, Running the COMSOL Software, provides an overview of the different ways that you can run the COMSOL software in addition to the COMSOL Desktop graphical user interface. The topics include Running COMSOL, COMSOL Client/Server Architecture, Running COMSOL Client/Server, and Running COMSOL in Parallel.

The COMSOL Documentation Set

The full documentation set that ships with COMSOL Multiphysics consists of the following titles:

- COMSOL Quick Installation Guide—basic information for installing the COMSOL software and getting started. Included in the DVD package.
- *Introduction to COMSOL Multiphysics*—information about version 4.3 and how to build models using the desktop environment. Included in the DVD package.
- *COMSOL License Agreement*—the license agreement. Included in the DVD package.
- COMSOL Installation and Operations Guide—besides covering various installation options, it describes system requirements and how to configure and run the COMSOL software on different platforms, including client/server architectures as well as shared-memory and distributed (cluster) parallel versions.
- *COMSOL Multiphysics User's Guide*—the book you are reading, it covers the functionality of COMSOL Multiphysics across its entire range from geometry modeling to results evaluation and visualization, including the interfaces for physics and equation-based modeling. It serves as a tutorial and a reference guide to using COMSOL Multiphysics.
- COMSOL Multiphysics Reference Guide—this book reviews geometry, mesh, solver, and results features and provides detailed information about their settings and options. Additionally, it describes some advanced functionality and settings in COMSOL Multiphysics and provides background material and references.
- COMSOL Java API Reference Guide—this book provides details about features and techniques that help you control COMSOL Multiphysics using its application programming interface (API). The COMSOL Java API can be used from a standalone Java application as well as from the LiveLink[™] for MATLAB® interface.

In addition, each of the optional modules has a *User's Guide* as described in The COMSOL Modules. The documentation for the optional CAD Import Module and LiveLinks to CAD packages is available in separate *User's Guides*, and the documentation for the optional Material Library in the *Material Library User's Guide*.

The COMSOL LiveLink[™] for MATLAB® User's Guide shows how to access all of COMSOL Multiphysics' capabilities from the MATLAB programming environment.

A number of Internet resources provide more information about COMSOL Multiphysics, including licensing and technical information. The electronic documentation, Dynamic Help, and the Model Library are all accessed through the COMSOL Desktop.

If you are reading the documentation as a PDF file on your computer, the blue links do not work to open a model or content referenced in a different guide. However, if you are using the online help in COMSOL Multiphysics, these links work to other modules, model examples, and documentation sets.

THE DOCUMENTATION

П

Important

The COMSOL Multiphysics User's Guide and COMSOL Multiphysics Reference Guide describe all interfaces and functionality included with the basic COMSOL Multiphysics license. These guides also have instructions about how to use COMSOL Multiphysics and how to access the documentation electronically through the COMSOL Multiphysics help desk.

To locate and search all the documentation, in COMSOL Multiphysics:

- Press F1 for Dynamic Help,
- · Click the buttons on the toolbar, or
- Select Help>Documentation ([7]) or Help>Dynamic Help ([1]) from the main menu

and then either enter a search term or look under a specific module in the documentation tree.

THE MODEL LIBRARY

Each model comes with documentation that includes a theoretical background and step-by-step instructions to create the model. The models are available in COMSOL as MPH-files that you can open for further investigation. You can use the step-by-step instructions and the actual models as a template for your own modeling and applications.

SI units are used to describe the relevant properties, parameters, and dimensions in most examples, but other unit systems are available.

To open the Model Library, select **View>Model Library** () from the main menu, and then search by model name or browse under a module folder name. Click to highlight any model of interest, and select **Open Model and PDF** to open both the model and the documentation explaining how to build the model. Alternatively, click the **Dynamic Help** button () or select **Help>Documentation** in COMSOL to search by name or browse by module.

The model libraries are updated on a regular basis by COMSOL in order to add new models and to improve existing models. Choose **View>Model Library Update** (**W**) to update your model library to include the latest versions of the model examples.

If you have any feedback or suggestions for additional models for the library (including those developed by you), feel free to contact us at info@comsol.com.

CONTACTING COMSOL BY EMAIL

For general product information, contact COMSOL at info@comsol.com.

To receive technical support from COMSOL for the COMSOL products, please contact your local COMSOL representative or send your questions to support@comsol.com. An automatic notification and case number is sent to you by email.

COMSOL WEB SITES

Main Corporate web site	www.comsol.com
Worldwide contact information	www.comsol.com/contact
Technical Support main page	www.comsol.com/support
Support Knowledge Base	www.comsol.com/support/knowledgebase
Product updates	www.comsol.com/support/updates
COMSOL User Community	www.comsol.com/community

Checking for Software Updates

COMSOL provides software updates that improve the software and correct issues found. To check is an update is available, choose **Check For Updates** from the **Help** menu. The program then checks if an update that is applicable but not yet installed is available from the COMSOL website. If an update is available, an **Update** dialog box appears where you click **Download** to download the update directly or click **Browse Update** to open the COMSOL website where you can read about and download the update. If no updates are available, the **Update** dialog box reports that your COMSOL installation is up-to-date. To check for updates automatically each time that you start COMSOL Multiphysics, select the **Check for updates at launch** check box under **Product updates** on the **Updates** page in the **Preferences** dialog box.

Typographical Conventions

All COMSOL user's guides use a set of consistent typographical conventions that make it easier to follow the discussion, understand what you can expect to see on the graphical user interface (GUI), and know which data must be entered into various data-entry fields.

CONVENTION EXAMPLE text highlighted in blue Click text highlighted in blue to go to other information in the PDF. When you are using the online help desk in COMSOL Multiphysics, these links also work to other modules, model examples, and documentation sets. **boldface** font A **boldface** font indicates that the given word(s) appear exactly that way on the COMSOL Desktop (or, for toolbar buttons, in the corresponding tip). For example, the Model **Builder** window (+) is often referred to and this is the window that contains the model tree. As another example, the instructions might say to click the Zoom Extents button ((), and this means that when you hover over the button with your mouse, the same label displays on the COMSOL Desktop. Forward arrow symbol > The forward arrow symbol > is instructing you to select a series of menu items in a specific order. For example, Options>Preferences is equivalent to: From the Options menu. choose Preferences. Code (monospace) font A Code (monospace) font indicates you are to make a keyboard entry in the user interface. You might see an

> instruction such as "Enter (or type) 1.25 in the **Current density** field." The monospace font also is an indication of

programming code or a variable name.

In particular, these conventions are used throughout the documentation:

CONVENTION	EXAMPLE
Italic <i>Code</i> (monospace) font	An italic <i>Code</i> (monospace) font indicates user inputs and parts of names that can vary or be defined by the user.
Arrow brackets <> following the Code (monospace) or <i>Code</i> (italic) fonts	The arrow brackets included in round brackets after either a monospace Code or an italic <i>Code</i> font means that the content in the string can be freely chosen or entered by the user, such as feature tags. For example, model.geom($<$ tag>) where $<$ tag> is the geometry's tag (an identifier of your choice).
	When the string is predefined by COMSOL, no bracket is used and this indicates that this is a finite set, such as a feature name.

KEY TO THE GRAPHICS

Throughout the documentation, additional icons are used to help navigate the information. These categories are used to draw your attention to the information based on the level of importance, although it is always recommended that you read these text boxes.

ICON	NAME	DESCRIPTION
	Caution	A Caution icon is used to indicate that the user should proceed carefully and consider the next steps. It might mean that an action is required, or if the instructions are not followed, that there will be problems with the model solution.
0	Important	An Important icon is used to indicate that the information provided is key to the model building, design, or solution. The information is of higher importance than a note or tip, and the user should endeavor to follow the instructions.
Ē	Note	A Note icon is used to indicate that the information may be of use to the user. It is recommended that the user read the text.
T	Tip	A Tip icon is used to provide information, reminders, shortcuts, suggestions of how to improve model design, and other information that may or may not be useful to the user.
ପ୍	See Also	The See Also icon indicates that other useful information is located in the named section. If you are working on line, click the hyperlink to go to the information directly. When the link is outside of the current PDF document, the text indicates this, for example See The Laminar Flow Interface in the <i>COMSOL Multiphysics User's Guide</i> . Note that if you are in COMSOL Multiphysics' online help, the link will work.

ICON	NAME	DESCRIPTION
	Model	The Model icon is used in the documentation as well as in COMSOL Multiphysics from the View>Model Library menu. If you are working online, click the link to go to the PDF version of the step-by-step instructions. In some cases, a model is only available if you have a license for a specific module. These examples occur in the COMSOL Multiphysics User's Guide. The Model Library path describes how to find the actual model in COMSOL Multiphysics, for example
		If you have the RF Module, see <u>Radar Cross Section</u> : Model Library path RF_Module/Tutorial_Models/radar_cross_section
Space	Dimension	Another set of icons are also used in the Model Builder—the model space dimension is indicated by 0D •, ID —, ID axial symmetry , 2D , 2D axial symmetry , and 3D icons. These icons are also used in the documentation to clearly list the differences to an interface, feature node, or theory section, which are based on space dimension.

The COMSOL Modeling Environment

The COMSOL Desktop provides a complete and integrated modeling environment for creating, analyzing, and visualizing multiphysics models. This chapter provides an overview of the COMSOL modeling environment as controlled by COMSOL Desktop and the tools and windows it provides.

In this chapter:

- The COMSOL Desktop Environment
- Introduction to the Model Wizard and the Model Builder
- Introduction to the COMSOL Windows
- Keyboard Shortcuts
- Key to the Nodes and Toolbar Buttons

The COMSOL Desktop Environment

Introduction

This section describes the major components in the COMSOL Multiphysics environment. This is completely controlled by the *COMSOL Desktop*, which you can personalize to your own modeling needs and preferences. Primarily consisting of the *Model Builder, node settings*, and *Graphics* windows, other dockable windows can be opened, closed, and placed according to the modeling settings you need to access and the GUI configuration you want to work in. You can save these configurations, and the last opened configuration is always displayed when you open COMSOL Multiphysics again.

Figure 2-1: The COMSOL Desktop with its major windows in a widescreen layout.

The following sections describe how to configure the COMSOL Desktop layout and language and the main functionality of the major windows, most of which appear in Figure 2-1. These topics are included:

• Changing the COMSOL Desktop Layout

- Moving Between Windows and Sections on the COMSOL Desktop
- Changing the COMSOL Desktop Language
- Printing from the COMSOL Desktop
- The Main Menu and Toolbar

Changing the COMSOL Desktop Layout

To customize the COMSOL Desktop environment, you rearrange the windows by moving, resizing, detaching, or docking each window. Predefined layouts are also available from the **View>Desktop Layout** menu.

For any window, perform the following tasks as required.

MOVING OR RESIZING THE WINDOW

- Click-and-drag the window tab (the tab is where the window name, Model Builder () for example, displays) to where you want it.
- Right-click the window tab and select **Move>View** (to move a separate window) Move the mouse to where you want to the view or tab to display and left-click to confirm the move.
- Right-click the window tab and select **Move>Tab Group** (to move several tabbed windows) from the drop-down list. Move the mouse to where you want to the view or tab to display and left-click to confirm the move.

MAXIMIZING AND RESTORING A WINDOW'S ORIGINAL POSITION

Double-click a window tab to maximize the window and then double-click it again to restore it.

DETACHING A WINDOW FOR MOVING AND RESIZING

Right-click the window tab and select **Detached** so that you can move it and resize it as a separate window. Select **Detached** again to dock it on the COMSOL Desktop.

MINIMIZING OR MAXIMIZING THE WINDOW

- Click the Minimize or Maximize button in the top-right corner.
- Right-click the window tab and select Minimize or Maximize from the list.

RESIZING THE WINDOWS

Hover your mouse over the window borders until a double arrow displays. Click-and-drag the borders between windows until the layout is how you want it.

SETTING THE LAYOUT TO WIDESCREEN OR REGULAR SCREEN Select Options>Desktop Layout>

• Widescreen Layout: suitable for widescreen monitors.

The Model Builder window and the settings window display side by side.

• **Regular Screen Layout**: suitable for monitors with a regular screen (4:3).

The Model Builder window displays on top of the settings window.

RESETTING THE DESKTOP TO DEFAULT SETTINGS

Select **View>Desktop Layout>Reset Desktop** or click the **Reset Desktop** button () on the main toolbar. The default settings are restored either for a widescreen layout or a regular screen layout depending on your monitor.

CHANGING THE FONT FOR PLOT LABELS AND TITLES

COMSOL Multiphysics uses a default font for the axis labels and titles in plots. You can change the font family and font size in the **Preferences** dialog box. This might be necessary to display non-Latin characters such as Chinese and Japanese characters, for example. To change the font:

- I From the **Options** menu, select **Preferences**.
- 2 In the list to the left in the Preferences dialog box, click Graphics.
- **3** Under **Font**, select a font **Family** from the list and enter a font **Size** (in points). The default is to use a predefined **default** font with a font **Size** of 9 points. Depending on the operating system and the installed fonts on the computer, you can select from a number of other font families.
- 4 Click OK.

The program stores the specified font family and size as a preference setting, so you only have to change it once.

- Editing Preferences Settings
- Key to the Nodes and Toolbar Buttons

Moving Between Windows and Sections on the COMSOL Desktop

You can use the mouse and the options described in Changing the COMSOL Desktop Layout to select, move, and resize windows. In addition, these keyboard shortcuts provide quick ways to navigate between the windows on the COMSOL Desktop and to switch focus from one window to another or between sections in the settings window.

- Press Ctrl+Tab to switch focus to the next window on the desktop.
- Press Ctrl+Shift+Tab to switch focus to the previous window in the desktop.
- Press Ctrl+Alt+left arrow to switch focus to the **Model Builder** window (
- Press Ctrl+Alt+right arrow to switch focus to the settings window.
- Press Ctrl+Alt+up arrow to switch focus to the previous section in the settings window.
- Press Ctrl+Alt+down arrow to switch focus to the next section in the settings window.

Keyboard Shortcuts

• Key to the Nodes and Toolbar Buttons

Changing the COMSOL Desktop Language

- I Start COMSOL Multiphysics.
- 2 Select Options>Preferences.
- 3 Click General and select an available Language for the graphical user interface (GUI). The following languages are available: Traditional Chinese, Simplified Chinese, English, French, German, Italian, Japanese, Korean, or Spanish.
- **4** Click **OK**. A message displays indicating COMSOL Multiphysics must be restarted for the changes to take effect.
- 5 Click **OK**, exit and re-open COMSOL to display the GUI in the selected language.

Editing Preferences Settings

Printing from the COMSOL Desktop

To print the contents in the **Graphics** window, click the **Print** button () on the main toolbar, select **Print** from the **File** menu, or press Ctrl+P. Then **Print** dialog box then opens. In the **Print** dialog box, follow these steps:

- I Under Image, from the Size list select Manual (the default) to define the print size manually using the settings below, or select **Current** to use the current size of the **Graphics** window. Of the settings below, only the **Antialiasing** check box is then available.
- 2 Select a Unit to define the image size—Millimeters (mm), Inches (in), or Pixels (px).
- **3** Select the **Lock aspect ratio** check box to maintain the calculation of the width and height (if one or the other is changed).
- 4 Enter the Width and Height in the units selected for the image.
- **5** Enter the **Resolution** for the image in DPI (dots per inch). The default value is 300 DPI.

Under these settings, the dialog box shows the resulting image size and size on the screen in pixels.

- **6** The **Antialiasing** check box is cleared by default. Click to select if required. Antialiasing minimizes distortion such as jagged edges in the image.
- 7 Under Layout, the Title, Legend, Axes, and Logotype check boxes are selected by default to display the information on the screenshot if you select the Include check box. You can then also edit the selections for including these parts of the plot.
- 8 Enter a Font size in points (pt). The default value is 9 pt.
- 9 Select a Background—Current or Color. Current is the background color in the plot window on the COMSOL Desktop. If Color is chosen, click the Color button to select a custom color from the color palette that opens.
- **10** Click **OK** to print the contents of the **Graphics** window. Typically the operating system's **Print** dialog box first opens for selecting a printer, the number of copies, and other printer settings.

For generating snapshots of the **Graphics** window to a file or the clipboard, click the **Image Snapshot** button (**1**) on the Graphics toolbar.

The Main Menu and Toolbar

At the top of every window is the main menu and toolbar, which has a drop down menu and standard buttons for frequently used actions. See Table 2-1 and Figure 2-2.

I	Main me	enu				-			
ĺ	File	Edit	View	Options	Help				
		Ð	98	\$ 🤿	ē.	? 💶	 1	•	Main toolbar buttons

Figure 2-2: The main menu and toolbar buttons.

NAME BUTTON		DESCRIPTION OR LINK TO MORE INFORMATION		
File		Create new models, open existing models, save, print, and create a model thumbnail.		
		Model Administration		
		• Printing from the COMSOL Desktop		
		Capturing and Copying Screenshots		
Edit	_	Undo or redo operations; copy, paste, duplicate, and delete nodes; clear all meshes or clear all solutions.		
		Keyboard Shortcuts		
		• Copying, Pasting, and Duplicating Nodes		
		• Clearing All Meshes and Clearing all Solutions		
View	_	Introduction to the COMSOL Windows		

TABLE 2-1: THE MAIN MENU AND TOOLBAR

NAME	BUTTON	DESCRIPTION OR LINK TO MORE INFORMATION		
Options	_	Editing Preferences Settings		
		Checking and Controlling Products and		
		Licenses Used		
Help	-	Open Help and other online resources, check for updates, and view product information.		
		• The Help Window		
		• The About COMSOL Multiphysics Box		
New or File>New		Create a new model file and open the Model Wizard.		
Open	B	Open an existing model file located on the computer.		
Save or File>Save	8	Saving COMSOL Multiphysics Model Files		
Print	a	Printing from the COMSOL Desktop		
Undo or Edit>Undo	\$	Undoing and Redoing Operations		
Redo or Edit>Redo	¢	Undoing and Redoing Operations		
Reset Desktop	ē	Changing the COMSOL Desktop Layout		
Documentation or Help>Documentation	?	The Help Window		
Dynamic Help or Help>Dynamic Help	2	The Help Window		
Toolbar		Dynamic list of available toolbars based on the window open or the stage of the modeling process For example, when building a Geometry.		

TABLE 2-1: THE MAIN MENU AND TOOLBAR

THE DIFFERENCE BETWEEN NODES, BUTTONS, AND ICONS

Node

A node is located in the **Model Builder** and has an icon image to the left of it. Right-click a node to open a context menu and to perform actions.

Button

Click a button to perform an action. Usually located on a toolbar (the main toolbar or the Graphics toolbar, for example), or in the top part of a settings window.

lcon

An icon is an image that displays on a window (for example, the **Model Wizard** or **Model Library**) or displays in a context menu when a node is right-clicked. Sometimes selecting an item with an icon from a node's context menu adds a node with the same image and name, sometimes it simply performs the action indicated (for example, **Delete, Enable**, or **Disable**).

Introduction to the Model Wizard and the Model Builder

In this section:

- The Model Wizard
- Basic Steps to Build a Model
- The Model Builder Window
- About Sequencing in COMSOL Multiphysics
- Opening a Context Menu to Add Nodes
- Moving Nodes in the Model Tree
- Going to the Source Node
- Copying, Pasting, and Duplicating Nodes
- Expanding and Collapsing All Nodes
- Undoing and Redoing Operations
- Clearing All Meshes and Clearing all Solutions
- Sorting Nodes by Space Dimension and Type
 - Introduction to the COMSOL Windows

C See Also

- Key to the Nodes and Toolbar Buttons
- Building a COMSOL Model

The Model Wizard

When COMSOL Multiphysics is first opened, or when you start creating a new model, the GUI displays the Model Builder, Graphics, and Model Wizard windows. The *Model Wizard* window () contains a series of pages to help you in starting to build a model—*Select Space Dimension, Select Physics*, and *Select Study Type*.

C See Also The Model Wizard and Model Builder

THE SELECT SPACE DIMENSION PAGE

K Model Wizard	- 8
Select Space Dimension	수 🖨 🧭
3D	
② 2D axisymmetric	
© 2D	
① 1D axisymmetric	
© 1D	
© 0D	

THE ADD PHYSICS PAGE

On the **Add Physics** page, select one or more physics interfaces to include in the model. Use the **Add Selected** (.) or **Remove Selected** (...) buttons to easily add or remove physics interfaces for *multiphysics models*.

The tree organizes the available interfaces on the basis of application areas such as fluid flow, heat transfer, and structural mechanics. The physics found in the modules your license supports display in the different application areas. In some cases, licensing of a module adds physics interfaces to these application areas as well as attributes to existing physics interfaces, which are enhanced with additional functionality. The **Recently Used** branch () lists the last five physics interfaces used in recent modeling sessions.

When selecting and adding a physics interface to the **Selected physics** section, you can review and optionally modify any dependent variable names in the **Dependent variables**

section and, for some physics interfaces and PDE interfaces, specify the number of dependent variables. For other physics interfaces you can edit both the name of the field and the field components. Examples of fields with components are the displacement field in structural mechanics and the velocity field in fluid flow.

When you are finished adding the physics, click the **Next** button (\Rightarrow) to go to the **Select Study Type** page.

THE SELECT STUDY TYPE PAGE

From the branches under **Studies** (22), you select the type of study you want to perform. The available options on the **Select Study Type** page depend on the set of physics interfaces (and mathematics interfaces) included in the model. Some study types are applicable to all physics for which you choose to solve, while others are not; but all are in some way available. You can select the study type from one of the following branches:

- **Preset Studies**—The study types suggested by a single physics interface (or mathematics interface) if only one has been chosen.
- **Preset Studies for Selected Physics**—The study types applicable to all of the interfaces which you have chosen to solve for.
- **Custom Studies**—This branch contains study types for which not all physics solved for can generate suitable equations:
 - **Preset Studies for Some Physics**—The study types recognized by some, but not all, of the interfaces being solved for.
 - Other studies—Any fundamental study types (Stationary, Time Dependent,
 Eigenfrequency, Eigenvalue and Frequency Domain) which are not applicable to any of the interfaces being solved for. There is also an empty study type.

The **Selected Physics** table shows all physics interfaces included in the model. You can choose not to solve for a particular physics in the selected study by clicking in the **Solve for** column. This updates the contents of the different branches under **Studies** to reflect applicable studies only for the physics being solved for.

- In the Model Wizard, Select a Space Dimension for the model: 3D, 2D axisymmetric, 2D,
 ID axisymmetric, ID, or 0D. Remember, not all physics interfaces are available for all space dimensions.
- **2** Click the **Next** button (\Rightarrow) .

The Add Physics page opens.

There are several ways to select one or several physics interfaces to add to the model. There are also mathematics interfaces (for PDEs, ODEs, and DAEs) in the Mathematics branch. Double-click the physics interface, click the Add Selected (+) or Remove Selected (>) buttons, or right-click and select Add Selected. The Selected physics section lists your choices.

When selecting and adding physics or mathematics interfaces in the **Selected physics** section, you can review and optionally modify its dependent variable names in the **Dependent variables** section. For some interfaces, also specify the number of dependent variables.

- 4 Click the **Next** button (\Rightarrow) .
- 5 On the Select Study Type page, select a study type.
- 6 Click the Next button (⇒) (when available), otherwise click the Finish button (
 it to confirm the selections and close the Model Wizard.

After clicking **Finish**, other nodes, such as **Materials** (******) and **Mesh** (******) automatically display in the **Model Builder** in the default sequence.

Click the **Finish** button (**Solution**) anytime, and any operation selected can be added to, changed, or deleted in the **Model Builder**.

Model Nodes by Space Dimension

When you click the **Finish** button (*****) on the **Model Wizard** window, a **Model** node is added to the **Model Builder** based on the space dimension selected in the first step. The Model node has different icons as shown in Table 2-2.

ICON	SPACE DIMENSION
•	no space dimension (0)
=	ID
H	ID axisymmetric
Ø	2D
d.	2D axisymmetric
	3D

TABLE 2-2: THE MODEL ICONS BY SPACE DIMENSION

The Model Builder Window

The modeling procedure is controlled through the **Model Builder** window ($\uparrow \uparrow \uparrow$), which includes a *model tree* with all the functionality and operations for building and solving models and displaying the results. These are introduced to your modeling procedure by adding a *branch*, such as the *Geometry* branch (\checkmark). Branches can have further nodes that relate to their parent node. A *leaf* is considered to be the final node in a branching structure (tree) and usually has a number of *attributes* with their own *settings* that are characteristic to it. Branches and subbranches can also contain attributes and settings. See Figure 2-1.

Figure 2-3: The buttons located on the Model Builder window.

TABLE 2-3: BUTTONS ON THE MODEL BUILDER WINDOW

NAME	ICON	DESCRIPTION OR LINK TO MORE INFORMATION
Previous Node	¢	Navigate back to the last node selected. The button is enabled once you start to work in the Model Builder and navigate between nodes. See also Keyboard Shortcuts.
Next Node	⇒	Navigate to the next node in the sequence. See also Keyboard Shortcuts.
Show	<u>₩</u>	Showing and Expanding Advanced Physics Sections
Expand Sections	*	Showing and Expanding Advanced Physics Sections
Collapse All	"≣↑	Expanding and Collapsing All Nodes
Expand All	Ì≣↓	Expanding and Collapsing All Nodes
Minimize and Maximize		Available on most windows to maximize and minimize the window.

BRANCHES IN THE MODEL TREE

You can proceed through your modeling in the Model Builder by selecting the branches in the order suggested by their default positions, from the top down, or selecting and defining each branch as needed.

Model Builder	B
	-
a 🔯 busbar.mph	
a 😑 Global Definitions	
P _i Parameters	
a 🚺 Model 1	
Definitions	
🗞 Ti bolts	
🗾 Boundary System 1	
> 🚺 View 1	
Geometry 1	
Work Plane 1	
Extrude 1	
Work Plane 2	
Extrude 2	
b South Work Plane 3 Souther Structure Stru	
Form Union	
Materials	
 B B Copper 	
Filter Standard St	
✓ Joule Heating	
Doule Heating Doule Heating Model 1	
Electromagnetic Heat Source 1	
🐷 Boundary Electromagnetic Heat Source 1	
Bectric Insulation 1	
Thermal Insulation 1	
🙄 Initial Values 1	
Heat Flux 1	
② Electric Potential 1	
🕢 Ground 1	
Mesh 1	
Size	
Free Tetrahedral 1	
a 🎬 Study 1	
C Step 1: Stationary	
Solver Configurations	
a 🧰 Results	
Data Sets	
e-12 Derived Values	
Tables	
> 🛅 Temperature (jh)	
a 🛅 3D Plot Group 2	
Surface 1	
Export	
Reports	

The main branches include:

- The *Global Definitions branch* (): for global definitions, for example, defining parameters and functions that you can use everywhere.
- The *Model branches*: for defining models. A Model branch includes the associated subbranches of *Definitions* (≡), for locally defining parts of your model, Geometry, Materials, Physics, and Meshes. A Model branch includes functionality for local Definitions because several models can separately be defined in one multiphysics file, for example, when treating certain parts of the model in 2D and other parts in 3D, or when setting up a system model with several components.
- The *Study branch* (22): where you can set up study steps and solver configurations for solving a model using one or more study types for different analyses.
- The *Results branch* (**[**]): for presenting and analyzing results.
 - The Model Wizard and Model Builder
 - Key to the Nodes and Toolbar Buttons
 - Global and Local Definitions

- Building a COMSOL Model
- Solver Studies and Study Types
- Results Evaluation and Visualization
- Visualization and Selection Tools

SUBBRANCHES IN THE MODEL TREE

One level below, each Model branch contains the following subbranches:

- Just as the Global Definitions branch collects parameters, variables, and functions accessible at all levels in the Model Builder, the Definitions branch (one per Model) collects the definitions of variables, functions, and other objects whose geometric scope is restricted to a single model. An example of the type of objects you can add under the Definitions branch is the *Selection* feature (), which saves selections of geometric entities (boundaries, for example) that relate to a region or part of the overall geometry for reuse in multiple operations later in the modeling process.
- The *Geometry* branch (4) contains the definition of the model's geometry.
- Under the *Materials* branch (), you can collect all material properties organized in Materials nodes with a defined geometric scope. Material properties required by

any of the physics interfaces show up automatically in the defined material's settings window.

- Each *Physics Interface* you include in a model forms its own subbranch placed below the Materials branch.
- The *Mesh* branch ()) collects all meshes defined for a model. If there is only a single mesh in a model, its Mesh node appears directly under the corresponding Model node.
 - Geometry Modeling and CAD Tools
 - Global and Local Definitions
 - Materials

- Overview of the Physics Interfaces
- Key to the Nodes and Toolbar Buttons
- Meshing

NAVIGATING IN THE MODEL TREE

The following methods are available to select nodes, expand and contract branches, and move up and down the nodes in the model tree:

- To select a node and open its settings window, click the node in the model tree.
- To move to the node above, use the up arrow key; to move to the node below, use the down arrow key.
- To expand a branch to display all nodes in the branch, click the small plus sign next to the branch icon in the model tree, or press the right arrow key. To collapse a branch to display only the main branch node, click the small minus sign next to the branch icon in the model tree, or press the left arrow key.

About Sequencing in COMSOL Multiphysics

COMSOL Multiphysics operates through *sequencing*. By adding nodes to a model branch in the Model Builder in a certain order, you set up sequences of operations such as geometry, mesh, solver, and results sequences. The software records a sequence as a macro in the background. A solver sequence, for example, could define your model with one solver and then, using the returned solution, solve it with an alternative solver. If you make changes to a node, the software automatically updates other parts of the sequence that are dependent on this change. For most sequences, you run the sequence by right-clicking the top node for the branch and selecting **Build All** (geometry and mesh), **Compute** \equiv (studies), or **Plot** \swarrow (plot groups), or by pressing F8.

Opening a Context Menu to Add Nodes

Right-click nodes in the **Model Builder** to open a *context menu* and add additional, and relevant, functionality, operations, or attributes to the model sequence. After selecting an option from the list, a settings window opens to the right (by default) of the **Model Builder** window (T). In the context menu, a plus sign next to the icon means a node of that type is added to the Model Builder. On Windows, you can also open the context menu using the Menu key or by pressing Shift+F10, on Linux by pressing Shift+F10, and on the Mac by pressing Ctrl+F10.

The layout of the context menu depends whether the nodes are organized by space dimension. The default is not to sort the nodes. See Sorting Nodes by Space Dimension and Type for an example comparing the different context menus.

	Keyboard Shortcuts
2	Physics Node Context Menu Layout
See Also	• Key to the Nodes and Toolbar Buttons

Note

The order of the nodes in some of the branches affects the evaluation of the sequence that they define. In the following branches it is possible to move nodes up and down to control the evaluation of the sequence or the order in which they appear:

- The Selection nodes in the Definitions branch (\equiv).
- The Geometry nodes in the Geometry branch ()
- The Material nodes in the Materials branch (🏥).
- The nodes for physics interfaces (such as material models, boundary conditions, and sources) in the Physics branch ((), except the default nodes.
- The study step nodes in the Study branch (2022).

In addition, the order of the nodes can be rearranged in the following subbranches under Results ():

- The derived values nodes in the Derived Values branch (8.85).
- The table nodes in the Tables branch (. . .
- The plot nodes in the Plot Group branches ().
- The data, image, and movie export nodes in the Export branch (Pa)
- The Report nodes in the Reports branch (
 []]

To move nodes use one of the following methods:

Note

- Select the nodes and use the mouse to drop them in another applicable position in the model tree. A horizontal line indicates where in the model tree the moved (or copied) nodes get inserted when releasing the mouse.
- Right-click the selected nodes and select Move Up (\uparrow) or Move Down (\downarrow).
- Use the keyboard shortcuts Ctrl+up arrow or Ctrl+down arrow to move nodes up or down.

For physics interface nodes it is not possible to move the default nodes (for the default boundary condition, for example). It is possible to create a copy of a default node, which initially has no selection. To "click-and-drag" a default node creates a copy regardless if the Ctrl key is pressed or not. In the settings window for many nodes, other nodes can be referenced in the model tree such as a model, solution, study or study step, or data set.

Nodes where you refer to other nodes include plot groups, data sets, and solvers; in such nodes' settings windows, click the **Go to Source** button (**Constitution**) to move to the node that the selection in the list next to the button refers to.

Copying, Pasting, and Duplicating Nodes

It is possible to copy and paste many of the nodes in the Model Builder to create additional nodes with identical settings. Some nodes can also be duplicated underneath the original node. You can also move, copy, and duplicate nodes using "drag-and-drop" of nodes in the Model Builder.

After duplicating or copying nodes such as functions and selections, it is a good idea to change the name of the function or selection so that it is different from the original.

To select **Copy** , **Paste** , and **Duplicate** , either right-click selected nodes or select the options from the main **Edit** menu.

<mark>т</mark>р

Duplicate is a convenient way to copy and paste in one step.

USING COPY-PASTE FOR NODES

After selecting **Copy** , right-click the parent node (or from the main menu select **Edit>Paste**) and select **Paste Analytic**, for example, or press Ctrl+V to paste a copied node (an **Analytic** function node in this case) to the parent node's branch. You can also create a copy of a node by Ctrl-clicking it and dragging a copy to an applicable location. A small plus sign at the cursor indicates that you drag a copy of the selected node.

Nodes that can be copied (and duplicated) include the following:

• Functions, which are possible to copy from one **Definitions** or **Global Definitions** branch to another.

- Physics interface nodes, which can be copied within the same physics interface or to another identical physics interface.
- Study steps, which are possible to copy from one Study branch to another.
- Plot nodes, which are possible to copy from one plot group to another.
 - Global and Local Functions
 - Solver Studies and Study Types

- About Plot Groups and Plotting
- Moout Flot Groups and Flotting
- Copy in the COMSOL Multiphysics Reference Guide

DUPLICATING NODES

After right-clicking to select **Duplicate** in (or from the main menu selecting **Edit>Duplicate**), COMSOL Multiphysics adds identical nodes underneath the original nodes on the same branch. Duplicate nodes by Ctrl-clicking and dragging duplicates to an applicable location. A small plus sign at the cursor indicates that you drag duplicates of the selected nodes. Nodes that can be duplicated include the following:

- Global and Local Functions
- Selections (see User-Defined Selections)
- Model Couplings
- Coordinate Systems
- Probes
- Geometry objects (see Copying and Pasting Geometry Objects)
- Study steps (see Adding Study Steps)
- Plot Groups (see About Plot Groups and Plotting)
- Tables (see Defining Derived Values and Tables)
- Integrations in the Derived Values branch under Results
- Images, animations, plots, data, and meshes in the **Report** branch under **Results** (see Exporting Data and Images)

Expanding and Collapsing All Nodes

Using these buttons you can quickly see all current nodes in the **Model Builder** and also quickly collapse the tree to start from a minimal view of the model tree.

- To expand all nodes in the model tree, click the Expand All button (
) on the Model Builder's toolbar.
- To collapse all nodes in the model tree, except the top nodes on the main branch, click the Collapse All button (

Undoing and Redoing Operations

Undo is not possible for nodes that are built directly, such as geometry objects, solutions, meshes, and plots.

It is possible to undo the last operation for operations like adding, disabling, moving, and deleting nodes in the **Model Builder** as well as changing values in the settings window. You can undo or redo several successive operations.

- To undo the last operation, from the main menu, select Edit>Undo, or click the Undo button (
) on the main toolbar, or press Ctrl+Z.
- To redo an undone operation, from the main menu, select Edit>Redo, or click the Redo button (
 on the main toolbar, or press Ctrl+Y.

Clearing All Meshes and Clearing all Solutions

Use a **Clear** function to keep the features and be able to recreate the mesh or solution by building the sequence again. Use a **Delete** function to completely remove a mesh or solution.

Undo is not possible for nodes that are built directly, such as geometry objects, meshes, solutions, and plots.

If you have a model geometry with several meshes you can clear all meshes at the same time. From the main menu, select **Edit>Clear All Meshes** ($\frac{1}{2}$).

If you have a model geometry with several solutions you can clear all solutions at the same time. From the main menu, select **Edit>Clear All Solutions**.

C See Also

- Clearing Meshes and Deleting Meshing Sequences
- Clearing, Deleting, Disabling, and Enabling a Solver or Solutions

Sorting Nodes by Space Dimension and Type

The default setting, found under **Model Builder** in the Editing Preferences Settings section, disables sorting in new models. Go to the preference settings to change the default as required.

The Sort Nodes by Space Dimension (for physics interface nodes), Sort Nodes by Type (for Definitions nodes), or No Sorting options are available from the context menu for these features:

- Global Definitions—nodes can be organized by type: Variables, Functions, or Groups.
- Definitions—nodes can be organized by type: Functions, Variables, Selections, Probes, Model Couplings, Coordinate Systems, Pairs, and Domain Properties (this includes Perfectly Matched Layers and Infinite Elements).
- For any physics interface, nodes can be organized by space dimension, that is, by geometric entity level: **Domains**, **Boundaries**, **Edges** (3D only), or **Points**.

For physics interfaces, when either of these options is selected, there are changes to the way the nodes are organized in both the Model Builder as well as when you right-click to view the context menu.

ORGANIZING NODES BY SPACE DIMENSION

The default is **No Sorting** in the **Model Builder** for all new models. Right-click and select **Sort Nodes by Space Dimension** () from the context menu to both sort the nodes in the Model Builder and in the context menu (see Figure 2-4).

In Figure 2-4 for the Pressure Acoustics, Frequency Domain physics interface and when Sort by Space Dimension is selected, the default Pressure Acoustic Model and Initial Values

subnodes are included under the **Domains** node, and four boundary level nodes are included under **Boundaries**. However, there are no nodes under **Edges** or **Points** even though these nodes display in the **Model Builder**.

When **No Sorting** () is selected from the context menu (or the default is kept), the tree is flattened and all nodes are unsorted. Only default physics feature nodes and user-added nodes are included in the **Model Builder** sequence.

Figure 2-4: The context menu and Model Builder sequence for physics interface nodes when Sort Nodes by Space Dimension or No Sorting is selected. For the Global Definitions and Definitions nodes, the same principles apply but the nodes are organized by type instead.

ORGANIZING NODES BY TYPE

The same principles apply for the **Global Definitions** and **Definitions** nodes as for the physics interface nodes, except the nodes are organized by type, that is:

- Under Global Definitions the types are Variables, Functions, or Groups.
- Under Definitions the types are Functions, Variables, Selections, Probes, Model Couplings, Coordinate Systems, Pairs, and Domain Properties.

The default is **No Sorting** in the **Model Builder** for all new models. Right-click and select **Sort Nodes by Type** ($\frac{1}{1+1}$) from the context menu to both sort the nodes in the Model Builder and in the context menu.

When **No Sorting** () is selected from the context menu (or the default is kept), the tree is flattened and all nodes are unsorted. Only default **Definitions** or **Global Definitions** nodes and user-added nodes are included in the **Model Builder** sequence.

• Overview of the Physics Interfaces

Building a COMSOL Model

Introduction to the COMSOL Windows

In addition to The Model Wizard and The Model Builder Window, there are several other COMSOL windows that are integral to building your model.

In this section:

- The Node Settings Windows
- The Graphics Window
- The Messages Window
- The Progress Window
- The Log Window
- The Results Window
- The Help Window
- The Model Library Window
- The Material Browser Window
- The External Process Window

This section also contains information about these desktop topics:

- Errors and Warnings
- The About COMSOL Multiphysics Box
 - Introduction to the Model Wizard and the Model Builder
- 2 See Also
- Building a COMSOL Model
- Information About Memory Use

The Node Settings Windows

When any node is clicked in the Model Builder, the corresponding settings window opens with the same name as the node. The settings window is an interactive environment for defining an operation or model property while the model and changes are displayed in the Graphics window.

When an operation or property is updated in the settings window, its effect on the model is displayed in the Graphics window either instantaneously or by clicking the

Build Selected button (\square) or the **Plot** button (\square) available in some of the settings window toolbars.

To select the parts of the model to define in a specific settings window, select the relevant geometric entities either directly in the displayed model in the Graphics window or from the Selection List window.

- About Selecting Geometric Entities
- COL See Also
- Selecting and Deselecting Geometric Entities

The Graphics Window

The **Graphics** window () presents a graphical view of the geometry, mesh, and results of the model. See Figure 2-1 for an example.

The Graphics window has useful tools for changing the view and selecting multiple entities—geometry objects as well as domains, boundaries, edges, and points for defining the physics or selecting geometric entities for fine-tuning the mesh or evaluating quantities in a certain part of the model, for example. The Graphics toolbar at the top of the Graphics window contains a set of tools for changing the visualization (for example, to zoom in or out or to add transparency) and making selections. See Figure 2-1.

Visualization and Selection Tools
 Selecting and Deselecting Geometric Entities
 The Graphics Toolbar Buttons

• Creating 1D, 2D, 3D, and Polar Plots

Plot Windows

Plot windows are closable graphics windows. They are automatically generated for displaying results while solving if your model contains probes; see the section Getting Results While Solving for details. You can also create plot windows manually by choosing **Plot In>New Window** from the context menu for a plot group.

The Messages Window

The **Messages** window (\bowtie) contains information useful to you after an operation is performed. The window displays by default, but it can also be opened from the main menu by selecting **View>Messages**. Click the **Clear** button ($\frac{1}{2}$) to clear the **Messages** window from all messages. The information in this window includes:

• The number of mesh elements and degrees of freedom in your model.

- Solution times.
- Error messages. The messages are in chronological order and can be scrolled through.

The Progress Window

The **Progress** window (**___**) displays the progress of the solver or mesher during the process, including a progress bar and progress information for each solver or mesher. You can cancel or stop the solver process if the model's solving time or likelihood for convergence is not progressing as expected using the **Cancel** button or the **Stop** buttons (one for each solver). Use the horizontal or vertical scrollbars if needed.

This window is always available but is empty when no progress information is available. You can make it the active window from the main menu by selecting **View>Progress**. For a log of the progress information, see the **Log** window.

You can also view the progress from the status bar in the lower-right corner of the COMSOL Desktop. On the status bar you can follow the progress, cancel the solver process by clicking the **Cancel** button (\bigotimes), or open the **Progress** window by clicking the **Progress** button (\blacksquare).

	Progress and Log Information
2	• Meshing
See Also	Solvers and Study Types

The Log Window

It also contains a similar divide when you save a model to a new file (using Save As):

You can scroll the contents of the **Log** window to display information from earlier runs. Click the **Scroll Lock** button (\bigcirc) to stop the window from scrolling the log during a solver call, for example. Click the **Scroll Lock** button again to resume scrolling. Click the **Clear** button (\checkmark) to clear the **Log** window from all information.

This window is always available. Make it the active window from the main menu by selecting **View>Log**. For progress information during a solver or mesher process, see the **Progress** window.

By default, the buffer size of the **Log** window is limited to 300,000 characters. Change the size in the **Preferences** dialog box, which is opened from the **Options** menu. Click **General** in the list, and then enter a maximum buffer size (in characters) in the **Log window size (characters)** field.

C See Also

Progress and Log Information

The Results Window

The **Results** window () displays the results from integral and variable evaluations defined in Derived Values features and stored in Tables features. The window displays by default, but it can also be opened from the main menu by selecting **View>Results**.

Processing and Analyzing Results

• Defining Derived Values and Tables

The Help Window

The **Help** window (**(()**) provides access to *Dynamic Help* (**()**) in the COMSOL Desktop and has these pages: Related Topics, Contents, Search, Bookmarks and Index

• The Help Documentation Window

• Table 2-4 for descriptions of the Help buttons

CONTENTS

The **Contents** section is a tree-based menu structure of COMSOL Multiphysics' documentation.

SEARCH

The **Search** option is a search engine for returning text strings and combinations of same. Entering two text strings in the **Search expression** field returns all instances where both strings display in the same document (such as a section or example model in a manual). Use quotation marks around a text string to search for exactly that phrase, that is, the words in the order given within the quotation marks. The @ character ("at sign") works as a wild-card.

Specify the search scope by expanding the **Scope** section, where you can select to include the local help, the COMSOL website on www.comsol.com, or a custom search scope.

The default setting is to search all local help files and the COMSOL website (including the support knowledge base, discussion forum, model gallery, and papers & presentations sections of the website). See Selecting the Scope From the Documentation Window and Changing the Search Scope From the Dynamic Help Window for details.

Selecting the Scope From the Documentation Window

This is available from both the **Help>Documentation** and **Help>Dynamic Help** Search windows, but with slightly different options.

- I Select Help>Documentation and click Scope. The Select Scope window opens.
- 2 The default is to Show all topics. To refine the search, click Show only the following topics and then either add New topics, or Edit or Remove existing topics from the list.
- Click New to add topics. The New Scope window opens where you can define a List name and add as many topics as you want from the lists.
- Once a Scope list is created, click Edit to make changes or Remove to delete the list.
- 3 When done with the Scope lists, click OK to save or Cancel to exit.

Changing the Search Scope From the Dynamic Help Window

This is available from both the **Help>Documentation** and **Help>Dynamic Help** Search windows, but with slightly different options.

- I Select Help>Dynamic Help. Click Search.
- 2 From the Search window, click Search scope.
- **3** The **Default** searches the **Local Help** and the **COMSOL Support Knowledge Base**. Click to clear the check boxes as required.

- **4** To create a customized **Search Scope** set, click **Default** next to **Search scope** to add **New** topics, or **Rename**, **Edit**, or **Remove** existing topics from the list.
- Click New to add topics. The New Scope Set window opens where a Scope Set Name can be defined.
- Once a **Scope Set** is created, click **Edit** to make changes or **Rename** it, or **Remove** to delete the set.
- 5 When done with creating or editing a Scope Set, click OK to save or Cancel to exit.
- **6** Click **Advanced Settings** on the **Search** window (or **Edit** from the Scope Set window) to open the **Search Scope** window. This is where you can customize the Local Help or COMSOL Support Knowledge Base searches.
- The default Local Help setting is Search all topics. To refine the search, click Search only the following topics and select the check boxes as required. The COMSOL Support Knowledge Base is set to search the Support Knowledge Base at www.comsol.com. Click to clear the Enable search engine check box if required.

RELATED TOPICS

Related Topics has a brief description of the respective branch, sub-branch, or leaf node that is active in the Model Builder. This is an interactive environment. Click a node followed by the Related Topics window to update the contents instantly.

To view more detailed information, including summaries of the different attributes and settings related to the node, click on one or more of the topics found under the **See also** section. This takes you into COMSOL Multiphysics' documentation.

The **More results** section, if present, gives a shortcut to the Search page with a search string related to the active Model Tree node or COMSOL Desktop component.

BOOKMARKS AND INDEX

The **Bookmarks** section has a list of saved search criteria and the **Index** is a tree-based menu structure of the documentation indexes.

OPENING OR REFRESHING THE HELP WINDOW

There are different ways to open or refresh the Help window:

- Click the **Dynamic Help** button (1) in the active window's toolbar (not all windows have this toolbar).
- From the main menu, select Help>Dynamic Help.
- Press F1.

• Right-click a node in the **Model Builder** and select **Dynamic Help** (2) (the last item in the menu).

By default, the Help window is added to the right of the Graphics window.

Sticky Help

With the **Sticky help** option cleared (the default) from the **Options>Preferences>General** menu, the **Help** window always updates its contents to shows the relevant context help information when clicking a window tab or on a model tree node in the **Model Builder**, regardless of which part of the help system that is displayed in the **Help** window.

If the **Sticky help** check box is selected (see Editing Preferences Settings), the contents of the Help window are no longer updated when the active node or window is changed once entering the COMSOL Multiphysics documentation. To return to the Related Topics page, either click the **Back** button (the yellow left arrow button) or refresh the Help window.

The setting for Sticky help is preserved between modeling sessions.

The first time the **Help** window is opened on your computer, the operating system might issue a firewall security warning. To use Dynamic Help, allow COMSOL Multiphysics access through the firewall.

Preload Help Files

With the **Preload help files** option selected from the **Options>Preferences>General** menu, it means that the help files are preloaded when launching COMSOL Multiphysics. By preloading the help files the context help opens faster when used for the first time. To disable this feature, see Editing Preferences Settings and clear the check box.

THE HELP DOCUMENTATION WINDOW

When **Help>Documentation** is selected, a different Help window opens than the one described in The Help Window although the functionality is the same and all bookmarks are saved in both places.

From this window you can navigate to PDF or HTML versions of the User's Guides (availability is based on your license), as well as Search, Bookmark, Print Topics, and

Link with Contents. You can also narrow the **Scope** of the topics searched. See Table 2-4 for descriptions of the buttons shown in Figure 2-5 and Figure 2-6.

the documentation.

Figure 2-5: Overview of the Help Documentation window.

Figure 2-6: The Help Documentation toolbars. The numbers correspond to the toolbars in Figure 2-5.

THE HELP DOCUMENTATION TOOLBAR BUTTONS AND WINDOWS

WINDOW NAME AND BUTTONS	DESCRIPTION AND TASK		
DOCUMENTATION	The window where the documentation contents are displayed.		
Maximize and Minimize	Available on most windows to maximize and minimize the window.		
Go Forward	Navigates forward within a topic, but only to the end of the current list.		
Go Back	Navigates backwards to the topics previously selected.		
Show in Table of Contents	Opens the Contents window to display where the topic is located within the tree structure.		
Home	Returns to the COMSOL Documentation Home page. Prints the current page.		
Print Page			
Bookmark Document	Adds the current page to all Help Bookmarks windows.		
Next	Navigates forward to the next topic in the order displayed.		

TABLE 2-4: THE HELP DOCUMENTATION TOOLBAR BUTTONS AND TABS

WINDOW NAME AND BUTTONS	DESCRIPTION AND TASK		
Previous	Navigates backwards to the previous contents topic.		
Show in External Window	Available from the Dynamic Help window only, this button opens the same page as when you select Help>Documentation from the menu.		
CONTENTS	Displays the contents of the User's Guides in a tree structure.		
Print Topics	After selecting a branch in the Contents window, select Print selected topic or Print selected topic and all subtopics .		
Search	After selecting a branch in the Contents window, select Search selected topic or Search selected topic and all subtopics and enter a Search Expression. The results display in the Search Results window.		
Collapse All	Collapses (closes) all branches in the Contents window, except the top ones.		
Link with Contents	Click to activate (turn ON) to link the Contents window to the topic you are navigating. Click to deactivate (turn OFF).		
SEARCH RESULTS	Displays links to the Search results. You can also display the results categories and descriptions.		
Show result categories	Click to activate (turn ON) to display result categories by module. Click to deactivate (turn OFF).		
Show result descriptions	Click to activate (turn ON) to display result descriptions Click to deactivate (turn OFF).		
BOOKMARKS	Displays any bookmarks to topics added. You can also delete one or all of the bookmarks saved to this window.		
Delete selected bookmark	This button is available on the Bookmarks window. Click a bookmark then click this button to remove it.		
Delete all bookmarks	This button is available on the Bookmarks window. Click to remove all bookmarks.		
INDEX	Search the index and display all the results.		

TABLE 2-4: THE HELP DOCUMENTATION TOOLBAR BUTTONS AND TABS

The Model Library Window

Select **View>Model Library** (). Browse and load model files to the COMSOL Desktop. To locate any models using a specific feature, type a suitable keyword or phrase in the field at the top of the **Model Library** window and click **Search**.

The **Model Library** displays all the models included with an installation. When you open the **Model Library** window, the folders each have a unique icon and contain the models specific to the module installed.

Some models may have been delivered with an MPH-file that contains no stored meshes or solutions. Such models are indicated by a gray icon in the **Model Library** window (). You can download the complete MPH-files via **Model Library Update** or generate them by building the models' mesh sequences and computing the studies. Note that the procedure for restoring the solutions of a model may involve other steps, such as adjusting physics settings; see the model's documentation for details if the naive approach does not work.

To set up some additional search options, see Selecting the Scope From the Documentation Window as described for the **Help** window.

The Model Library window's toolbar contain the buttons as listed in Table 2-5.

TABLE 2-5:	MODEL LIBRARY	TOOLBAR BUTTONS

NAME	BUTTON	DESCRIPTION
Refresh	G	Click to update the Model Library tree, for example if a file has been saved in a folder under the Model Library root directory since opening the Model Library window.
Set Model Library Root	*	Click to launch the Model Library Root window where you can enter a new root directory for the Model Library or just inspect its current location.
Dynamic Help	1	Select a model in the Model Library tree and click this button to read a brief description of the model in the Help window. To read the full model documentation, including step-by-step modeling instructions, click the link under See also in the Help window.
Add User Model Library		Click to add a new folder to the Model Library and store your own model files.
Delete Selected	**	This button is enabled after a User Model Library folder is created. Click any model or folder and then click this button to remove it from the Model Library.

To read the model documentation in PDF format, select the model in the tree and then click the **Open PDF** button. Alternatively, right-click the model node and select **Open PDF** from the context menu.

You can load a model to the COMSOL Desktop from the Model Library in three different ways:

- Double-click the model node in the tree.
- Select the model node, then click the **Open Model** button.
- Right-click the model node, then select **Open Model** from the context menu.

To load the model and open the PDF documentation file in a single operation, click the Open Model and PDF button.

- Model Administration
- Opening and Searching the Model Library
- $(\mathbf{7})$ See Also
- Changing the Model Library Root Folder
- Updating the Model Library Using Model Library Update
- Adding a User Model Library
- For examples of model plots, see Results Evaluation and Visualization

The Material Browser Window

In the Material Browser window (🏫) you can browse the material libraries and load materials into your models. The window can be opened from the main menu by selecting View>Material Browser.

Materials See Also

7.

The External Process Window

Use the External Process window (4) to follow external processes (such as distributed batch jobs) that have been started. The window updates when you are attached. You can do operations that are performed in the External Process nodes under Job Configurations by selecting an External Process from the list and select the operation. When detached, you can reattach by pressing the Attach Job button. The window can be opened from the main menu by selecting View>External Process. It opens automatically when you start a batch process.

In the COMSOL Multiphysics Reference Guide:

- Batch (study type)
- Cluster Sweep (study type)
- Batch Sweep (study type)
- Cluster Computing (study type)
 - Batch (job configurations)
 - Cluster Computing (job configurations)
 - External Process

Errors and Warnings

COMSOL Multiphysics reports problems of two types:

- Warnings, which are problems that do not prevent the completion of a task but that might affect the accuracy or other aspects of the model. Warnings typically appear in the Log window (
). The warning message also appears as a Warning subnode (
) under the node from which the warning was sent.

The About COMSOL Multiphysics Box

Figure 2-7: The About COMSOL Multiphysics box with an expanded Acknowledgements list.

From the **Help** menu, choose **About COMSOL Multiphysics** to open the **About COMSOL Multiphysics** box, where you can find the following information about the program and the license—the version number, the user or company the product is licensed to, and the license number.

From the list below, you can show one of the following types of information:

- Select **Acknowledgements** to show information about third-party software components, including license notices required by the software component authors.
- Select License agreement to show the COMSOL software license agreement.
- Select **Licensed products** to show the licensed COMSOL products, including the number of used licenses and the total number of licenses for each product.
- Select Patents to show the patents that the COMSOL program is protected by.
- Select **System information** to show a list of system properties, which can be useful for troubleshooting purposes, for example.

Click the **Show Information** button to display the information.

Keyboard Shortcuts

The following table summarizes the available keyboard shortcuts on Windows and Linux and on the Mac:

SHORTCUT (WINDOWS, LINUX)	SHORTCUT (MAC)	ACTION
FI	FI	Display dynamic help for the selected node
F2	F2	Rename the selected node, file, or folder
F3	F3	Disable selected nodes
F4	F4	Enable selected nodes
F5	F5	Update solution
F7	F7	Build the selected node in the geometry and mesh branches, or compute to the selected node in the solver sequence.
F8	F8	Build the geometry, build the mesh, compute entire solver sequence, update results data, or update the plot
Del	Del	Delete selected nodes
Left arrow (Windows); Shift + left arrow (Linux)	Left arrow	Collapse a branch in the Model Builder
Right arrow (Windows); Shift + right arrow (Linux)	Right arrow	Expand a branch in the Model Builder
Up arrow	Up arrow	Move to the node above in the Model Builder
Down arrow	Down arrow	Move to the node below in the Model Builder
Alt+left arrow	Ctrl+left arrow	Move to the previously selected node in the Model Builder
Alt+right arrow	Ctrl+right arrow	Move to the next selected node in the Model Builder
Ctrl+A	Command+A	Select all domains, boundaries, edges, or points; select all cells in a table
Ctrl+D	Command+D	Deselect all domains, boundaries, edges, or points
Ctrl+C	Command+C	Copy text in fields
Ctrl+V	Command+V	Paste copied text

SHORTCUT (WINDOWS, LINUX)	SHORTCUT (MAC)	ACTION	
Ctrl+Z	Command+Z	Undo the last operation	
Ctrl+Y	Ctrl+Shift+Z	Redo the last undone operation	
Ctrl+up arrow	Command+up arrow	Move a definitions node, geometry node, physics node (except default nodes), material node, mesh node, study step node, or results node up one step	
Ctrl+down arrow	Command+down arrow	Move a definitions node, geometry node, physics node (except default nodes), material node, mesh node, study step node, or results node down one step	
Ctrl+Tab	Ctrl+Tab	Switch focus to the next window on the desktop	
Ctrl+Shift+Tab	Ctrl+Shift+Tab	Switch focus to the previous window on the desktop	
Ctrl+Alt+left arrow	Command+Alt+lef t arrow	Switch focus to the Model Builder window	
Ctrl+Alt+right arrow	Command+Alt+ri ght arrow	Switch focus to the settings window	
Ctrl+Alt+up arrow	Command+Alt+up arrow	Switch focus to the previous section in the settings window	
Ctrl+Alt+down arrow	Command+Alt+d own arrow	Switch focus to the next section in the settings window	
Shift+F10 or (Windows only) Menu key	Ctrl+F10	Open context menu	
Ctrl+Space	Ctrl+Space	Open list of predefined quantities for insertion in Expression fields for plotting and results evaluation.	
Ctrl+N	Command+N	Create a new model	
Shift+Ctrl+N	Shift+Command+ N	Create a new Physics Builder (the option must be enabled in Preferences)	
Ctrl+O	Command+O	Open a model file	
Ctrl+S	Command+S	Save a model file	
Ctrl+P	Command+P	Print a model file	

Key to the Nodes and Toolbar Buttons

MODEL BUILDER NODES

The **Model Builder** has many types of nodes to help you visualize the model structure. These nodes are described throughout this guide. Table 2-6 is a key to the main nodes.

TABLE 2-6: THE MAIN MODEL BUILDER NODES

FEATURE NAME	NODE	LINKS TO MORE INFORMATION
Data Sets		Defining Data Sets
Definitions	=	About Global and Local Definitions
Derived Values	8.85 e-12	Defining Derived Values and Tables
Equation View	<u>∂u</u> =f	The Equation View Node
	ət '	Physics Nodes—Equation Section
Export	đ	Exporting Data and Images
Geometry	X	Geometry Modeling and CAD Tools
Global Definitions		Global and Local Definitions
Materials	۲	Materials
Mesh		Meshing
Model Builder	1	The Model Builder Window
		• The Model Wizard and Model Builder
		• The Model Nodes in the Model Builder

FEATURE NAME	NODE	LINKS TO MORE INFORMATION	
Physics	283	Overview of the Physics Interfaces	
	~~~	Physics Nodes by Space Dimension	
		Physics Node Context Menu Layout	
		Multiphysics Modeling	
		Equation-Based Modeling	
Plots		About Plot Groups and Plotting	
		Color Coding for Plot Groups and Plot Types	
Reports	BŞ	Creating Reports	
Results		Results Evaluation and Visualization	
Study	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Solvers and Study Types	
Tables		Defining Derived Values and Tables	

#### TABLE 2-6: THE MAIN MODEL BUILDER NODES

#### DYNAMIC NODES

Table 2-7 lists generic examples and links to the dynamic visual aids that are used to help you identify nodes that change status in the Model Builder. Some nodes also change in the Solver settings windows.

TABLE 2-7: DYNAMIC NODES - VISUAL AIDS TO IDENTIFICATION

ТҮРЕ	ICON	NODE EXAMPLE AND LINK TO MORE INFORMATION (WHERE APPLICABLE)
Error	×	For example, on a Material node 🔹 . See Errors Relating to the Material Nodes.
Error node	8	Errors and Warnings
Current node, not built		For example, on a Geometry node. This node is also displaying the asterisk indicating the node is being Edited. The asterisk also appears on plot nodes when the plot has not been updated to reflect changes in the data or settings (for example, after re-solving),

ТҮРЕ	ICON	NODE EXAMPLE AND LINK TO MORE INFORMATION (WHERE APPLICABLE)	
Current node		A current node is used for Geometry and Meshing nodes and indicates that the feature or sequence of steps has been built. It is a green line on the left and upper edges of the node. For example, on a Geometry node, after building.	
Harmonic Perturbation	~	For example, on a boundary level node for the Electric Currents interface, Electric Ground node . See Harmonic Perturbation, Prestressed Analysis, and Small-Signal Analysis.	
Warning	Δ	For example, on a Mesh node . This node is also displaying the green outline indicating the node is Current.	
Editing, or in process of editing, a node	*	For example, on a Mesh node A. This node is also displaying the asterisk indicating the node is being Edited. Also indicates physics interface nodes that have been disabled in a Study Step.	
Pairs	ж	For example, on a 3D Boundary Level node and. See Specifying Boundary Conditions for Identity Pairs and Identity and Contact Pairs.	
Contributing node	•	<ul> <li>For example, on a 3D boundary level node min.</li> <li>Physics Exclusive and Contributing Feature Node Types</li> <li>Physics Node Status</li> </ul>	
Default node	D	For example, on a 3D boundary level node. See Physics Default Feature Nodes.	
Override	-	For example, on a 3D boundary level node and the contributing Feature Node Types. Physics Node Status	
Overridden	•	For example, on a 3D boundary level node a. See Physics Exclusive and Contributing Feature Node Types	
STUDY STEPS ANALYSIS			

#### TABLE 2-7: DYNAMIC NODES - VISUAL AIDS TO IDENTIFICATION

ТҮРЕ	ICON	NODE EXAMPLE AND LINK TO MORE INFORMATION (WHERE APPLICABLE)
Solve For	8	For example, a Laminar Flow interface () where the green dot in the lower-right corner indicates that the study solves for the degrees of freedom in this physics interface. See Selecting Physics and Variables in the Study Steps in the COMSOL Multiphysics Reference Guide.
Provide Degrees of Freedom	8	For example, a Laminar Flow interface () is enabled (not greyed out), shows that the study step provides degrees of freedom (the yellow dot in the lower-right corner), and has a change of state indicated by the asterisk. The yellow dot means that the study step provides degrees of freedom but does not solve for the physics interface. See Sclecting Physics and Variables in the Study Steps in the COMSOL Multiphysics Reference Guide.
Change of State (editing)	*	An asterisk appears in the upper-right corner of nodes for which you change their state in the study step's selection tree compared to their state in the main model tree in the Model Builder.
Disabled, provides no degrees of freedom, and shows a change of state	8	In this example, a Transport in Diluted Species interface (()) is disabled (greyed out), provides no degrees of freedom (red dot in the lower-right corner), and has a change of state indicated by the asterisk. See Selecting Physics and Variables in the Study Steps in the COMSOL Multiphysics Reference Guide.

#### TABLE 2-7: DYNAMIC NODES - VISUAL AIDS TO IDENTIFICATION

#### TOOLBARS AND BUTTONS

There are many toolbars and buttons available and these are described throughout this guide. Table 2-8 is a list of links to the information

TABLE 2-8: LINKS TO THE COMSOL MULTIPHYSICS TO	DOLBARS AND BUTTONS
------------------------------------------------	---------------------

CATEGORY	GO TO THIS SECTION		
Model Builder	Buttons on the Model Builder Window		
Main menu and toolbar	The Main Menu and Toolbar		

CATEGORY	GO TO THIS SECTION		
Help Documentation	The Help Documentation ToolBar Buttons and Tabs		
Model Library	Model Library Toolbar Buttons		
Dynamic visual feedback	Dynamic Nodes - Visual Aids to Identification, for generic examples		
Geometry and Graphics	The Geometry Toolbar Buttons		
windows	Geometric Entity Selection List Buttons		
	• The Graphics Toolbar Buttons		
	• Different ways to select geometric entities		
Show and Expand Sections buttons	Showing and Expanding Advanced Physics Sections		
Plotting and Results	Capturing and Copying Screenshots		
	Plotting and Cross-Section Interactive Toolbar		
	Results Table Editing Buttons		
	Export Feature Types		
	Model Report Components		
Meshes	The Meshing Toolbar and Features		
Physics interface nodes	• Dynamic Nodes - Visual Aids to Identification		
	Physics Nodes by Space Dimension		
	• Color Coding for Plot Groups and Plot Types		
Replace Expression button	Expressions and Predefined Quantities		

TABLE 2-8: LINKS TO THE COMSOL MULTIPHYSICS TOOLBARS AND BUTTONS

# Global and Local Definitions

This chapter describes the global and local (model) definitions features. Depending on the geometric scope, you add the feature nodes described in this section to either the Global Definitions node or under the Definitions node for a particular model. In this chapter:

- About Global and Local Definitions
- Operators, Functions, and Variables Reference
- Global Parameters
- Variables
- Global and Local Functions
- Model Couplings
- Coordinate Systems
- Identity and Contact Pairs
- Probes

See also Visualization and Selection Tools and Using Units.

# About Global and Local Definitions

Depending on the geometric scope, there are two types of definitions that can be defined in the Model Builder—Global Definitions and local Definitions.

In this section:

- Global Definitions
- Local Definitions
- Load Group
- Constraint Group
- About Building Expressions

### Global Definitions

Right-click **Global Definitions** (  $\equiv$  ) to add the following:

- Parameters ( P_i ): global, scalar values that are used to parameterize any part of the model.
- **Variables** (<u>a</u>=): expression variables that are used anywhere to simplify the specifications of some properties.
- **Functions** are predefined function templates for common function types such as step functions, ramps, and random functions.
- Groups ( ): Add Load Group ( ) and Constraint Group ( ) nodes for use in load cases.
  - Global Parameters
    - Variables
    - Global and Local Functions

#### Load Group

- Constraint Group
  - About Building Expressions
  - Sorting Nodes by Space Dimension and Type

1

See Also

After adding any Model node to the Model Builder, right-click **Definitions** ( $\equiv$ ) to add definitions with a local scope that are applied to that specific model. Add:

- Variables ( a= ): expression variables used to simplify the specifications of some properties.
- Selection ( ): create a user-defined set of geometric entities for reuse throughout the model.
- View (1): create a user-defined view to visualize the model.
- **Contact Pair** ( ): specify two selections of boundaries that cannot penetrate each other under deformation. Requires the use of pairs and is only available if a license includes the Structural Mechanics Module or the MEMS Module.
- Identity Pair (): specify two boundary selections that overlap but belong to different parts of a pair. Then assign a boundary condition to connect the physics in the two parts in an interface. Identity pairs are only available and necessary when the model geometry is an assembly.
- **Functions** are predefined function templates for common function types such as step functions, ramps, and random functions.
- **Model Couplings**. The coupling operators are useful for creating integrated quantities and identity mappings, adding nonlocal couplings, and many other applications.
- **Coordinate Systems**. Create different coordinate systems for use in some of the physics interfaces.
- **Probes**. To monitor the development of a scalar-valued quantity (real or complex valued number) from a dynamic simulation (time-dependent, frequency, parametric).
- **Perfectly Matched Layer**. To apply a coordinate scaling to a layer of virtual domains surrounding the physical region of interest. For stationary and transient problems, these virtual domains can be stretched out towards infinity, giving rise to infinite elements.
- Infinite Element Domain. To apply a coordinate scaling to a layer of virtual domains surrounding the physical region of interest. For stationary and transient problems, these virtual domains can be stretched out towards infinity, giving rise to infinite elements. To absorb outgoing waves in a frequency-domain problem, you must instead stretch the virtual domains into the complex plane, creating perfectly matched layers (PMLs).

- Variables
- User-Defined Selections
- User-Defined Views
- Identity and Contact Pairs
- Global and Local Functions
- Model Couplings

See Also

- Coordinate Systems
- Probes
- Load Group
- Constraint Group
- About Building Expressions
- Sorting Nodes by Space Dimension and Type

### Load Group

Add a Load Group () to the Global Definitions branch (under Loads and Constraints Groups node () if you use sorting by type) to create a load group to which you can assign one or more loads. You can then activate the load group in one or more *load cases* for efficiently solving a structural mechanics model to analyze the effects of various loads (and, optionally, constraints). In the Identifier field you can modify the default group identifier (1g1, for example) if you, for example, want to use a more descriptive name. You can also create load groups from physics interface features for structural mechanics that represent loads and support load cases: Right-click the physics interface feature node and choose Load Group>New Load Group.



Using Load Cases

- Tapered Cantilever with Two Load Cases: Model Library path COMSOL_Multiphysics/Structural_Mechanics/tapered_cantilever
- If you have the Structural Mechanics Module, also see Pratt Truss Bridge: Model Library path Structural_Mechanics_Module/ Civil_Engineering/pratt_truss_bridge

### Constraint Group

Ш

Model

Add a **Constraint Group** ( ) to the **Global Definitions** branch (under **Loads and Constraints Groups** node ( ) if you use sorting by type) to create a constraint group to which you can assign one or more constraints. You can then activate the constraint group in one or more *load cases* for efficiently solving a model to analyze the effects of various constraints (and loads). In the **Identifier** field you can modify the default group identifier (1g1, for example) if you, for example, want to use a more descriptive name. You can also create constraint groups from physics interface features for structural mechanics that represent constraints and support load cases: Right-click the physics interface feature node and choose **Constraint Group>New Constraint Group**.



Using Load Cases

### About Building Expressions

When defining any expression, whether it is global or local, there are many available variables, mathematical functions, physical constants, and operators that can be used to define the expression.

Many common mathematical and logical operators and functions can also be used along with constants to specify parameters and variables as well as equation coefficients and material properties. The following components frequently appear in expressions:

- Variables
- Physical constants, which are predefined constants for universal constants such as the universal gas constant and the speed of light in vacuum.
- Operators
- Mathematical and logical functions

If the expression contains a syntax error, it appears in red. Syntax errors can be due to illegal characters, mismatched parentheses, and other syntactic errors. The **Error** node ( $\bigotimes$ ), which occurs when trying to solve a model with a syntax error, typically contains information about the position and expression where the syntax error is located.

# Operators, Functions, and Variables Reference

Many common mathematical and logical operators, functions, and constants can be used to specify parameters, variables, equation coefficients, and material properties. These tables list the unary and binary operators (Table 3-1 and Table 3-2), special operators (Table 3-3), mathematical functions and constants (Table 3-4), and physical constants predefined as variables (Table 3-5) that can be used in COMSOL. See also Model Couplings for information about coupling operators.

In this section:

- Unary and Binary Operators
- Special Operators
- Mathematical Functions
- Physical Constants

# Unary and Binary Operators

TABLE 3-1: UNARY OPERATORS			
OPERATOR	DESCRIPTION		
+	Unary plus		
-	Unary minus		
!	Logical not		
TABLE 3-2: BINARY	OPERATORS		
OPERATOR	DESCRIPTION		
+	Plus		
-	Minus		
*	Multiply		
/	Divide		
٨	Power		
==	Equal		
!=	Not equal		
>	Greater than		
>=	Greater than or equal to		
<	Less than		
<=	Less than or equal to		
&&	Logical and		
	Logical or		

# Special Operators

There are special operators available for modeling and for evaluating results. Many physics interfaces use these operators to implement equations and special functionality. See Table 3-3 and the detailed descriptions that follow.

TABLE 3-3:	SPECIAL	OPERATORS
------------	---------	-----------

OPERATOR	DESCRIPTION
d(f,x)	Differentiation operator. Differentiation of f with respect to x. See The Differentiation Operators for more information.
pd(f,x)	Differentiation operator. Differentiation of f with respect to x. No chain rule for dependent variables. See The Differentiation Operators for more information.

TABLE 3-3: SPECIAL OPERATORS

OPERATOR	DESCRIPTION	
dtang(f,x)	Tangential differentiation of an expression f defined on a boundary with respect to a spatial dimension x. See The Differentiation Operators for more information.	
test( <i>expr</i> )	Test function operator. See The Test Operator for more information.	
<b>var(</b> expr,fieldnamel, fieldname2,)	Variation operator. See The Var Operator for more information.	
nojac( <i>expr</i> )	No contribution to the Jacobian. See The Nojac Operator for more information.	
up( <i>expr</i> )	Evaluate expression as defined in adjacent upside. See The Up, Down, and Mean Operators for more information.	
down( <i>expr</i> )	Evaluate expression as defined in adjacent downside. See The Up, Down, and Mean Operators for more information.	
mean( <i>expr</i> )	Mean value of expression as evaluated on adjacent boundaries. See The Up, Down, and Mean Operators for more information.	
depends( <i>expr</i> )	True if expression depends on the solution. See The Depends Operator for more information.	
<pre>isdefined(variable)</pre>	Returns one where the variable is defined and zero where it is not defined.	
dest( <i>expr</i> )	Evaluate parts of an integration coupling expression on destination side. See The Dest Operator for more information.	
if(cond,expr1,expr2)	Conditional expression evaluating the second or third argument depending on the value of the condition. See The If Operator for more information.	
isinf( <i>expr</i> )	True if expression evaluates to infinity. See The Isinf and Isnan Operators for more information.	
islinear( <i>expr</i> )	True if expression is a linear function of the solution. See The Islinear Operator for more information.	
isnan( <i>expr</i> )	True if expression evaluates to NaN (not-a-number). See The Isinf and Isnan Operators for more information.	
with	Access any solution. See The With Operator for more information.	

TABLE 3-3: SPECIAL OPERATORS

OPERATOR DESCRIPTION	
at	Access the solution at any time. See The At Operator for more information.
timeint	Integrate time-dependent expression over a time interval. See The Timeint Operator for more information.
timeavg	Compute average of time-dependent expression over a time interval. See The Timeavg Operator for more information.
linpoint	Access the linearization point (when a linearization point is stored in the solution). See The Linpoint Operator for more information.
lindev	Evaluate an expression linearized at the linearization point (when a linearization point is stored in the solution). See The Lindev Operator for more information.
lintotal	Access the sum of the linearization point and linear perturbation. See The Lintotal Operator for more information.
lintotalavg	Evaluate average of lintotal( <i>expr</i> ) over all phases. See The Lintotalavg Operator for more information.
lintotalrms	Evaluate RMS of lintotal( <i>expr</i> ) over all phases. See The Lintotalrms Operator for more information.
lintotalpeak	Evaluate maximum of lintotal( <i>expr</i> ) over all phases. See The Lintotalpeak Operator for more information.
linsol	Access the standard solution (for example inside linpoint or lintotal). See The Linsol Operator for more information.
linzero	Evaluate expression with zero solution. See The Linzero Operator for more information.
linper	Marks a load term to be used in a Linear perturbation solver. See The Linper Operator for more information.
ppr	Accurate derivative recovery. See The Ppr and Pprint Operators for more information.
pprint	Accurate derivative recovery within each domain group. See The Ppr and Pprint Operators for more information.
reacf	Accurate integrals of reaction forces and fluxes. See The Reacf Operator for more information.

TABLE 3-3: SPECIAL OPERATORS

OPERATOR	DESCRIPTION	
adj(expr)	Evaluate expression using the adjoint sensitivity. See T Adj Operator for more information.	
fsens( <i>expr</i> )	Evaluate expression using the functional sensitivity. See The Fsens Operator for more information.	
<pre>sens(expr,i)</pre>	Evaluate expression using the forward sensitivity for the parameter given by the second argument. See The Sens Operator for more information.	
realdot(a,b)	Treat complex numbers <i>a</i> and <i>b</i> as real 2-vectors and return their dot product. See The Realdot Operator for more information.	
<pre>shapeorder(variable)</pre>	The element order used for discretization of a variable. See The Shapeorder Operator for more information.	
prev( <i>expr</i> ,i)	Evaluate expression at the <i>i</i> th previous time step. See The Prev Operator for more information.	
bdf( <i>expr</i> , <i>i</i> )	Apply backward differentiation formula of order <i>i</i> on expression. See The Bdf Operator for more information.	
<pre>subst(expr, expr1_orig, , expr1_subst,)</pre>	Substitute variables in an expression with other variables or expressions. See <u>The Subst Operator</u> for more information	
<pre>circint(r,expr), circavg(r,expr), diskint(r,expr), diskavg(r,expr), sphint(r,expr), sphavg(r,expr), ballint(r,expr), ballavg(r,expr)</pre>	Evaluates the integral or average of the expression on the specified shape with radius <i>r</i> . See The Circle, Dis Sphere, and Ball Integration and Average Operator for more information.	
scope.ati(coordinate exprs,expr)Evaluates the expression expr at an i-dimension entity in the point with coordinates given by the coordinate expressions coordinate exprs. See Spatial At Operators for more information.		

#### THE DIFFERENTIATION OPERATORS

• Use the d operator to differentiate a variable with respect to another variable. For example, d(T, x) means differentiation of T with respect to x.

- Use the d operator in the model settings. If it contains any of the dependent variables, it typically makes the model nonlinear.
- Use the d operator during results evaluation to visualize and compute derivatives. Some space derivatives are also available using predefined variables. For example, uxx, d(ux,x), and d(d(u,x),x) are equivalent.
- The pd operator works in a similar way to the d operator but does not apply the chain rule for dependent variables.
- The expression d(E,TIME) computes the reference time derivative of the expression E.
- Use the dtang operator to compute derivatives in the tangential direction along a boundary of expressions that are only defined on the boundary and therefore cannot be differentiated by the d operator. In a 3D model, (dtang(f,x), dtang(f,y), dtang(f,z)) is a vector in the tangent plane of a boundary at the point where it is evaluated, and similarly in a 2D model, (dtang(f,x), dtang(f,y)) is a vector in the tangent plane of a domain, dtang(f,x) is the same as d(f,x). The second argument of dtang(f,x) must be one of the spatial coordinates. Not all quantities have rules for evaluating tangential derivatives. Applying dtang(f,x) to an expression with no tangential derivative rule results in an error message.

#### Examples of Using the Differentiation Operators

The expressions  $d(u^2, u)$  and  $pd(u^2, u)$  both equal 2*u—d also takes the spatial and time variables into account and treats their derivatives accordingly. In other words, if u is the dependent variable and x and t are the spatial coordinate and time, respectively, then d(u+x,x) equals ux+1 (ux is the spatial derivative of u with respect to x), while pd(u+x,x) equals 1 because u is considered to be independent of anything but itself in the case of pd. Equivalently, d(u,t) equals ut, while pd(u,t) is zero.

If u is a dependent variable defined only on a boundary, d(u,x) is not defined, but the tangential derivative dtang(u,x) can be evaluated on the boundary. The tangential derivative obeys most of the common differentiation rules, such as the product rule and the chain rule. It is worth pointing out, however, that dtang(x,x) is not always equal to 1.

#### THE TEST OPERATOR

- The test operator is available for modeling using the weak formulation of the equations.
- This operator creates the test function for the variable that it operates on. For an expression, test(*F*(*u*, ∇*u*)), the test operator is equivalent to:

$$\sum_{i} \text{test}(u_i) \frac{\partial}{\partial u_i} F(u_i, \nabla u_i) + \text{test}(\nabla u_i) \frac{\partial}{\partial \nabla u_i} F(u_i, \nabla u_i)$$

for all dependent variables  $u_i$ .

#### THE VAR OPERATOR

- The var operator (variation operator) is available for modeling using the weak formulation of the equations.
- The var operator has the same function as the test operator but is limited to the specified set of fields.
- This operator creates the test function for the variable that it operates on. For an expression,  $var(F(u, \nabla u, v, \nabla v), a)$ , where the dependent variable u is in the field named a and the dependent variable v is not, the var operator is equivalent to:

$$\sum_{i} \text{test}(u_i) \frac{\partial}{\partial u_i} F(u_i, \nabla u_i, v_i, \nabla v_i) + \text{test}(\nabla u_i) \frac{\partial}{\partial \nabla u_i} F(u_i, \nabla u_i, v_i, \nabla v_i)$$

for all dependent variables  $u_i$ .

#### THE NOJAC OPERATOR

- The nojac operator makes sure that any expression that it operates on is excluded from the Jacobian computation. This is useful if a Jacobian contribution is not strictly necessary and the computational requirements for it are high.
- The k-ε turbulence model is an example where a built-in use of the nojac operator improves performance.

#### THE UP, DOWN, AND MEAN OPERATORS

COMSOL Multiphysics can evaluate expressions on both sides of a domain. These
operators are available only on boundaries.

- For an expression or a variable that is discontinuous across a boundary, the value is different on either side, and COMSOL Multiphysics normally displays the mean values on the boundary.
- Use the up, down, and mean operators to evaluate an expression on the upside or downside of the boundary or the mean value on the boundary. If the upside or downside is outside of the geometry, or if the variables in the expression are not active on that side, the up or down operator returns 0.

For more information about the upside and downside of a boundary, see Tangent and Normal Variables.

#### THE DEPENDS OPERATOR

- The depends operator returns 1 if the expression that it operates on depends on the solution; otherwise it returns 0.
- Use this operator to check user-defined expressions for dependency on the solution.

#### THE DEST OPERATOR

The dest (destination) operator is available for use in integration coupling expressions. This operator forces the expression that it operates on to be evaluated on the destination points instead of the source points. This means that the destination operator can be used to create convolution integrals and other integral transforms. For instance, integrating the expression  $u/((dest(x)-x)^2+(dest(y)-y)^2)$  gives the following function of x and y:

$$f(x,y) = \int \frac{u(x',y')}{(x-x')^2 + (y-y')^2} dx' dy'$$

#### THE IF OPERATOR

- The if (cond, expr1, expr2) operator implements a conditional expression.
- The first argument is a condition that COMSOL Multiphysics treats as a Boolean expression. If—at a particular evaluation point—cond is true, then the second argument is evaluated, otherwise the third argument is evaluated. That is, only one branch is evaluated at any evaluation point.
- Use the if operator to avoid illegal operations. For example, if (x==0,1,sin(x)/x) is a valid and continuous expression for all values of x, including x = 0.

#### THE ISLINEAR OPERATOR

- The islinear operator returns 1 if the expression that it operates on is a linear function of the solution; otherwise it returns 0.
- Use this operator to check user-defined expressions for linearity with respect to the solution. The stationary solver does this automatically to choose between a linear or a nonlinear solver.

#### THE ISINF AND ISNAN OPERATORS

- The isinf operator returns 1 if the expression that it operates on evaluates to infinity (or minus infinity); otherwise it returns 0.
- The isnan operator returns 1 if the expression that it operates on evaluates to NaN (not-a-number); otherwise it returns 0.

#### THE WITH OPERATOR

- The with operator can access any solution during results evaluation.
- For time-dependent problems, parametric problems, and eigenvalue problems, this makes it possible to use the solution at any of the time steps, any parameter value, or any eigensolution in an expression used for plotting or data evaluation.
- Use the solution number as the first input argument. The second input argument is the expression that you want to evaluate using this solution. For example, with(3,u^2) provides the square of the third eigensolution for an eigenvalue problem.
- For example, use the with operator to verify that two eigensolutions are orthogonal.
- The with operator can only be used during results evaluation, so it should not be used when setting up the model.

#### THE AT OPERATOR

- The at operator can access a solution to a time dependent problem at any time. COMSOL Multiphysics provides the solution at that time using interpolation.
- The first input argument is the time. The second input argument is the expression that you want to evaluate using this solution. For example, at(12.5,u) is the solution at 12.5 s.
- The at operator can only be used during results evaluation, so it should not be used when setting up the model.

#### THE TIMEINT OPERATOR

- The timeint operator integrates a time dependent expression over a time interval. timeint(t1,t2,expr) computes the integral of expr over the interval t=t1 to t=t2. The first two arguments must be real scalars. The integral is computed by numerical integration, subdividing the interval until the required accuracy is reached.
- timeint(t1,t2,expr,tol) sets the relative tolerance in the numerical integration procedure to tol. The tolerance must be a positive real scalar. The default tolerance (used when the fourth argument is omitted) is 1e-8.
- timeint(t1,t2,expr,tol,minlen) sets the smallest length of the subintervals used in numerical integration as a fraction of the length of the whole integration interval. Subintervals smaller than this length are not further subdivided even if that means that the required accuracy is not reached. minlen must be a positive real scalar. The default value of minlen (used when the fifth argument is omitted) is 1e-6.
- The timeint operator can only be used during results evaluation, so it should not be used when setting up the model.

#### THE TIMEAVG OPERATOR

- The timeavg operator computes the average of a time-dependent expression over a time interval. timeavg(t1,t2,expr) computes the average of expr over the interval t=t1 to t=t2. The first two arguments must be real scalars. The timeavg operator numerically integrates the expression in the same way as timeint and then divides the result by t2-t1.
- timeavg(t1,t2,expr,tol) sets the relative tolerance in the numerical integration procedure to tol. The tolerance must be a positive real scalar. The default tolerance (used when the fourth argument is omitted) is 1e-8.
- timeavg(t1,t2,expr,tol,minlen) sets the smallest length of the subintervals used in numerical integration as a fraction of the length of the whole integration interval. Subintervals smaller than this length are not further subdivided even if that means that the required accuracy is not reached. minlen must be a positive real scalar. The default value of minlen (used when the fifth argument is omitted) is 1e-6.
- The timeavg operator can only be used during results evaluation, so it should not be used when setting up the model.

#### THE LINPOINT OPERATOR

The linpoint operator can access the linearization point in a solution with a stored linearization point. If the solution does not have a stored linearization point, using linpoint causes an error message.

#### THE LINDEV OPERATOR

The lindev operator evaluates its argument in the following way when the solution has a stored linearization point: The expression is first linearized at the linearization point, and then evaluated at the current solution. In particular, if f depends linearly on the solution, lindev(f) is the same as f. If f does not depend on the solution, lindev(f) is 0. If the solution does not have a stored linearization point, using lindev causes an error message.

#### THE LINTOTAL OPERATOR

The lintotal operator can access the sum of the linearization point and the linear perturbation in a solution with a stored linearization point. If the solution does not have a stored linearization point, using lintotal causes an error message.

#### THE LINTOTALAVG OPERATOR

The lintotalavg operator evaluates the average of an expression over all phases. lintotalavg(f) is evaluated by taking the average of lintotal(f) with the solution (but not the linearization point) multiplied by  $e^{i\phi}$  for a number of phases  $\phi$ . The number of phases is automatically selected to achieve an accurate value. lintotalavg(f,n) uses n equidistantly spaced phases.

#### THE LINTOTALRMS OPERATOR

The lintotalrms operator evaluates the RMS of an expression over all phases. lintotalrms(f) is the same as sqrt(lintotalavg(abs(f)^2)).

#### THE LINTOTALPEAK OPERATOR

The lintotalpeak operator evaluates the maximum of an expression over all phases. lintotalpeak(f) is evaluated by taking the maximum of real(lintotal(f)) with the solution (but not the linearization point) multiplied by  $e^{i\varphi}$  for a number of phases  $\varphi$ . The number of phases is automatically selected to achieve an accurate value. lintotalpeak(f,n) uses n equidistantly spaced phases.

#### THE LINSOL OPERATOR

The linsol operator evaluates an expression using the standard solution. This is the default, so in most contexts the operator is not very useful. However, it can for example

be used inside the argument of linpoint to evaluate a part of the expression with the standard solution instead of the linearization point.

#### THE LINZERO OPERATOR

The linzero operator evaluates an expression using a zero solution. This is mostly used internally in the definitions of some other operators.

#### THE LINPER OPERATOR

The linper operator has one single use: To indicate load terms that should be used by stationary solvers setting **Linearity** to **Linear perturbation** in the **Stationary Solver** node's settings. Terms not enclosed by linper are ignored by such solvers. On the other hand, terms inside linper are ignored by all other solvers. Evaluating the linper operator always gives the result 0.

#### THE PPR AND PPRINT OPERATORS

• When the ppr operator is applied on an expression, COMSOL uses polynomial-preserving recovery to evaluate all variables in the expression that are discretized using Lagrange shape functions; see Accurate Derivative Recovery.

For example, if e = ux + vy, then  $ppr(e^2)=(ppr(ux)+ppr(vy))^2$ .

• The pprint operator similarly applies polynomial-preserving recovery within each group of domains with equal settings. Use these operators to get an estimate of the discretization error in the gradient.

For example ux-pprint(ux) in a 1D model.



If these operators are applied on expressions that are used when solving the model, COMSOL computes the Jacobian approximately by ignoring the operator. For example, the Jacobian of ux-pprint(ux) is 0.

#### THE REACF OPERATOR

- The reaction force operator (reacf) is available when calculating integrals of reaction forces or fluxes.
- Apply the react operator on the names of dependent variables when doing a surface integration. For example, in structural mechanics, with dependent variables u and v corresponding to x- and y-displacements, use react(u) and react(v) to access integrals of the reaction forces in the x- and y-direction, respectively.

- Disable access to the operator by clearing the **Reaction forces** check box in the **Output** section in the solver's settings window.
- The reaction force operator is not available when using weak constraints.

#### THE ADJ OPERATOR

- When the adjoint sensitivity operator (adj) is applied to an expression, COMSOL uses the adjoint sensitivity solution instead of the primal solution for the evaluation.
- The adjoint sensitivity solution is available for results when the sensitivity solver has been used with the adjoint sensitivity method, and for the dependent variables that have been solved for.

#### THE FSENS OPERATOR

- When the functional sensitivity operator (fsens) is applied to an expression, COMSOL uses the functional sensitivity solution for the evaluation.
- The functional sensitivity solution is available for analysis when the sensitivity solver has been used with either the adjoint or the forward sensitivity method, and for the sensitivity variables that have been solved for.

#### THE SENS OPERATOR

- When the forward sensitivity operator (sens) is applied to an expression, COMSOL uses the forward sensitivity solution instead of the primal solution for the evaluation.
- The forward sensitivity solution is available for analysis when the sensitivity solver has been used with the forward sensitivity method, and for the dependent variables that have been solved for.
- For scalar sensitivity variables, access the corresponding forward sensitivity solution by giving the sensitivity variable name as the second argument to this operator. For example, with the dependent variable u and the scalar sensitivity parameter q, access the forward sensitivity solution  $\partial u/\partial q$  as sens(u,q).
- For a sensitivity parameter that is not scalar, a more elaborate syntax specifying a unique degree of freedom must be used. This is done by giving an integer as the second argument, corresponding to the global degree of freedom number for the requested sensitivity parameter.

#### THE REALDOT OPERATOR

• The expression realdot(a,b) treats complex numbers a and b as if they were real-valued vectors of length 2 and returns their dot product. Also think of the operator call as a shorthand form of real(a*conj(b)). This expression, however, is not an analytical function of its complex arguments and therefore has no unique partial derivatives with respect to a and b.

• The difference between realdot (a, b) and real(a*conj(b)) is that the partial derivatives of the former with respect to a and b are defined as conj(b) and conj(a), respectively, while for the latter expression, the partial derivatives are real(conj(a)) and real(a).



The difference between the partial derivative definitions is important during sensitivity analysis of frequency-response problems (scalar or vector Helmholtz equations).

Common objective function quantities like power and energy must be redefined in terms of realdot(a,b) rather than real(a*conj(b)) for the sensitivity solver to compute correct derivatives. This applies also to the absolute value, abs(a), via the definition |a|² = realdot(a, a).

#### THE SHAPEORDER OPERATOR

- The expression shapeorder (u) gives the element order used for discretization of the variable u.
- The argument *u* must be a dependent variable or a partial derivative of a dependent variable. In the latter case, note that the order returned is the order of the dependent variable itself and not the order of its derivative.
- It is an error to apply the shapeorder operator to, for example, an expression, a constant, or a spatial coordinate.

#### THE PREV OPERATOR

- When the time discrete solver is used, it stores the solution at a number of previous time steps.
- The expression prev(expr,*i*) evaluates expr using the solution obtained *i* time steps before the current time step.
- The operator can be used in equations as well as for results evaluation.
- When used in equations, the prev operator makes it possible to discretize time derivatives. For example, to discretize ut (the time derivative of u) with the formula known as the *backward Euler method*, use the expression (u-prev(u,1))/timestep. Here, timestep is the size of the time step used to reach the current solution u. The prev operator is also applicable for timestep. For example,

prev(timestep, 1) is the size of the time step used to reach the solution at the previous time step.

• When using the prev operator, sufficiently many previous time steps must be stored. Specify the number of previous time steps to store in the time discrete solver (time discrete levels) in the Number of time discrete levels field in the General section of the Time Discrete Solver node's settings window. Evaluating an expression at a previous time step that has not been stored results in an error.

#### THE BDF OPERATOR

- Use the bdf operator to approximate time derivatives when the time discrete solver is used.
- The expression bdf (*expr*, *i*) results in a discretization of the time derivative of *expr* using a backward differentiation formula.
- The second argument, *i*, determines the order of accuracy of the discretization. Currently, first order and second order is available, so allowed values are *i* = 1 and *i* = 2. A second-order formula requires access to two previous time steps. Because this is not possible at the initial step, the evaluation at the initial step always uses the first-order formula.
- The bdf operator can be implemented using the prev operator. For example, obtain the first-order backward differentiation formula, also known as the backward Euler method, through bdf(u,1) = (u-prev(u,1))/timestep.

#### THE SUBST OPERATOR

- The subst operator takes a variable or expression as its first argument, followed by one or more argument pairs, each consisting of a variable name and an expression. The first argument in each pair is an original variable that appears in the variable or expression that you specify as the first argument, and the second argument in each pair is the variable or expression that you want to substitute the original variable with. This can be useful, for example, for replacing the variable for temperature in a temperature-dependent expression for some quantity by a fixed initial temperature for use as an initial condition.
- As an example, the expression subst(hmnf.nutildeinit,p,pin_stat) (taken from the Sajben Diffuser model in the CFD Module's model library) substitutes the dependent variable for pressure, p, with a user-defined variable pin_stat for the inlet static pressure. The evaluation of the variable hmnf.nutildeinit (for the

undamped turbulent kinematic viscosity) then takes the value of pin_stat instead of p.

• The unit of the output from the subst operator is the same as the unit for its first input argument.

# THE CIRCLE, DISK, SPHERE, AND BALL INTEGRATION AND AVERAGE OPERATORS

- The circint(r, expr) operator integrates the expression expr on a circle with radius r around the point in which it is evaluated. The circint operator can be evaluated on all entities in 2D and on edges in 3D, when used in 3D the integration is done on the circle in the normal plane to the edge.
- The circavg(r, expr) operator is defined as circint(r, expr)/circint(r, 1).
- The diskint(r, expr) is similar to the circint operator but calculates the integral on a disk instead.
- The diskavg(r, expr) operator is defined as diskint(r, expr)/diskint(r, 1).
- The sphint(r, expr) operator integrates the expression on a sphere with radius r around the point in which it is evaluated. The sphint operator can be evaluated on all entities in 3D.
- The sphavg(r, expr) operator is defined as sphint(r, expr)/sphint(r, 1).
- The ballint(*r*, expr) is similar to the sphint operator but calculates the integral on a ball instead.
- The ballavg(r, expr) operator is defined as ballint(r, expr)/ballint(r, 1).
- All of operators can be used with a third argument N that approximately specifies the number of integration points used—for example, circint(r, expr,100).
- To all operators you can add a suffix ("_frameId") that specifies the frame in which the integration is done—for example, circint_spatial(r, expr).

#### THE SPATIAL AT OPERATORS

- The scope.ati(<coordinate expressions>, expr) operator evaluates the expression expr in the geometry with the given model scope on an *i*-dimensional entity in the point given by the coordinate expressions. For example, root.mod1.at1(0,y,dom) evaluates dom in the two-dimensional geometry on an edge in the point (0, y).
- To all operators you can add a suffix ("_frameId") that specifies the frame in which the coordinate expressions are used, for example, at1_spatial(x,y, expr).



The following functions are only available when solving and not when evaluating parameters and variables in the user interface: acosh, acoth, acsch, asech, asinh, atanh, besselj, bessely, besseli, besselk, and erf.

#### TABLE 3-4: MATHEMATICAL FUNCTIONS

FUNCTION	DESCRIPTION	SYNTAX EXAMPLE
abs	Absolute value	abs(x)
acos	Inverse cosine (in radians)	acos(x)
acosh	Inverse hyperbolic cosine (in radians)	acosh(x)
acot	Inverse cotangent (in radians)	acot(x)
acoth	Inverse hyperbolic cotangent (in radians)	acoth(x)
acsc	Inverse cosecant (in radians)	acsc(x)
acsch	Inverse hyperbolic cosecant (in radians)	acsch(x)
arg	Phase angle (in radians)	arg(x)
asec	Inverse secant (in radians)	asec(x)
asech	Inverse hyperbolic secant (in radians)	asech(x)
asin	Inverse sine (in radians)	asin(x)
asinh	Inverse hyperbolic sine (in radians)	asinh(x)
atan	Inverse tangent (in radians)	atan(x)
atan2	Four-quadrant inverse tangent (in radians)	atan2(y,x)
atanh	Inverse hyperbolic tangent (in radians)	atanh(x)
besselj	Bessel function of the first kind	besselj(a,x)
bessely	Bessel function of the second kind	<pre>bessely(a,x)</pre>
besseli	Modified Bessel function of the first kind	besseli(a,x)
besselk	Modified Bessel function of the second kind	besselk(a,x)
ceil	Round up to nearest integer	ceil(x)
conj	Complex conjugate	conj(x)
cos	Cosine	cos(x)
cosh	Hyperbolic cosine	cosh(x)

TABLE 3-4: MATHEMATICAL FUNCTIONS

FUNCTION	DESCRIPTION	SYNTAX EXAMPLE
cot	Cotangent	cot(x)
coth	Hyperbolic cotangent	coth(x)
csc	Cosecant	csc(x)
csch	Hyperbolic cosecant	csch(x)
eps	Floating point relative accuracy (machine epsilon, $2^{-52}$ or about 2.2204 $\cdot 10^{-16}$ , for double floating point numbers)	eps
erf	Error function	erf(x)
exp	Exponential	exp(x)
floor	Round down to nearest integer	floor(x)
gamma	Gamma function	gamma(x)
i, j	Imaginary unit	i
imag	Imaginary part	imag(u)
inf	Infinity	inf
log	Natural logarithm	log(x)
log10	Common logarithm (base 10)	log10(x)
log2	Base-2 logarithm	log2(x)
max	Maximum of two arguments	<pre>max(a,b)</pre>
min	Minimum of two arguments	min(a,b)
mod	Modulo operator	mod(a,b)
NaN, nan	Not-a-number	nan
pi	Pi	pi
psi	Psi function and its derivatives	psi(x,k)
range	Create a range of numbers	<pre>range(a,step,b)</pre>
real	Real part	real(u)
round	Round to closest integer	round(x)
sec	Secant	sec(x)
sech	Hyperbolic secant	sech(x)
sign	Signum function	sign(u)
sin	Sine	sin(x)
sinh	Hyperbolic sine	sinh(x)
sqrt	Square root	sqrt(x)

TABLE 3-4: MATHEMATICAL FUNCTIONS

FUNCTION	DESCRIPTION	SYNTAX EXAMPLE
tan	Tangent	tan(x)
tanh	Hyperbolic tangent	tanh(x)

# Physical Constants

Physical constants are fundamental, universal constants that represent physical quantities. COMSOL Multiphysics includes the most widely used physical constants as predefined variables.

Optimized in the second sec

### Variables

Table 3-5 lists all supported physical constants with their names, symbol (variable name), value, and SI unit. When defined as variables, all variable names get the suffix _const, which indicates that they are physical constants. The values are taken from Ref. 1 and include the SI unit.



The suffix _const must be added to the symbols in Table 3-5 when using the physical constants as predefined variables in models. For example, h_const is the variable name for Planck's constant.

#### TABLE 3-5: PHYSICAL CONSTANTS

NAME	SYMBOL	VALUE
Acceleration of gravity	g	9.80665[m/s^2]
Avogadro constant	N_A	6.02214179e23[1/mol]
Boltzmann constant	k_B	1.3806504e-23[J/K]
Characteristic impedance of vacuum (impedance of free space)	Z0	376.730313461[ohm] (mu0*c)
Electron mass	me	9.10938215e-31[kg]
Elementary charge	е	1.602176487e-19[C]
Faraday constant	F	96485.3399[C/mol]
Fine-structure constant	alpha	7.2973525376e-3
Gravitational constant	G	6.67428e-11[m^3/(kg*s^2)]

TABLE 3-5: PHYSICAL CONSTANTS

NAME	SYMBOL	VALUE
Molar volume of ideal gas (at 273.15 K and I atm)	V_m	22.413996e-3[m^3/mol]
Neutron mass	mn	1.674927211e-27[kg]
Permeability of vacuum (magnetic constant)	muO	4*pi*1e-7[H/m]
Permittivity of vacuum (electric constant)	epsilon0	8.854187817e-12[F/m]
Planck's constant	h	6.62606896e-34[J*s]
Planck's constant over 2 pi	hbar	1.054571628e-34[J*s]
Proton mass	mp	1.672621637e-27[kg]
Speed of light in vacuum	С	299792458[m/s]
Stefan-Boltzmann constant	sigma	5.670400e-8[W/(m^2*K^4)]
Universal gas constant	R	8.314472[J/(mol*K)]
Wien displacement law constant	b	2.8977685e-3[m*K]

# Reference

1. The NIST Reference on Constants, Units, and Uncertainty, http://physics.nist.gov/cuu/Constants/index.html

## **Global Parameters**

In this section:

- About the Global Parameters
- Defining, Saving, or Importing Global Parameters
- Loading Parameters from a Text File

## About the Global Parameters

Under the **Global Definitions** node ( ), enter values in the **Parameters** table to define parameters used throughout the model making it possible to parameterize, for example, a geometric dimension. Parameters are scalar numbers that are the same for all geometries and domains, can depend on other parameters, and can contain any built-in mathematical function.



Process Control Using a PID Controller: Model Library path COMSOL_Multiphysics/Multidisciplinary_Models/pid_control

Use parameters in the following contexts:

- In dimensions for geometric primitives or other geometry features
- As parameters for the mesh generators
- As parameters to control some aspects of the solution process
- To quickly evaluate a mathematical expression, including unit conversion
- Dimensions in the geometry
- As mesh-size parameters
- In physics settings, expressions, and coupling operators
- In expressions when evaluating results

## Defining, Saving, or Importing Global Parameters

I In the Model Builder, right-click Global Definitions and select Parameters ( Pi ).

- 2 Enter parameters manually or import from a text file (see Loading Parameters from a Text File).
  - a In the Parameters table or the field under the table, enter a parameter Name.
  - **b** In the **Expression** column or field, enter an expression that defines the parameter value—a scalar number.

The parameter value can be a function of other parameters as well as built-in mathematical constants and functions, and it can use unit syntax.

The Value column displays the value of the parameter in the base unit system.

- c In the Description column or field, enter an optional description.
- **3** Add more parameters as required to the rows in the table.

Organize the table with the Move Up (  $\uparrow$  ), Move Down (  $\clubsuit$  ), or Delete ( $\clubsuit$ ) buttons or right-click the cell and select Move Up, Move Down, or Delete.

4 *Optional:* Save the parameters to a text file to reuse in other models. Click the **Save** to File button ( ) and enter a File name, including the extension .txt. Click to **Save** the text file.

The information is saved in space-separated columns in the same order as displayed on screen.

## Loading Parameters from a Text File

- I In the Model Builder, right-click Global Definitions and select Parameters ( Pi ).
- 2 Create data from a spreadsheet program or other format by saving the file with a .txt extension. Data must be separated by tabs or colons. Rows that begin with # or % are treated as comments and do not appear in the table.
- **3** In the settings window, click the **Load from File** button ( ).
- 4 Navigate to the text (.txt) file to load and click Open.

The data loads to the table. If there is other data already in the table, it adds it after the last row. Move or edit as required.

## Variables

Using the **Variables** (a=) node's settings window create symbolic *variables* that are defined using an expression. Depending on the type of variable, use a variable in a local or global context to simplify model definitions and for convenient access to quantities related to the expression that defines the variable. This section describes the syntax and names for variables that you define or that are predefined in a COMSOL Multiphysics model. Variables can be applied both at the global and local model levels.

In this section:

- About Global and Local Variables
- Predefined Physics Interface Variables
- Variable Naming Convention and Scope
- Variable Classification and Geometric Scope
- Specifying Varying Coefficients and Material Properties
- Variables for Time, Frequency, and Eigenvalues
- Geometric Variables
- Shape Function Variables
- Solver Variables
- Entering Ranges and Vector-Valued Expressions
- Adding Global Variables to the Model Builder
- Adding Local Variables to Individual Models
- Assigning Geometric Scope to a Variable
- Adding Variable Definitions
- Editing Variable Definitions
- Saving Variable Definitions to a Text File
- · Loading Variable Definitions from a Text File
- · Summary of Common Predefined Variables

## About Global and Local Variables

You can define *global variables* or *local variables* in the same way as parameters and functions. Global variables are applied to all the models in a file, whereas local variables

are valid in the entire model (geometry) or for specific domains, boundaries, edges, or points. This provides the flexibility to create variables with different meanings in different parts of the model. It often beneficial to define variables locally if they refer only to local quantities and built-in variables. Then access the variables using a more compact syntax (see Variable Naming Convention and Scope), and you do not make use of the global namespace. Global variables are primarily useful for defining expressions with variables that do not depend on the geometry, such as time and the dependent variables in an ODE or algebraic equation.

#### THE BENEFITS OF DEFINING VARIABLES

Defining variables simplifies model specification and results analysis. For example, variables can make a model easier to understand by using short names for complicated expressions. You can also use expressions that contain other variables, which are then computed when solving the model.

Using variables can also improve visualization and results analysis. For example, if you need to view a field variable throughout a model, but it has different names in different domains, you can create a common unique name for the field variable contained in different domains and then plot the created variable to show the entire field in all domains. If you have provided a description for a variable that you use as the expression in a plot, it becomes the default description for the plot. The variables that you define, including the descriptions, become available as predefined expressions in plots and results evaluation settings (in the **Definitions** list) when you have re-solved the model or updated the solution by right-clicking the **Solver** node (res) under **Solver Configurations** (res) in the **Study** branch (ce).

To specify a coefficient or a material property, enter a value or an expression directly in the corresponding field. Such expressions can contain:

- Numerical values.
- Units (see Using Units)
- Mathematical Functions
- Spatial coordinates, time, and the dependent variables in any physics interface in the model as well as their spatial derivatives and time derivatives.
- Physical Constants—predefined universal constants.
- Parameters, expression variables, coupling operators, and functions you have defined, including external functions and MATLAB functions (requires the

COMSOL LiveLink for MATLAB). See Operators, Functions, and Variables Reference.

• COMSOL Multiphysics functions and operators such as d and mean.

Use these types of variables, constants, and expressions in all features for the physics interfaces; many types of variables are also available anywhere in the model.

#### FIELD VARIABLES AND SCALAR VARIABLES

Most variables for material properties, coordinates, and other quantities defined on the computational domain are field variables—that is, they are defined so that they can vary in space and time. For example, a variable for the density in a Solid Mechanics interface, solid.rho, defines a density  $\rho$  as  $\rho(x,y,z,t)$  in 3D (but it is often defined as a scalar value in a domain with a homogeneous material). This means that you can plot it as a surface or volume plot, for example, but not use it directly where a scalar value is used, such as in an ODE or a global evaluation. Instead, use it in connection with an operator that computes an integral, average, or interpolated quantity, which then becomes a scalar variable. If you, for example, have defined an integration operator intop1 on the domain, you can use the expression intop1(1*solid.rho) to define a scalar variable for the total mass in the domain. If you instead use intop1(1)*solid.rho, it does not define a scalar variable—it defines another field variable that is the density multiplied with the volume of the domain.

## Predefined Physics Interface Variables

Physics interface variables are predefined variables that the physics interfaces introduce. They are typically functions of the dependent variables. Many of these variables are available in the **Predefined quantities** lists in the settings for plots and other results features.

Physics interface variables are physics-interface specific and consist of physically meaningful combinations of material properties and other variables. These variables are predefined for each physics interface.

To access physics interface variables, use a variable scoping syntax that uses the interface identifier to indicate the physics interface that they belong to.

The **Equation View** subnode is available for all physics feature nodes and contains a table with the names, expressions, units, and descriptions for the physics interface variables that the node defines. To display the **Equation View** subnodes, click the **Show** button (*****) and select **Equation View** from the **Model Builder**.

## Variable Naming Convention and Scope

T

Τīp

COMSOL Multiphysics uses variable scoping to control the access to variables within a model and variables in other models within the same MPH-file, for example. To access variables, use the following scoping mechanisms:

- To refer to the top level of the model tree, use root.
- To refer to variables in a model branch, use its model identifier, such as mod1.
- To refer to variables in a physics interface, use its interface identifier, such as solid.
- To refer to material properties, use the material node's tag, such as mat1, and the tag of the property group for the material property group, which is typically def for the Basic property group. For example, access the density ρ in Material 1 using mat1.def.rho (or using the full scope for Model 1, root.mod1.mat1.def.rho; see below). Use this pattern when referencing to other material properties too.
- COMSOL evaluates the physics interface variables in the model scope so you need to prepend the interface identifier to access these variables. For example, solid.disp refers to the total displacement in a Solid Mechanics interface with the interface identifier solid.
- The dependent variables (field variables) are unique within a model, and you do not need the interface identifier to access them. For example, enter T to access the temperature in a Heat Transfer interface using the default name for the temperature.
- When referring to a variable you only need to provide the part of the full scope that makes the variable unique. For example, within a Solid Mechanics interface solid in Model 1 mod1, it is sufficient to type solid.disp, but mod1.solid.disp and the full scope root.mod1.solid.disp are also correct. To access the same variable from another model, use mod1.solid.disp or root.mod1.solid.disp. The same mechanism applies to variables defined within a model. To access a global parameter param1, you can use param1 directly or root.param1.

These variable naming conventions mean that the syntax becomes shorter when defining variables locally in a model branch instead of globally. For example, to access the x-component of the electric field,  $E_x$ , in an Electrostatics interface with the interface identifier es in a Model 1 with the name model identifier mod1, you can use es.Ex in a variable defined in Model 1, but for a variable defined globally, the syntax is mod1.es.Ex.

For information about the interface identifiers, see the sections about the physics interfaces in this book and the *User's Guides* for the modules.

## Variable Classification and Geometric Scope

COMSOL Multiphysics provides a set of variables you can use in expressions when specifying a model and for visualizing and analyzing the solution. A number of variables are common to all physics interfaces in a model, for example, the spatial coordinate variables x, y, and z (for 3D and planar 1D and 2D geometries).

Every physics interface also has its own set of variables to represent quantities relevant to the physics or equations that it covers. Characteristics of variables include:

- Parameters and geometric variables are always available.
- The choice of physics interfaces and the dimension of the geometries in the model affect the set of available field variables and special variables.
- Equations can be active in different domains, which also affects the set of available variables. Variables corresponding to certain equation terms are available only in the particular part of the geometry (such as domains, boundaries, or points) where the equation is active.
- Variables defined on boundaries, edges, and points are active if the adjacent domain is active.

Variables are divided into the following general categories:

- Parameters (see Global Parameters) and *expression variables* (user-defined parameters)
- · Variables for Time, Frequency, and Eigenvalues
- Physical Constants (predefined universal constants)
- Geometric Variables (variables that characterize geometric properties).
- *Field variables* (dependent variables and variables derived from them). For example, Shape Function Variables and Predefined Physics Interface Variables.

- Model Couplings
- Solver Variables (available only during the solution process)

## Specifying Varying Coefficients and Material Properties

When assigning varying material properties, for example, you can enter expressions that use:

- Space and time variables
- Results from other physics interfaces in the model
- Results from the current physics interface
- Interpolation from gridded data that is entered into a table or stored in a file
- · Interpolation from measured data

There are three categories of properties described next—space-varying, time-varying, and nonlinear. These are the most common for coefficients and material properties that vary during analysis.

#### SPACE-VARYING PROPERTIES

Model properties can vary in space for all study types and solvers (except for applications that do not involve a geometry).

<b>SD</b>	The spatial variables (independent variables) to use in these properties are normally $x$ , $y$ , and $z$ for 3D geometries. If the model contains a Solid Mechanics, Moving Mesh or Deformed Geometry interface, you may also use $X$ , $Y$ and $Z$ to refer to the material reference configuration or $Xg$ , $Yg$ and $Zg$ to refer to the original geometry.
2D	The spatial variables (independent variables) to use in these properties are normally $x$ and $y$ for 2D geometries. If the model contains a Solid Mechanics, Moving Mesh or Deformed Geometry interface, you may also use $X$ and $Y$ to refer to the material reference configuration or $Xg$ and $Yg$ to refer to the original geometry.



The spatial variables (independent variables) to use in these properties are normally r and z for axisymmetric geometries. If the model contains a Solid Mechanics, Moving Mesh or Deformed Geometry interface, you may also use R and Z to refer to the material reference configuration or Rg and Zg to refer to the original geometry.

- Use space variables in expression variables and coupling operators. For example, you might enter the expression K0+0.1*x in a field if thermal conductivity varies with x.
- If the model contains a Solid Mechanics, Moving Mesh or Deformed Geometry interface, the spatial coordinate variables may be functions of the solution. A space-varying expression may in that case make the property nonlinear.
- Use space variables when using interpolation commands with gridded and measured data sets.

#### TIME-VARYING PROPERTIES

Model properties can vary in time for time dependent (transient) analyses. Use the reserved variable name for time, t. See The Time Variable.

#### NONLINEAR PROPERTIES

In a nonlinear model, the model properties depend on the variables for which you solve (the dependent variables). For example, you might enter an expression like  $K0+0.1*T^2$  in a field if thermal conductivity varies quadratically with temperature *T*.

COMSOL Multiphysics automatically detects if a model is nonlinear and then uses a nonlinear solver.

## Variables for Time, Frequency, and Eigenvalues

The following variables are predefined to represent time (t), frequency (freq), and eigenvalue (lambda).

#### THE TIME VARIABLE

- For time dependent problems use the time variable (t) with the unit seconds (s).
- It can be part of any expression in the point, edge, boundary, and domain settings, as well as during analysis.
- It is always scalar, even when the solution contains more than one output time.

- For stationary models, the value of t is 0.
- The value of t for results evaluation corresponds to the selection made in the **Time** list in the **Data** sections for the visualization and data evaluation nodes in the **Results** branch in the **Model Builder**. See the Results Evaluation and Visualization section.

### THE FREQUENCY VARIABLE

The frequency variable (freq) is the global frequency for models in the frequency domain (time-harmonic models and frequency response analysis, for example).

#### THE EIGENVALUE VARIABLE

- When specifying an eigenvalue problem, use the eigenvalue variable (lambda) like any other variable.
- The eigenvalue solver extracts the Jacobian, the damping matrix, and the mass matrix through Taylor expansion of the problem with respect to the eigenvalue variable around a specified eigenvalue linearization point (which is zero by default).
- Other solvers treat the eigenvalue variable as a constant with value zero, unless it is set by an eigenvalue solution used as initial solution.
- After solving an eigenvalue problem, the eigenvalue name is available as a scalar variable for use in expressions.
- To choose between different eigenvalues, select one from the **Eigenvalue** list in the **Data** sections for the visualization and data evaluation features in the **Results** section of the **Model Builder**. The value of the eigenvalue variable corresponds to the selection made in the **Eigenvalue** list. See the Results Evaluation and Visualization section.
- For many physics interfaces, the default is to use an eigenfrequency study and compute and display the eigenfrequencies rather than the eigenvalues.

The variables that characterize geometric properties are listed in Table 3-6, with detailed descriptions for some of the variables following the table.

VARIABLE	DESCRIPTION The domain number, the boundary number, the edge number, or the vertex (point) number. This variable takes only integer values.		
dom			
dvol	The volume scale factor variable, dvo1, is the determinant of the Jacobian matrix for the mapping from local (element) coordinates to global coordinates.		
	For 3D domains, this is the factor that the software multiplies volumes by when moving from local coordinates to global coordinates.		
	In 2D and ID domains, it is an area scaling factor and length scaling factor, respectively.		
	If a moving mesh is used, dvol is the mesh element scale factor for the undeformed mesh. The corresponding factor for the deformed mesh is named dvol_spatial.		
h	Available on all geometric entities, the variable h represents the mesh element size in the material/reference frame (that is, the length of the longest edge of the element).		
linearizedelem	In some calculations COMSOL may force mesh elements to become linear. This variable returns one inside such an element and zero otherwise. Note that the faces of the linearized mesh elements are not considered to be linearized themselves. You can use this variable to identify mesh elements with linearized elements.		
meshtype	The mesh type index for the mesh element. This is the number of edges in the element.		
meshelement	The mesh element number.		
meshvol	Volume of the (linearized) mesh element.		
nx, ny, nz	See Normal Variables.		
qual	A mesh quality measure.		

TABLE 3-6: GEOMETRIC VARIABLES

TABLE 3-6: GEOMETRIC VARIABLES

VARIABLE	DESCRIPTION
reldetjac reldetjacmin	The determinant of the Jacobian matrix for the mapping from local (element) coordinates to global coordinates, normalized to that of a first-order element.
	It is the determinant of the Jacobian matrix for the mapping from the straight mesh element to the possibly curved element used when solving.
	Use this variable to measure the difference in shape between a curved element and the corresponding straight element.
	The variable reldetjacmin is a scalar for each element defined as the minimum value of the reldetjac variable for the corresponding element.
	A reldet j acmin value less than zero for an element means that the element is wrapped inside-out; that is, the element is an <i>inverted mesh element</i> .
s, s1, s2	See Parameterization Variables.
$t_X$ and $t_Y$ (2D)	See Tangent Variables.
t1x, t1y, t1z (3D edges)	
t2x, t2 _y , t2z (3D surfaces)	
x, y, z r, z	See Spatial Coordinate Variables.

When entering the spatial coordinate, parameterization, tangent, and normal geometric variables, replace the letters highlighted below in *italic font* with the actual names for the dependent variables (solution components) and independent variables (spatial coordinates) in the model.

For example, replace u with the names of the dependent variables in the model, and replace x, y, and z with the first, second, and third spatial coordinate variable, respectively.  $x_i$  represents the *i*th spatial coordinate variable. If the model contains a deformed mesh or the displacements control the spatial frame (in solid mechanics, for example), you can replace the symbols x, y, and z with either the spatial coordinates (x, y, and z by default) or the material (reference) coordinates (X, Y, and Z by default).

Important

The variables dvol, h, qual, reldetjac, and reldetjacmin are based on the mesh viewed in the material (reference) frame. If you have a moving mesh, the corresponding variables for the mesh viewed in the spatial frame have a suffix _spatial (that is, dvol_spatial, h_spatial, and so on). If you use a deformed geometry, the corresponding variables for the original, undeformed mesh have a suffix _mesh (for example, h_mesh).

#### SPATIAL COORDINATE VARIABLES

- The spatial coordinate variables (independent variables) *x*, *y*, *z* are available for all domain types.
- For a Cartesian geometry the default names for the spatial coordinates are *x*, *y*, *z*.
- For axisymmetric geometries the default names for the spatial coordinates are r,  $\phi$ , and z.
- If a deformed mesh is used, x, y, z can be both the *spatial coordinates* (x, y, z) and the *material/reference coordinates* (X, Y, Z); see Mathematical Description of the Mesh Movement.
- If the model includes a deformed mesh, the variables *x*TIME, *y*TIME, *z*TIME represent the mesh velocity. To access these variables, replace *x*, *y*, and *z* with the names of the spatial coordinates in the model (x, y, and z).

#### PARAMETERIZATION VARIABLES

The surface-boundary parameterization variables can be useful for defining distributed loads and constraints such as a parabolic velocity profile. The available parameterization variables are:

The curve parameter s (or s1) in 2D. Use a line plot to visualize the range of the parameter, to see if the relationship between x and y (the spatial coordinates) and s is nonlinear, and to see if the curve parameterization is aligned with the direction of the corresponding boundary. In most cases it runs from 0 to 1 in the direction indicated by the arrows shown on the boundaries when in the boundary selection mode. You can use s on boundaries when specifying boundary conditions.



- The arc length parameter s1 available on edges in 3D. It is approximately equivalent to the arc length of the edge. Use a line plot to visualize to see the values of s1.
- The surface parameters \$1 and \$2 in 3D are available on boundaries. In many cases they can be difficult to use because the relationship between *x*, *y*, and *z* (the spatial coordinates) and \$1 and \$2 is nonlinear. Often it is more convenient to use expressions with *x*, *y*, and *z* for specifying distributed boundary conditions. To see the values of \$1 and \$2, plot them using a surface plot.

#### TANGENT AND NORMAL VARIABLES

The tangent and normal variables are components of the tangential and normal unit vectors.

Tangent Variables



3D

In 2D, tx and ty define the curve tangent vector associated with the direction of the boundary.

In 3D, the tangent variables t1x, t1y, and t1z are defined on edges. The tangent variables t1x, t1y, t1z, t2x, t2y, and t2z are defined on surfaces according to

3D

$$(t_{ix}, t_{iy}, t_{iz}) = k_i \left(\frac{\partial x(s_1, s_2)}{\partial s_i}, \frac{\partial y(s_1, s_2)}{\partial s_i}, \frac{\partial z(s_1, s_2)}{\partial s_i}\right), \quad i = 1, 2$$

These most often define two orthogonal vectors on a surface, but the orthogonality can be ruined by scaling geometry objects. The vectors are normalized;  $k_i$  is a normalizing parameter in the expression just given.

If a deformed mesh is used, the tangent variables are available only for the undeformed mesh. In that case, replace x, y, and z with the names of the reference coordinates (X, Y, and Z by default).

1

3D

ID	In 1D, $nx$ is the outward unit normal pointing out from the domain.
2D	In 2D, nx and ny define a normal vector pointing outward relative to the domains.

In 3D, nx, ny, and nz define a normal vector pointing outward relative to the domains.

## Direction of the Normal Component on Interior Boundaries

To get control of the direction of the normal component on interior boundaries, the following variables are available:

	In 1D:
ID	• unx, the outward unit normal seen from the upper domain
	• dnx, the outward unit normal seen from the lower domain

	In 2D:
	• unx and uny for the up direction
	• dnx and dny for the down direction
2D	The upside is defined as the left side with respect to the direction of the
	boundary.
	In 3D:

	In 3D:
	• unx, uny, and unz for the up direction
3D	• dnx, dny, and dnz for the down direction

To visualize any of these vector variables use arrow plots on surfaces or lines.

If a deformed mesh is used, the normal variables are available both for the deformed configuration and for the undeformed configuration. In the first case, replace x, y, and z with the spatial coordinate names (x, y, and z by default). In the second case, replace x, y, and z with the material/reference coordinate names (X, Y, and Z by default).

#### Normal Vector Variables Representing Element Surface Normals

A similar set of variables—nxmesh, unxmesh, and dnxmesh, where x is the name of a spatial coordinate—use the element shape function and are normal to the actual element surfaces rather than to the geometry surfaces.

#### Shape Function Variables

Shape function variables and boundary-coupled shape variables are related to the *shape functions* of the finite elements. The shape function variables are related to the degrees of freedom defined by a finite element.

A finite element defines a number of variables, typically a dependent variable and its derivatives. Such variables are called shape functions variables because they are computed directly from shape functions and the degrees of freedom.

When a physics interface is selected, names are entered for the dependent variables these names are used to construct the finite elements. The dependent variable name is the basis for additional variable names that the finite elements generate.

# Important

When entering the shape function variables, replace the letters highlighted below in *italic font* with the actual names for the dependent variables (solution components) and independent variables (spatial coordinates) in the model.

For example, replace u with the names of the dependent variables in the model, and replace x, y, and z with the first, second, and third spatial coordinate variable, respectively.  $x_i$  represents the *i*th spatial coordinate variable. If the model contains a deformed mesh or the displacements control the spatial frame (in solid mechanics, for example), you can replace the symbols x, y, z with either the spatial coordinates (x, y, and z by default) or the material/reference coordinates (X, Y, and Z by default).

#### AN EXAMPLE OF LAGRANGE ELEMENT VARIABLES

For the Lagrange element, which is the element type used by most physics interfaces, Table 3-7 lists the available variable names, assuming you gave the name u as the argument to the shape function, and that the names x, y, and z are provided for the independent variables.

ENTITY TYPE\ SPACE DIMENSION	ID	2D	3D
POINT		u	u
EDGE			u, <i>u</i> T <i>x</i> , <i>u</i> T <i>y</i> , <i>u</i> T <i>z</i>
BOUNDARY	u, uTx, ut, uTxt	u, uTx, uTy, ut, uTxt, uTyt	u, uTx, uTy, uTz, ut, uTxt, uTyt, uTzt
DOMAIN	u, ux, uxx, ut, uxt, uxxt, utt, uxtt, uxxtt,	u, ux, uy, uxx, uxy, uyx, uyy, ut, uxt, uyt, uxxt, uxyt, uyxt, uyyt, utt, uxtt, uytt, uxxtt, uxytt, uyxtt, uyytt	u, ux, uy, uz, uxx, uxy, uxz, uyx, uyy, uyz, uzx, uzy, uzz, ut, uxt, uyt, uzt, uxxt, uxyt, uxzt, uyxt, uyyt, uyzt, uzxt, uzyt, uzzt, utt, uxtt, uytt, uztt, uxxtt, uxytt, uyytt, uyztt, uzxt, uzyt, uzztt

TABLE 3-7: LAGRANGE ELEMENT VARIABLE NAMES

For example, with a fluid-flow interface, you get the set of variables indicated in Table 3-7 for u, v, w, and p, respectively.

- The variables *ux*, *uy*, and *uz* are the components of the gradient ∇*u*, that is, the 1st-order spatial derivatives.
- The variables *uxx*, *uxy*, *uxz*, *uyx*, *uyy*, *uyz*, *uzx*, *uzy*, and *uzz* are the 2nd-order space derivative components. They are meaningful only if the degree of the polynomial shape function used in an element is high enough.
- For elements with 2nd-degree polynomial shape functions (2nd-order elements), the polynomial degree of the 2nd-order derivatives is zero; that is, the second derivatives are constant in each element.
- For element orders lower than two, the second derivatives evaluate to zero regardless of the values of the 2nd-order derivatives of the true solution.

If the model uses a deformed mesh, each finite element is associated with a certain frame (the spatial frame or the material frame). The frame determines the names of the variables generated by the finite element. For instance, if the spatial frame is used, the Lagrange element computes derivatives with respect to the spatial coordinates, ux, uy, and uz. If the material frame is used, the Lagrange element computes derivatives with respect to the material frame is with respect to the material frame is used.

#### THE TIME DERIVATIVES OF THE DEPENDENT VARIABLES

The variable ut is the time derivative of the dependent variable u. You can also form mixed space-time derivatives as  $ux_it$ , for example, uxt,





The t must be last in a mixed derivative. The second time derivatives can also be used, such as utt or uxtt (but not higher derivatives in time).

If the model contains a deformed mesh, there is, in addition to the usual time derivative ut, the *mesh time derivative* uTIME. This also holds for mixed space-time derivatives.

#### TANGENTIAL DERIVATIVE VARIABLES

On boundaries, edges, and points you also have access to *tangential derivative variables*. They have names such as uTx, uTy, and uTz. Using these variables, it is possible to create models with phenomena on boundaries, edges, or points as described with PDEs.

The tangential derivative variables represent the Cartesian components of the tangential projection of the gradient of shape function variables:

$$(\nabla u)_T = (I - \mathbf{nn}^T) \cdot \nabla u$$

In this equation,  $(\nabla u)_T$  is the tangential gradient, which consists of the tangential derivatives in each spatial direction, I is the unity tensor, **n** is the outward unit normal vector, and  $\nabla u$  is the gradient of u.

#### LAGRANGE MULTIPLIER VARIABLES

If weak constraints are activated for boundary conditions that are constraints (Dirichlet boundary conditions), COMSOL Multiphysics adds variables for the Lagrange multipliers (one for each dependent variable) by adding _lm as a suffix to the dependent variable name. For example, for a dependent variable *u*, the corresponding Lagrange variable is u_lm. The Lagrange multipliers are available on boundaries, and you can also evaluate them on edges (in 3D) and points (in 2D and 3D).

#### VARIABLE INHERITANCE

On boundaries, edges, and points, gradients and second derivatives of the shape functions are available by *inheritance*; that is, the average of the values of the variables from the adjacent domains are computed. This process can progress for several levels.

For example, ux is the average on a boundary from the adjacent domains, then the average on an edge from the adjacent boundaries, and finally, the average at the points from the adjacent edges.

If possible, avoid using variable inheritance for gradients and second derivatives in a model. Instead, use the tangential derivative variables for equation-based modeling on boundaries.

For computations of integrals of reaction forces and fluxes, use The Reacf Operator.

For high accuracy reaction forces and fluxes in other circumstances, use weak constraints and Lagrange multipliers on boundaries instead of directly accessing the gradient through inheritance (see Calculating Accurate Fluxes).



When you plot or evaluate—on a boundary, for example—the value of a variable that is discontinuous across that boundary (a thin resistive layer, for example), the value is the average of the value on the "up" and "down" sides of the boundary. You can use the up and down operators to get the value on either side of the boundary (see The Up, Down, and Mean Operators).

## Solver Variables

The following table lists variables that are available during the solution process only. They can be used in solver settings in the Study branches but are not available for use in, for example, results evaluation, and plots.

TABLE 3-8: SOLVER VARIABLES

VARIABLE	DESCRIPTION
niterCMP	This is a global variable. It evaluates to the iteration number for nonlinear iterations. It starts from one and increases with one for each fully coupled or segregated iteration. It is used by some physics interfaces to control damping mechanisms. Examples are pseudo-time stepping in fluid dynamics and the penalty factor in the augmented Lagrangian method for contact problems in structural mechanics.
gmg_level	This is a global variable. It evaluates to the geometric multigrid level. It is zero for the top level (the one solved for), one for the next coarser level, and so on. It is used by some physics interfaces to control artificial stabilization.
timestep	This is a global variable. It evaluates to the current time step used by the time-dependent solver. It is used by some physics interfaces to control artificial stabilization. You can use it, for example, to create a stop condition that stops the time stepping if the time step becomes smaller than some threshold value.

## Entering Ranges and Vector-Valued Expressions

You can enter ranges and vector-valued expressions such as extra grid-line coordinates using the following formats:

- A space-separated or comma-separated list of values: 10, 15, 23, 29.7, 30.
- A delimited space-separated list using curly braces; for example, as an argument to a function: cos({0 pi/4 pi/2}).
- Equally-spaced values using the range function as in range(start value, step_size, end value). For example, range(0,0.2,3)

creates the values 0, 0.2, 0.4,..., 2.6, 2.8, 3.0. The step size is 1 if you provide only start and end values and skip the step value.



start_value can be either smaller or larger than end_value. In the latter case, the step size must be negative. For example, range(0,-5,-100) creates the values 0, -5, -10, ..., -95, -100, while range(0,5,-100) is an empty set of values.

Combine these formats in a single expression to create an array of values that contain an arbitrary number of segments with differently spaced values mixed with other freely specified values.

#### EXAMPLES USING THE RANGE FUNCTION

- range(a, (b-a)/(n-1), b) gives a list of n equally-spaced increasing values in the range [a, b] if b >a or decreasing values in the range [b, a] if a >b.
- 10^{range(-3,3)} gives the exponentially increasing sequence  $10^{-3}$ ,  $10^{-2}$ , ...,  $10^{3}$ .
- 1^range(1,10) gives a sequence of length 10 where all elements equal 1.
   Multiplying the vector 1^range(1,n) by a constant value a gives a vector of n elements all equal to a.
- 0^{range(1,5)} gives the sequence 0 0 0 0 0.

#### USING RANGES TO GENERATE ARRAYS

A convenient way to generate vectors of values is to use the **Range** dialog box, which you open by clicking the **Range** button  $(|_{m}|)$  next to most of the fields that accept vectors of values.

In that dialog box, use the **Entry method** list to select **Step** to enter a step size or **Number** of values to specify the number of values in the array. Specify the start value for an array of values in the **Start** field. Enter the step size in the **Step** field or the number of values in the **Number of values** field, depending on the setting in the **Entry method** list. Specify the end value for the array of values in the **Stop** field. By default, the spacing of the values is linear, but you can select a function to apply to all values. To do so, choose one of the available arithmetic and trigonometric functions from the **Function to apply to all values** list. For example, select **exp10** to create an array of exponentially increasing values. The list includes the following functions:

 The default value None, which means linear spacing using the range function directly with the values specified.

- The exponential functions **exp10** (base-10 exponential function) and **exp** (base-*e* exponential function), which create exponentially-spaced values using the specified range of values as powers of 10 and of the mathematical constant *e*, respectively.
- The trigonometric functions **cos** (cosine) and **sin** (sine), which create sinusoidally varying values.
- The square root function **sqrt**, which creates a vector with values that are the square roots of the values specified.

Click **Replace** to replace the contents in the field with the values specified in the **Range** dialog box.

Click **Add** to add the range of values to the end of the existing values in the associated field. That way you can create more complex ranges.

## MODELING FEATURES THAT SUPPORT RANGES AND VECTOR-VALUED EXPRESSIONS

The following modeling features support ranges and vector-valued expressions:

- Extra grid lines in the Axis node's settings window.
- Interval coordinates when using the **Interval** node's settings window for 1D geometries.
- The Copy, Move, and Rotate transform features for geometry modeling.
- The times for output from the time dependent solver and the list of parameter values in the settings windows for study step nodes for time dependent and stationary solvers and for parametric sweeps.
- The contour levels, the streamline start-point coordinates, and the coordinates in arrow plots. Whenever you specify a number of coordinates in settings windows for plots, COMSOL Multiphysics uses scalar expansion—if one component is the same for all coordinates, enter a single number in the corresponding text field. For example, to get 101 linearly spaced coordinates from y = 6 to y = 7 along x = 3, enter it as the single scalar 3 for x and then range (6,0.01,7) for y. Thus, you need not enter 101 similar values for x.
- Element distribution in the meshing settings.

#### Adding Global Variables to the Model Builder

I Open or create a model file.

2 In the Model Builder, right-click Global Definitions and select Variables.

The **Variables** page opens in the settings window and a **Variables** node is added to the model under **Global Definitions**.



Effective Diffusivity in Porous Materials: Model Library path COMSOL_Multiphysics/Diffusion/effective_diffusivity

## Adding Local Variables to Individual Models

- I Open or create a model file.
- 2 In the Model Builder, right-click Definitions and select Variables.

The **Variables** page opens in the settings window and a **Variables** node is added to the model under **Model>Definitions**.

- Acoustics of a Muffler: Model Library path COMSOL_Multiphysics/ Acoustics/automotive_muffler
   Tubular Reactor: Model Library path COMSOL_Multiphysics/ Chemical_Engineering/tubular_reactor
  - Fluid Valve: Model Library path COMSOL_Multiphysics/Fluid_Dynamics/ fluid_valve

## Assigning Geometric Scope to a Variable



The **Global Definitions Variables** page does not have a **Geometric Scope** section.

I Create a local variable for a model.

2 In the Geometric Scope section, select the scope in the Geometric entity level list. The options are Entire Geometry, Domain, Boundary, Edge (3D only), and Point.

If a level other than **Entire Geometry** is selected, a **Selection** list for geometric entities of the selected type (boundaries, for example) displays.

C See Also

#### Selecting and Deselecting Geometric Entities

## Adding Variable Definitions

- I Create a global or local Variable.
- **2** On the **Variables** page, in the **Variables** table, click the first cell in the **Name** column. Enter a variable name.
- **3** In the **Expression** column, enter an expression that defines the variable. Expressions can contain spatial coordinates and solution components that are also available within the same scope.

The **Unit** column displays the unit of the variable.

- **4** In the **Description** column, enter an optional description.
- **5** Add more variables as required to the rows in the table.

Click any cell to move or delete the corresponding row. Click the **Move Up** (  $\uparrow$  ), **Move Down** (  $\clubsuit$  ), or **Delete** ( $\clubsuit$ ) buttons or right-click the cell and select **Move Up**, **Move Down**, or **Delete**.

## Editing Variable Definitions

Click on any cell and enter changes directly in the table; or click any cell in the parameter row to edit. The **Name**, **Expression**, and **Description** fields under the table autofill with the same values. Edit the data in these fields.

#### Saving Variable Definitions to a Text File

- I Enter variables into the table.
- 2 Click the Save to File button ( 🛄 ).

**3** Enter a File Name, including the extension .txt. Click Save (]]).

The information is saved in space-separated columns in the same order as displayed on screen.

## Loading Variable Definitions from a Text File

- I In the Model Builder, right-click Global Definitions or Definitions and select Variables.
- 2 Save data from a spreadsheet program or other format by saving the file with a .txt extension. Data must be separated by tabs or colons. Rows that begin with # or % are treated as comments and do not appear in the table.
- **3** In the settings window, click the **Load from File** button ().
- 4 Navigate to the text (.txt) file to load and click Open.

The data loads to the table. If there is other data already in the table, it adds it after the last row. Move or edit as required.

## Summary of Common Predefined Variables

The following table summarizes the most important predefined variables that are generally available in all COMSOL Multiphysics models. Some are only available in certain geometries or in time dependent models, for example.

TYPE OF VARIABLES	VARIABLES
Time	t
Frequency	freq
Eigenvalues	lambda
Position	x, y, z, r, X, Y, Z, R
Edge/surface parameters	s, s1, s2
Edge/surface normals	n, nx, ny, nz, nr
Edge tangents	tx, ty, tz, tr
Surface tangents	t1x, t1y, t1z, t2x, t2y, t2z
Edge/surface upward normals	un, unx, uny, unz
Edge/surface downward normals	dn, dnx, dny, dnz
Numerical constants	eps, i, j, pi
Mesh information	h, dom, meshtype, meshelement, dvol, qual, reldetjac, reldetjacmin

TABLE 3-9: COMMON PREDEFINED VARIABLES

## Global and Local Functions

In this section:

- About Global and Local Functions
- Analytic Functions
- Elevation Functions
- External Functions (Global Only)
- Gaussian Pulse Functions
- Image Functions
- Interpolation Functions
- MATLAB Functions (Global Only)
- Piecewise Functions
- Ramp Functions
- Random Functions
- Rectangle Functions
- Step Functions
- Triangle Functions
- Waveform Functions
- Specifying Discontinuous Functions

## About Global and Local Functions

There are three broad categories of functions—**Analytic**, **Interpolation**, and **Piecewise** and a number of templates for common function types, such as step and ramp functions. See Table 3-10for a list. You can also create external function interfaces to include functions written in C and MATLAB. Functions can be global or local in scope, although two function types—external functions and MATLAB functions—can only be defined globally.

To add functions to the Model Builder, right-click Global Definitions or Definitions and select a Function.

#### OTHER FUNCTION CHARACTERISTICS

#### Smoothing

Many functions type have smoothing as an optional choice. Smoothing makes a function more well-behaved and more suitable for use in finite element modeling. It replaces jumps with smooth transitions that eliminate discontinuities and can represent the inertia present in real applications.

#### Plotting

Click the **Plot** button ( $\searrow$ ) in the upper-right corner of the settings window to create plots of all functions of 1–3 variables. For analytic functions, first define a range for the arguments in the **Plot Parameters** section.

Click the **Create Plot** button ( ) in the upper-right corner of the settings window to create a customized plot of the function under Results, including default plot groups and plots.

#### Adding Functions to Materials

Define **Analytic**, **Interpolation**, and **Piecewise** functions for materials. See Materials. Then follow the instructions as described in this section.

#### Units for Function Inputs and Outputs

By default, functions expect dimensionless inputs and provide dimensionless outputs. In the **Units** section in the settings window for the Analytic, Interpolation, and Piecewise function nodes, define the units for the function's inputs and output. In the **Arguments** field, type a single unit for all inputs, or specify space-separated or comma-separated units for each input (type m, s, for example, for two input arguments with the units meter and second, respectively). In the **Function** field, type the unit for the function's output. See Using Units for general information about available units.

#### AVAILABLE GLOBAL AND LOCAL FUNCTIONS

The following table includes all global and local functions that are available, including links to more detailed information about each function type:

TABLE 3-10: GLOBAL AND LOCAL FUNCTION DESCRIPTIONS

LINK TO FUNCTION	ICON	DESCRIPTION AND USE
Analytic Functions	x <del>ž</del> sir(x)	An analytic function is defined by a symbolic expression. It extends variables with the ability to bind parameters during function calls. In other words, the actual variable names in an expression are not required when writing the function. In addition to the arguments that are defined, analytic functions also recognize global parameters.
Elevation Functions (DEM)	۵	The elevation function reads elevation data from files with digital elevation models (DEM files using the United States Geological Survey geospatial file format).
External Functions (Global Only)	f(×)	An external function interfaces to other external functions written in the C language. Then use those functions as any other functions defined in COMSOL Multiphysics. For example, for a user-created shared library (depending on the platform, a DLL, .so, or .dylib file).
Gaussian Pulse Functions	Л	The Gaussian pulse function is the common bell-shaped curve. It has a shape that is similar to a Gaussian (normal) distribution.
Image Functions	<b>A</b>	The image function provides a single color channel value as a 2D function of the space coordinates for any image in the BMP, JPEG, PNG, or GIF format.
Interpolation Functions	<u>्</u> ,	An interpolation function is defined by a table or file containing the values of the function in discrete points. The interpolation data can be both structured, (defined on a grid) or unstructured (defined on a generic point cloud).
MATLAB Functions (Global Only)	f(×)	Use a MATLAB function feature to interface to functions written in MATLAB. These functions can be used as any other function defined in COMSOL Multiphysics. MATLAB functions are evaluated in MATLAB.

LINK TO FUNCTION	ICON	DESCRIPTION AND USE
Piecewise Functions	^	A piecewise function is created by splicing together several functions, each defined on one interval. Define the argument, extrapolation and smoothing methods, and the functions and their intervals. The piecewise function is a function of one variable with different definitions on different intervals, which must not overlap or have any holes between them.
Ramp Functions	٢	A ramp function is a linear increase with a user-defined slope that begins at some specified time. The ramp function is a function of one variable (the time $t$ , for example).
Random Functions	whyn	A random function generates white noise with uniform or normal distribution and has one or more arguments to simulate white noise. Its distribution is either uniform or normal.
		To generate a random function of the space coordinates x, y, and z, for example, use this function with three input variables—it returns the same value each time it is called for a given set of input arguments. To do a Monte Carlo simulation, add one or more additional input arguments that vary using during a parametric sweep, for example.
Rectangle Functions	Л	A rectangle function is 1 in an interval and 0 everywhere else. This function (also called top hat or boxcar) is useful for band-pass filtering; use it to select values within an interval. It can also simulate a signal that is turned on during an interval or a load that is active on a part of a boundary, for example. The rectangle function is a function of one variable (the time $t$ , for example).
Step Functions	Ţ	A step function is a sharp transition from 0 to some other value (amplitude) at some location (a certain time, for example). Create a single step function with a certain amplitude from an initial level to a final level at a start location. The step function is a function of one variable (the time t, for example).

#### TABLE 3-10: GLOBAL AND LOCAL FUNCTION DESCRIPTIONS

TABLE 3-10:	GLOBAL AND LOCAL	FUNCTION	DESCRIPTIONS
-------------	------------------	----------	--------------

LINK TO FUNCTION ICON		DESCRIPTION AND USE	
Triangle Functions	^	A triangle function is a linear increase and linear decline within an interval and 0 everywhere else. Use the triangle function for band-pass filtering; that is, use it to select values within an interval. The triangle function is a function of one variable (the time <i>t</i> , for example).	
Waveform Functions	***	A waveform function is a periodic function with one of several characteristic shapes: sawtooth, sine, square, or triangle. The waveform function is a function of one variable (the time <i>t</i> , for example).	

	Specifying Discontinuous Functions
Ca See Also	Sorting Nodes by Space Dimension and Type
	• Operators, Functions, and Variables Reference
	• Using Units
	• Materials
	Global and Local Functions

## Analytic Functions

An **Analytic** function  $(\underline{x}_{tot}^2)$  is defined by a symbolic expression. It extends variables with the ability to bind parameters during function calls. In other words, analytic functions do not require the actual variable names in an expression when writing the function.

Model	If you have the:
	<ul> <li>AC/DC Module, see Geoelectrics: Model Library path ACDC_Module/ Other_Industrial_Applications/geoelectrics</li> </ul>
	<ul> <li>RF Module, see Second Harmonic Generation of a Gaussian Beam: Model Library path RF_Module/Optics_and_Photonics/ second_harmonic_generation</li> </ul>

- I Open or create a model file.
- In the Model Builder, right-click Global Definitions or Definitions and select Functions>Analytic ( x?).

- 3 Enter a Function name.
- 4 Under Parameters:
  - a In the **Expression** field, enter the mathematical expression that defines the functions, such as a+b*cos(c).
  - **b** Enter **Arguments** to the analytic function as comma-separated entries. For example, **a**,**b**,**c**.
  - c From the **Derivatives** list, select **Automatic** or **Manual** to enable COMSOL to evaluate the derivatives of all functions. COMSOL Multiphysics must know the derivative of a function if a variable is used that depends on the solution in a function argument.
  - Select Automatic to compute the derivatives symbolically.
  - Select Manual to enter the derivatives with respect to one or more of the arguments to the function. For undefined derivatives, COMSOL uses 0 as the value of the derivative. In this example, enter 1, cos(c),d(a+b*cos(c),c),0 in the associated field. Notice the use of the d operator.
- 5 Under Periodic Extension:
  - **a** Select the **Make periodic** check box to make the function periodic and extend its definition within an interval to the whole real axis.
  - **b** Define the interval in the **Lower limit** and **Upper limit** fields.
- 6 Under Units, specify units for the function's input and output, if desired.
- 7 Under Advanced, select the May produce complex output for real arguments check box if the defined function works similarly to sqrt; that is, it sometimes returns complex values for a real-valued input.
- 8 Under Plot parameters, in the Plot Parameters table or the fields under it, enter the Argument name, a Lower limit, and an Upper limit.

Use the Move Up  $(\uparrow )$ , Move Down  $(\downarrow )$ , or Delete  $(\frown )$  buttons to rearrange and delete rows in the table, or right-click in any cell and select these options.

Click the **Plot** button ( $\checkmark$ ) to generate a preview plot of the function and set ranges for all the arguments. Click the **Create Plot** button ( $\boxed{}$ ) to create a plot group and a plot for the function plot.

## Elevation Functions

The **Elevation** function ( ) makes it possible to import geospatial elevation data from digital elevation models (on the DEM file format using the USGS standard from the

United States Geological Survey) and map the elevation data to a function of x and y. A DEM file contains elevation data for a portion of the Earth's surface. The resulting function behaves essentially like a grid-based interpolation function.

- I Open or create a model file.
- 2 In the Model Builder, right-click Global Definitions or Definitions and select Functions>Elevation (DEM) ( <a>).</a>
- 3 Enter a Function name.
- 4 Under File, specify the filename in the text field or click Browse to select a DEM file with elevation data in the Elevation Data dialog box. When you have open a DEM file, the File section displays the coordinates for the southeast corner. Click Import to import the elevation data in the specified DEM file into the model; otherwise, COMSOL Multiphysics references the elevation data on your file system. When you have imported the elevation data, the File section, under Data imported into model, contains information about the filename and the location for the data. You can then Export the elevation data to a file to reference it from that file instead of keeping it in the model.
- 5 Under Interpolation and Extrapolation:
  - **a** From the **Interpolation** list, select an interpolation method: **Nearest neighbor** or **Linear** (the default).
  - b From the Extrapolation list, select an extrapolation method (for values outside of the range for the elevation data): Constant (the default), Linear, Nearest function, or Specific value. In the last case, type the value in the Value outside range field (default: 0).

Click the **Plot** button ( ) to generate a preview plot of the elevation function using a surface plot with height to represent the output from the elevation function. Click the **Create Plot** button ( ) to create a plot group and a plot for the function plot. Click the **Create Surface** button ( ) to create a **Parametric Surface** node that represents the elevation function as a parametric surface in the **Geometry** branch for 3D models.

External Functions (Global Only)

The **External** function is only available globally on the **Global Definitions** node. See also model.func() as described in the *COMSOL Java API Reference Guide* for details about the interface to external functions and an example.

Note

An **External** function (f(x)) interfaces to other external functions written in the C language (using a native C function or, through a wrapper function, interfacing with source code written in, for example, Fortran). Then use those functions as any other functions defined in COMSOL Multiphysics. For example, use it for a user-created shared library (depending on the platform, a DLL, .so, or .dylib file).

- I Open or create a model file.
- In the Model Builder, right-click Global Definitions and select
   Functions>External (f(x)).
- 3 Under Functions, in the Library field, enter a Library (the complete network path) or Browse to locate a library to import.
- 4 For each row in the Functions table, enter a Function name (myfun, for example).
- **5** For each **Function** in the table, enter a space-separated or comma-separated list of the names of its input **Arguments** (x y for example).

Use the Move Up  $(\uparrow )$ , Move Down  $(\downarrow )$ , or Delete  $(\clubsuit)$  buttons and the fields under the table to edit the table contents.

- 6 Under Derivatives, enter data in this section based on the following.
  - **a** In the **Derivatives** table, each row contains a partial derivative of a function with respect to one of its arguments.
  - **b** The entries in the **Function** column must occur in the function table, and the entries in the **Argument** column must occur among the arguments listed for that function in the function table.
  - **c** The **Partial derivative** column contains expressions for the partial derivatives. Partial derivatives that are not specified in the table default to 0.

Use the Move Up  $(\uparrow )$ , Move Down  $(\downarrow )$ , or Delete  $(\clubsuit)$  buttons and the fields under the table to edit the table contents.

- 7 Under Advanced:
  - **a** Enter a value in the **Initialization data** field. The value is sent to the library when it is loaded.
  - **b** Select the **Thread safe** check box to declare that the function is a thread-safe pure function (that is, a function that always returns the same results using the same input argument values and that do not have any side effects or output). Selecting this check box can then improve performance.

8 Under Plot Parameters: In the table, enter the limits of each argument to the function in a separate row from the top down. Use the Move Up ( 1), Move Down ( 1), and Delete (1)) buttons to position the rows if needed.

**\uparrow \Downarrow** Click the **Plot** button ( $\checkmark$ ) to generate a preview plot of the function. Click the **Create Plot** button () to create a plot group and a plot for the function plot.

## Gaussian Pulse Functions

The **Gaussian Pulse** function  $(\Lambda)$  is the common bell-shaped curve. It has a shape that is similar to a Gaussian (normal) distribution.

If you have the:

• RF Module, see Transient Modeling of a Coaxial Cable: Model Library path **RF_Module/Verification_Models/coaxial_cable_transient** 



- Chemical Reaction Engineering Module, see Surface Reactions in a Biosensor: Model Library path Chemical_Reaction_Engineering_Module/ Surface_Reactions_and_Deposition_Processes/reacting_pillars
- I Open or create a model file.
- 2 In the Model Builder, right-click Global Definitions or Definitions and select Functions>Gaussian Pulse ( ∧).
- 3 Enter a Function name.
- 4 Under Parameters:
  - **a** Enter a **Location** value for the Gaussian pulse mean  $s_0$ .
  - **b** Enter a **Standard deviation**  $\sigma$  of the normal distribution.

The Gaussian pulse has the same characteristics as the normal distribution: it is a pulse with a shape that is similar to a normal or Gaussian distribution as a function:

$$y(s) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-(s-s_0)^2}{2\sigma^2}}$$

In the equation above, *s* is the input variable,  $s_0$  is the location (mean), and  $\sigma$  is the standard deviation. This function is a function of one variable (the time *t*, for example).

Click the **Plot** button ( $\checkmark$ ) to generate a preview plot of the function. Click the **Create Plot** button ( $\boxed{\textcircled{}}$ ) to create a plot group and a plot for the function plot.

## Image Functions

The **Image** function ( $\boxed{}$ ) makes it possible to import an image (in BMP, JPEG, PNG, or GIF format) and map the image's RGB data to a scalar (single channel) function output value. By default the function's output uses the mapping (R+G+B)/3.

- I Open or create a model file.
- 2 In the Model Builder, right-click Global Definitions or Definitions and select Functions>Image (
- 3 Enter a Function name.
- 4 Under File, specify the filename in the text field or click **Browse** to select an image file in the **Image** dialog box. Click **Import** to import the image in the specified image file into the model; otherwise, COMSOL Multiphysics references the image on your file system. When you have imported the image, the **File** section contains information about the image's filename and size. You can then **Export** the image to a file to reference it from that file instead of keeping it in the model.
- 5 Under Coordinates define the 2D coordinates and if required, flip the image. Select the In place check box to use the pixels in the image as the coordinates or specify the image coordinates using the x minimum, x maximum, y minimum, and y maximum fields. Select the Flip horizontally and Flip vertically check box to flip the image if required.
- 6 Under Color Scaling:
  - a From the Scaling list, select Automatic (the default) or select Manual to enter another scalar expression for the function's value in the Expression field. The default is (r+g+b)/3, which is the automatic scaling, giving a scalar value that is the mean of the RGB values in each pixel.
  - **b** From the **Interpolation** list, select an interpolation method: **Nearest neighbor** or **Linear** (the default).
  - c From the Extrapolation list, select an extrapolation method (for values outside of the range for the image): Constant (the default), Linear, Nearest function, or Specific value. In the last case, type the value in the Value outside range field (default: 0).

- 7 Under Clipping, select None (the default) for no clipping (the default) or selectManual to enter the values for the box-shaped region where the image will be rendered in the x minimum, x maximum, y minimum, and y maximum fields.
- 8 Under Units, define the units for the input arguments, which are the *x* and *y* coordinates, in the **Arguments** field (default: m) and for the function's output in the **Function** field (default: no unit).

Click the **Plot** button ( $\checkmark$ ) to generate a preview plot of the image function using a surface plot with height to represent the output from the image function. Click the **Create Plot** button ( $\boxed{\textcircled{b}}$ ) to create a plot group and a plot for the function plot.

## Interpolation Functions

An **Interpolation** function ( ,) is defined by a table or file containing the values of the function in discrete points. The interpolation data can be structured (defined on a grid) or unstructured (defined on a generic point cloud).

If you have the:

- Acoustics Module, see Muffler with Perforates: Model Library path Acoustics_Module/Industrial_Models/perforated_muffler
- CFD Module, see Transonic Flow in a Sajben Diffuser: Model Library path CFD_Module/High_Mach_Number_Flow/sajben_diffuser
- Corrosion Module, see Cathodic Protection of Steel in Reinforced Concrete: Model Library path Corrosion_Module/Verification_Models/ cathodic_protection_in_concrete



- Heat Module, see Temperature Field in a Cooling Flange: Model Library path Heat_Transfer_Module/Tutorial_Models/cooling_flange
- Microfluidics Module, see Knudsen's Minimum: Model Library path Microfluidics_Module/Rarefied_Flow/knudsen_minimum
- Pipe Flow Module, see Geothermal Heating from a Pond Loop: Model Library path Pipe_Flow_Module/Heat_Transfer/geothermal_heating
- Structural Mechanics Module, see Nonlinear Magnetostrictive Transducer: Model Library path Structural_Mechanics_Module/ Magnetostrictive_Devices/nonlinear_magnetostriction
- I Open or create a model file.

- 2 In the Model Builder, right-click Global Definitions or Definitions and select Functions>Interpolation (
- 3 Under Parameters, select Table or File from the Data source list.

  - Optional: Save the parameters to a text file to reuse in other models. Click the Save to File button ( []) and enter a File name, including the extension .txt. Click to Save the text file. The information is saved in space-separated columns in the same order as displayed on screen.
  - *Optional:* Load data from a spreadsheet program or other format by saving the file with a .txt extension. Data must be separated by tabs or colons. Click the **Load from File** button ( ) and navigate to the text (.txt) file to load and click **Open**. The data loads to the table. If there is other data already in the table, it adds it after the last row. Move or edit as required.
  - Optional (for functions defined by a table only): If you want to defined the inverse function f⁻¹ for the interpolation function f, select the Define inverse function check box and enter a name for the inverse function in the Inverse function name field (the default is the name of the interpolation function with a suffix _inv).
  - If File is selected to import function data:
  - a Enter a Filename (the complete network path) or Browse to locate a file to import.
  - **b** From the **Data format** list select **Spreadsheet**, **Grid**, or **Sectionwise**. The spreadsheet format is the default format, and that format is the easiest to use for functions defined on an unstructured grid or for general tabulated function values with one or more arguments.
  - A *spreadsheet* file contains unstructured mesh and function data for space-dependent functions or general input variables and function values for functions of one or more variables; these files can be exported.

```
%Header (optional)
```

```
Columns containing x, y (optional), and z (optional), or any
other arguments, followed
by function data columns.
```

Include function names in the header. In that case, the input columns must be labeled with x, y, and z, respectively, depending on input dimension. For example, a file with the following content creates two 2D functions named myfun1 and myfun2:

% x y myfun1 myfun2 0 0 0.12 0.34 0 1 0.52 1.50 1 0 0.67 0.91

If the file does not include any header to indicate the function dimension, the software assumes that it is identical to the largest geometry dimension present in the model. A file with four columns, for example, is interpreted as one 3D function in a 3D model, two 2D functions in a 2D model, and three 1D functions in a 1D model.

- A *sectionwise* file has coordinates and function values; a CSV (comma-separated value) file exported from a spreadsheet program is in this format.

```
%Coordinates
One to three columns containing X, Y (optional), and
Z (optional)
%Elements
Triangulation where each row contains the row indices of the
points in the Coordinates section that make up one element
(triangular in 2D, tetrahedral in 3D)
%Data (funname)
Column of data values for each point
```

It is possible to include more than one function in the file as long as a %Data header separates them one from the other.

- A grid file

```
% Grid
X grid points separated by spaces
y grid points separated by spaces (optional)
Z grid points separated by spaces (optional)
% Data
Data values separated by spaces
```

Each row contains values for different x grid points for fixed values of y and z. The rows first increase the y grid value and then the z grid value. The grid points can also represent another independent variable that the data values depend on. For example, the "grid points" can be temperature values and the data values the thermal conductivity at these temperatures.

It is possible to include more than one function in the file as long as a %Data header separates them one from the other.



It is important to use a comment line starting with % to separate the grid points or other interpolation points and the data values that are associated with these coordinates or interpolation points.

**c** If **Spreadsheet** is selected, enter a **Number of arguments** (1–3). For all file types, enter information about the functions into the table. Add a **Function** name and its **Position in file**. The first function in the file has position 1, the following has position 2, and so on. For spreadsheet data, the first columns contain the arguments; the following columns can contain one or more function, and the positions entered are the relative position for each function's data column.

Use the Move Up (  $\uparrow$  ), Move Down (  $\downarrow$  ), or Delete ( $\clubsuit$ ) buttons to rearrange and delete rows in the table. See also the example below.

For the common case where the data source contains function values that are functions of the space coordinates, select the **Use space coordinates as arguments** check box. Then the function can be called without arguments when used in the model; the space coordinates are added as function arguments automatically.



The Interpolation functions support 1, 2, or 3 arguments. You cannot define functions with more than three (3) arguments because the algorithm creates a mesh for the point cloud, which is not possible in four dimensions or higher.

#### 4 Under Interpolation and Extrapolation:

The interpolation setting controls how the program evaluates the function between the discrete points where it is defined by the table or file, and the behavior of the function outside the domain where it is defined by the table or file.

- a Select one of the following methods from the Interpolation list:
- For functions of one variable select Nearest neighbor, Linear, Piecewise cubic, or Cubic spline.

**Piecewise-cubic** interpolation uses a piecewise-cubic Hermite polynomial with continuous first derivatives. It preserves the shape of the data and respects

monotonicity. The **Cubic-spline** method also performs interpolation with a piecewise cubic polynomial. Here, even second derivatives are continuous; however, the method does not necessarily respect monotonicity.

- For functions of more than one variable, select **Nearest neighbor** or **Linear**. The other options are not supported.
- **b** Select one of the following methods from the **Extrapolation** list to specify how to treat arguments outside the grid or mesh of points.
- **Constant**. Uses the value from the closest point inside the grid (for structured interpolation) or the value from the closest mesh element (for unstructured interpolation). The interpolation function evaluates the polynomial from the closest grid point at the actual point where a value is requested.
- Linear. The function is linear outside the grid with a continuous function value and continuous first derivative at the boundary of the grid. Piecewise cubic or Cubic spline must be selected from the Interpolation list in Step 1.
- **Nearest function**. Evaluates the polynomial from the closest grid point at the actual point where a value is requested.
- **Specific value**. Uses a single value, such as zero or NaN (Not a Number), everywhere outside the grid or mesh. Enter the value in the **Values outside range** field.



Unstructured interpolation supports using a constant or a specific value only.

5 Under Units, specify units for the function's input and output, if desired.

Click the **Plot** button ( ) to generate a preview plot of the function. Click the **Create Plot** button ( ) to create a plot group and a plot for the function plot. A plot group for an interpolation function contains three connected line graphs: a line graph of the piecewise function and two line graphs using dashed red lines, Left Extrapolation and Right Extrapolation, that show how the selected extrapolation extends the interpolation function on both sides. In addition, a point graph shows the interpolation points (interpolation nodes).

## EXAMPLE OF IMPORTING A FILE DATA SOURCE INTO A PARAMETER TABLE

The file named temp.txt contains temperature measurements in nine points in the plane:

The data columns contain x-coordinates, y-coordinates, and temperature values, respectively. To use this file as an interpolation function called tempfun, perform the following steps.

- I Select File from the Data source list.
- 2 Enter a Filename (the complete network path) or Browse to locate a file to import.
- **3** From the **Data format** list select **Spreadsheet**.
- 4 Enter a Number of arguments. In this example, enter 2.
- **5** Enter the **Function** name tempfun.
- 6 Enter its **Position in file** as 1. The first function in the file has position 1, the following has position 2, and so on.

The position in file for a function is the column after the space coordinates (or other function arguments) where it is defined. In this example with two arguments (space coordinates), the third column is Position 1 in the file.

7 If desired, adjust the interpolation and extrapolation settings in the **Interpolation and Extrapolation** section.

Use the function tempfun with x and y as input arguments in a 2D model to get the interpolated value for the temperature at any position. If the **Use space coordinates as arguments** check box is selected, use tempfun without explicitly adding the input arguments.



A COMSOL LiveLink for MATLAB license is required. Also confirm that MATLAB is installed on the same computer as COMSOL Multiphysics.

Use **MATLAB** functions node (**f**(**x**)) from COMSOL Multiphysics to interface to functions written in MATLAB. These functions can be used as any other function defined in COMSOL Multiphysics. MATLAB functions are evaluated in MATLAB.



See the *LiveLink for MATLAB User's Guide* for more information about using MATLAB functions.

## Piecewise Functions

A **Piecewise** function ( $\bigwedge$ ) is created by splicing together several functions, each defined on one interval. Define the argument, extrapolation and smoothing methods, and the functions and their intervals. The piecewise function is a function of one variable with different definitions on different intervals, which must not overlap or have any holes between them.



If you have the Heat Transfer Module, see Radiative Heat Transfer in a Utility Boiler: Model Library path Heat_Transfer_Module/ Process_and_Manufacturing/boiler

- I Open or create a model file.
- 2 In the Model Builder, right-click Global Definitions or Definitions and select Functions>Piecewise ( ∧).
- 3 Enter a Function name.

#### 4 Under Parameters:

- a Enter a piecewise function name in the Argument field.
- **b** Select one of the following methods from the **Extrapolation** list to control what happens when the function is evaluated in a point that does not belong to any interval.
- **Constant**. Uses the function value from the endpoint of the closest interval. Uses the value from the start point of the first and the end point of the last interval on the corresponding sides.
- None. Evaluation fails outside of the intervals where it is defined. Trying to evaluate the function generates an error and evaluates to NaN (Not-a-Number).
- **Nearest function**. Evaluate the function from the closest interval. The function at the first or last interval (depending of the side) is used to evaluate at the actual point where a value is requested.
- **Specific value**. Enter a value in the **Values outside range** field. If selecting the specific-number method, assign a single value (usually zero or NaN) to all points outside the intervals.
- c Select one of the following from the Smoothing list: No smoothing, Continuous function, Continuous first derivative, or Continuous second derivative.

The functions in contiguous intervals may not evaluate to the same value where the intervals meet. Apply smoothing to make the piecewise function more well-behaved numerically. Functions from neighboring intervals are then blended close to where the intervals meet.

- If **Continuous function**, **Continuous first derivative**, or **Continuous second derivative** is selected, enter a value in the **Relative size of transition zone** field. Relative size meaning in relation to the size of the intervals on both sides of the border.
- 5 Under Parameters, for each cell in the Intervals table:
  - **a** Enter **Start** and **End** interval limits. The intervals must not overlap, and there cannot be any holes between intervals.



The intervals need to be contiguous.

**b** Enter an expression defining the Function.

6 Under Units, specify units for the function's input and output, if desired.

Click the **Plot** button ( $\checkmark$ ) to generate a preview plot of the function. Click the **Create Plot** button ( $\boxed{\checkmark}$ ) to create a plot group and a plot for the function plot. A plot group for a piecewise function contains three connected line graphs: a line graph of the piecewise function and two line graphs using dashed red lines, Left Extrapolation and Right Extrapolation, that show how the selected extrapolation extends the piecewise function on both sides.

## Ramp Functions

A **Ramp** function ( $\nearrow$ ) is a linear increase with a user-defined slope that begins at some specified time. The ramp function is a function of one variable (the time *t*, for example).

- I In the Model Builder, right-click Global Definitions or Definitions and select Functions>Ramp ( / ).
- 2 Enter a Function name.
- 3 Under Parameters:
  - **a** Enter a **Location** value  $s_0$  for the start of the ramp. The function evaluates to 0 for values less than its start location and increases linearly for values greater than the location.
  - **b** Enter a **Slope** *k* of the ramp.
  - **c** To ensure that the value never exceeds a certain point, select the **Cutoff** check box and enter a value.

For an input variable *s*, a start location  $s_0$ , and a slope *k*, the ramp function's value is 0 for  $s < s_0$  and  $k(s-s_0)$  for  $s \ge s_0$ .

- 4 Under Smoothing:
  - **a** To turn on the smoothing function at the start or the cutoff, select the **Smooth at** start or **Smooth at cutoff** check boxes.
  - **b** Enter a value in the **Size of transition zone** field to control the amount of smoothing. Use smoothing to improve the behavior of the model by avoiding discontinuities that are difficult to handle numerically. Smoothed ramp functions have continuous first and second derivatives.

Click the **Plot** button ( $\checkmark$ ) to generate a preview plot of the function. Click the **Create Plot** button ( $\overline{{}}_{\checkmark}$ ) to create a plot group and a plot for the function plot.

## Random Functions

A **Random** function (*ww*) generates white noise with uniform or normal distribution and has one or more arguments to simulate white noise. Its distribution is either uniform or normal.

To generate a random function of the space coordinates x, y, and z, for example, use this function with three input variables—it returns the same value each time it is called for a given set of input arguments. To do a Monte Carlo simulation, add one or more additional input arguments that vary using during a parametric sweep, for example.

- I In the Model Builder, right-click Global Definitions or Definitions and select Functions>Random (
- 2 Enter a Function name.
- 3 Under Parameters:
  - **a** Enter a **Number of arguments** to the random function.
  - **b** Select **Uniform** or **Normal** from the **Distribution** list.
  - If **Uniform** is selected, enter a **Mean** and **Range**. The range is the difference between the largest and smallest values that the function can return.
  - If Normal is selected, enter a Mean and Standard deviation.

Click the **Plot** button ( $\checkmark$ ) to generate a preview plot of the function. Click the **Create Plot** button ( $\boxed{\textcircled{}}$ ) to create a plot group and a plot for the function plot.

## **Rectangle Functions**

A **Rectangle** function ( $\Pi$ ) is 1 in an interval and 0 everywhere else. This function (also called top hat or boxcar) is useful for band-pass filtering; use it to select values within an interval. It can also simulate a signal that is turned on during an interval or a load that is active on a part of a boundary, for example. The rectangle function is a function of one variable (the time *t*, for example).

 Fluid Valve: Model Library path COMSOL_Multiphysics/Fluid_Dynamics/ fluid_valve

Model

 If you have the Batteries & Fuel Cells Module, see Soluble Lead-Acid Redox Flow Battery: Model Library path
 Batteries and Fuel Cells Module/Batteries/pb flow battery

- I In the Model Builder, right-click Global Definitions or Definitions and select Functions>Rectangle ( 1).
- 2 Enter a Function name.
- **3** Under Limits, enter a Lower limit and Upper limit to specify the interval for the rectangle function. For example, if the input argument is time, enter a start and end time. This function evaluates to 1 for values within an interval. Outside the interval it evaluates to 0.
- 4 Under Smoothing:
  - a To turn on the smoothing function select the Size of transition zone check box.
  - **b** Enter a value in the **Size of transition zone** field to control the amount of smoothing. Use smoothing to improve the behavior of the model by avoiding discontinuities that are difficult to handle numerically. Smoothed rectangle functions have continuous first and second derivatives.

Click the **Plot** button ( $\checkmark$ ) to generate a preview plot of the function. Click the **Create Plot** button ( $\boxed{\textcircled{}}$ ) to create a plot group and a plot for the function plot.

Step Functions

A **Step** function ( $\int$ ) is a sharp transition from 0 to some other value (amplitude) at some location (a certain time, for example). Create a single step function with a certain amplitude from an initial level to a final level at a start location. The step function is a function of one variable (the time *t*, for example).



Fluid Valve: Model Library path COMSOL_Multiphysics/Fluid_Dynamics/ fluid_valve

- I In the Model Builder, right-click Global Definitions or Definitions and select Functions>Step ( _ ).
- 2 Enter a Function name.

#### 3 Under Parameters:

- **a** Enter a **Location**  $(s_0)$  of the step. The value of the step function is the initial level for input values that are smaller than the location of the step.
- **b** In the **From** field, enter a start level  $(L_{\text{start}})$ .
- **c** In the **To** field, enter a final level  $(L_{end})$ .

For an input variable s, a start location  $s_0$ , and initial level  $L_{\text{start}}$  and a final level  $L_{\text{end}}$ , the step function's value is  $L_{\text{start}}$  for  $s < s_0$  and  $L_{\text{end}}$  for  $s \ge s_0$ . The amplitude of the step is  $L_{\text{end}} - L_{\text{start}}$ .

- 4 Under Smoothing:
  - a To turn on the smoothing function select the Size of transition zone check box.
  - **b** Enter a value in the **Size of transition zone** field to control the amount of smoothing. Use smoothing to improve the behavior of the model by avoiding discontinuities that are difficult to handle numerically. Smoothed step functions have two continuous derivatives.

Click the **Plot** button ( $\checkmark$ ) to generate a preview plot of the function. Click the **Create Plot** button ( $\boxed{}_{\checkmark}$ ) to create a plot group and a plot for the function plot.

## Triangle Functions

A **Triangle** function ( $\bigwedge$ ) is a linear increase and linear decline within an interval and 0 everywhere else. Use the triangle function for band-pass filtering; that is, use it to select values within an interval. The triangle function is a function of one variable (the time *t*, for example).

- I In the Model Builder, right-click Global Definitions or Definitions and select Functions>Triangle (∧).
- 2 Enter a Function name.
- **3** Under Limits, enter a Lower limit and Upper limit to specify the interval for the triangle function. For example, if the input argument is time, enter a start and end time. In the midpoint of the interval, this function evaluates to 1, and moving toward the interval boundaries it falls off to 0. Outside the interval it evaluates to 0.
- 4 Under Smoothing:
  - a To turn on the smoothing function select the Size of transition zone check box.
  - **b** Enter a value in the **Size of transition zone** field to control the amount of smoothing. Use smoothing to improve the behavior of the model by avoiding

discontinuities that are difficult to handle numerically. Smoothed triangle functions have continuous first and second derivatives.

Click the **Plot** button ( $\checkmark$ ) to generate a preview plot of the function. Click the **Create Plot** button ( $\overline{{}}$ ) to create a plot group and a plot for the function plot.

## Waveform Functions

A **Waveform** function ( $\bigotimes$ ) is a periodic function with one of several characteristic shapes: sawtooth, sine, square, or triangle. The waveform function is a function of one variable (the time *t*, for example).



If you have the Batteries & Fuel Cells Module, see 1D Lithium Ion Battery Model for Thermal Models: Model Library path Batteries_and_Fuel_Cells_Module/Batteries/ li_battery_ld_for_thermal_models

- 2 Enter a Function name.
- **3** Under **Parameters**, select a waveform from the **Type** list: **Sawtooth**, **Sine**, **Square**, or **Triangle**.
  - a If Sine is selected, enter a Frequency, Phase, and Amplitude value. Smoothing is not available for this waveform.
  - **b** For **Sawtooth**, **Square**, or **Triangle** waveforms, the **Smoothing** check box is selected by default. Enter a value in the **Transition zone** field. Smoothed waveform functions have continuous first and second derivatives.

If required, turn off smoothing by clearing the Smoothing check box.

4 For Sawtooth, Square, or Triangle, enter a Frequency, Phase, and Amplitude value.

Click the **Plot** button ( $\checkmark$ ) to generate a preview plot of the function. Click the **Create Plot** button ( $\overline{{}}_{\checkmark}$ ) to create a plot group and a plot for the function plot.

## Specifying Discontinuous Functions

To specify a discontinuous function, such as a step in space or time, use logical functions that evaluate to 1 if true and 0 otherwise. For instance, the function

```
sin(2*pi*t)*(t<10)
```

defines a sine wave that exists for times until 10 seconds and afterward takes on the value of 0.

If a coefficient or a material property contains a step function or some other discontinuity, convergence problems can arise. For time-dependent problems, the time-stepping algorithm can run into problems. For stationary problems, mesh-resolution issues can arise such as overshooting and undershooting of the solution due to infinite flux problems.

To avoid problems with a discontinuity, replace it with a smoothed step function that emulates steps. Doing so serves two purposes:

- Numerical reliability and convergence are improved.
- What is thought of as a step function is, in reality, a smoothed continuous function because of inertia.

#### SMOOTHING OF DISCONTINUOUS FUNCTIONS

The easiest way to create a smooth step is to use the predefined Step function that is found under **Global Definitions>Functions** or, for each model, under **Definitions>Functions**. It includes smoothing by default. The Piecewise, Ramp, Rectangle, and Triangle functions also include smoothing (active by default for Rectangle and Triangle functions).

The smoothed Step and Rectangle functions are defined by piecewise 5th-degree polynomials. The smoothed Ramp function is defined by a piecewise 4th-degree polynomial. The smoothed Triangle function is defined by a piecewise 3rd-degree polynomial. None of these functions have any overshoot or undershoot.

#### ADDITIONAL SMOOTHED FUNCTIONS

In addition, the following smoothed functions are available:

- flsmhs, a smoothed step function, or *Heaviside function*, with a continuous first derivative and overshoot on both sides of the step. The overshoot ensures that the integral from 0 to infinity is correct. y=flsmhs(x,scale) approximates the logical expression y = (x>0) by smoothing the transition within the interval
   -scale < x < scale. fldsmhs is the derivative of the smoothed Heaviside function.</li>
- flsmsign, a smoothed sign function with a continuous first derivative.
   y = flsmsign(x,scale) approximates the function y = sign(x) by smoothing the transition within the interval -scale < x < scale. fldsmsign is the derivative of the smoothed sign function.</li>

- flc1hs, a smoothed Heaviside function with a continuous first derivative without overshoot. Its syntax is similar to the functions just described.
- flc2hs, a smoothed Heaviside function with a continuous second derivative without overshoot. Its syntax is similar to the functions just described.

These functions can be useful as a complement and extension to the predefined Step function.

In the interval -scale<x<scale, the functions flsmhs and flsmsign are defined by a 7th-degree polynomial chosen so that the 2nd derivative is continuous. Moreover, the moments of order 0, 1, and 2 agree with those for the Heaviside function and the sign function, respectively. This implies that the functions have small overshoots.

Now consider an example. Use flc1hs to model the heat capacity  $C_p$  of a phase-changing material. Assume that a crystalline material has a heat capacity of 1 kJ/kg. Its melting point at the present pressure is 273.15 K. The liquid phase has a heat capacity of 2 kJ/kg. Create a parameter scale set 0.1 and then an **Analytic** node where an analytic function HeatCapacity is defined using the following expression with an argument T: 1+flc1hs(T-273,scale); then define a plot range of 272.5–273.5 K under **Plot Parameters** and click the **Plot** button in the **Analytic** settings window to plot  $C_p$  around the melting point.

# Model Couplings

In this section:

- About Model Couplings and Coupling Operators
- About Extrusion Model Coupling and Operators
- About Projection Model Couplings and Operators
- About Scalar Model Couplings and Operators
- Defining a General Extrusion Model Coupling
- Defining a Linear Extrusion Model Coupling
- Defining a Boundary Similarity Model Coupling
- Defining One-Point, Two-Point, or Edge Maps (3D)
- Defining an Identity Mapping Model Coupling
- Defining a General Projection Model Coupling
- Defining a Linear Projection Model Coupling
- Defining an Integration Model Coupling
- Defining an Average Model Coupling
- Defining Maximum and Minimum Model Couplings

## About Model Couplings and Coupling Operators

*Model couplings* establish couplings between different parts of a model or between different models. A model coupling is defined by a *coupling operator*, taking an expression as its argument. When the operator is evaluated at a point in the destination, the value is computed by evaluating the argument on the source. Use a coupling operator to compute several quantities that use the same source and destination. All types of model couplings have a source and a destination.

Note

Scalar coupling operators, such as the Integration coupling operator, have a global destination that does not need to be defined; the values are available globally.

The source is a subset of a single model, while the destination can, depending on the type of coupling, be a subset of one or several models or a value that can be evaluated

everywhere. The destination value is computed by evaluating the operator's argument at one or several points in the source. Both the source and the destination are purely geometrical objects, but the source is limited to one geometry whereas the destination is usually global.



With extrusion and projection couplings, the final evaluation fails if the mapping fails, and therefore it is the destination that must be well defined.

To add model couplings to the **Model Builder**, right-click **Definitions** and select a **Model Coupling** from Table 3-11.

#### ABOUT COUPLING OPERATORS

Coupling operators are useful for modeling coupled problems and are a generalization of ordinary expressions. They are defined by first selecting the source, where the argument of the operator is evaluated, and, in some cases, a destination. An evaluation expression is not required to define coupling operators; instead these operators are used in different contexts, passing the expression to evaluate as a input argument.

There are three categories of coupling operators as listed in Table 3-11:

- *Extrusion*. These operators—General Extrusion, Linear Extrusion, Boundary Similarity, and Identity Mapping—connect a source and a destination and take an expression as an argument. When it is evaluated at a point in the destination, its value is computed by evaluating the argument at a corresponding point in the source.
- *Projection.* These coupling operators—General Projection and Linear Projection evaluate a series of line or curve integrals on the source domain, where the line or curve positions depend on the positions of the evaluation points in the destination domain.
- *Scalar*. These operators—Integration, Average, Maximum, and Minimum—define a scalar value such as an integration, the average over a set of geometric entities, and the maximum or minimum value of an expression and have a "global destination" (that is, they are available everywhere in the model).

Coupling operators can:

• Make the value and the exact Jacobian of an expression available nonlocally.

- Take information from a boundary, for example, and make it available on other parts of a model (a domain, for example).
- Be used just for results evaluation and visualization purposes.
- Define nonlocal couplings including mesh transformations, integrals over domains and boundaries, and projections.

#### NONLOCAL COUPLINGS AND THE SPARSITY OF THE JACOBIAN

The Jacobian for problems formulated using the finite element method is usually large but sparse. This is because the solution at each mesh node can depend at most on the degrees of freedom at the neighboring mesh elements. However, by introducing nonlocal model couplings using coupling operators, nonlocal dependencies are created that fill up the rows and columns of the affected source and destination nodes. These additional elements might make the Jacobian matrix only slightly less sparse, with marginal effects on solution speed; it can also make it a great deal less sparse, in which case memory use and CPU time involved in solving the problem increases considerably. For this reason, take particular care when introducing nonlocal couplings.

LINK TO SECTION	ICON	DESCRIPTION
EXTRUSION MODEL COUPLIE See About Extrusion M		pling and Operators
Defining a General Extrusion Model Coupling	Ø	A General Extrusion model coupling maps an expression defined on a source domain to an expression that can be evaluated on the destination domain. Use a general extrusion coupling to define a nonlinear mapping.
Defining a Linear Extrusion Model Coupling	R	A Linear Extrusion model coupling maps an expression defined on a source domain to an expression that can be evaluated on the destination domain. Use a linear extrusion when the correspondence between evaluation points in the source and destination is linear (and in some to nonlinear cases).
Defining a Boundary Similarity Model Coupling		A Boundary Similarity model coupling maps an expression defined on a part of a boundary to another part of a boundary with the same shape. Available in 2D and 3D, it is defined by a similarity mapping from the destination to the source. Also add Edge Map, One Point Map, or Two Point Map subnodes.

TABLE 3-11: COUPLING OPERATOR DESCRIPTIONS

LINK TO SECTION	ICON	DESCRIPTION
Defining an Identity Mapping Model Coupling	M	An Identity Mapping model coupling maps between geometric entities which overlap, possibly when viewed in different frames. When it is evaluated at a specific set of coordinates in the destination frame, its argument is evaluated with the same coordinates in the source frame.
PROJECTION MODEL COUPL See About Projection M		plings and Operators
Defining a General Projection Model Coupling	×	Use a General Projection operator to define integration along curves.
Defining a Linear Projection Model Coupling	×	Use a Linear Projection model coupling when the argument is to be integrated along a line, and the line depends linearly on the evaluation point.
scalar model couplings See About Scalar Mode		and Operators
Defining an Integration Model Coupling	n <b>fdu</b>	An Integration model coupling integrates an expression over selected geometric entities. This is evaluated by integrating the argument over the source domain or summing the argument over the node points in the source domain. The operator can be evaluated anywhere in any model, and the value does not depend on the evaluation point.
Defining an Average Model Coupling	Δ.	An Average model coupling computes the average of an expression over selected geometric entities. It can be evaluated anywhere in any model, and the value does not depend on the evaluation point. It is similar to the Integration operator; the difference being that the integral is divided by the volume, area, arc length, or number of points in the source, depending on the dimension.
Defining Maximum and Minimum Model Couplings	d ∆ _♥	These operators compute the maximum or minimum of an expression over selected geometric entities and give the maximum and minimum values of the arguments over the source domain. The operator can be evaluated anywhere in any model, and the value does not depend on the evaluation point.

Model Couplings

See Also

- Sorting Nodes by Space Dimension and Type
- About Selecting Geometric Entities
- Selecting and Deselecting Geometric Entities

## About Extrusion Model Coupling and Operators

An extrusion coupling operator maps values from the source domain to the destination domain. When the domains are of the same space dimension, it is typically a point-wise mapping. When the destination domain has higher dimension than the source domain, the mapping is done by extruding point-wise values to the higher dimensions. Define the map between the source and destination as one of these operators: general extrusion, linear extrusion, boundary similarity, or identity mapping.

#### ABOUT GENERAL EXTRUSION COUPLING OPERATORS

A **General Extrusion** coupling operator ( $\bigtriangledown$ ) maps an expression defined on a source domain to an expression that can be evaluated on any domain where the destination map expressions are valid. Compared to the *linear extrusion*, these operators define a more general, possibly nonlinear, relation between source and destination domains. Specifically, when the destination has more space dimensions than the source, the operator performs extrusion of values. See Defining a General Extrusion Model Coupling.

#### ABOUT LINEAR EXTRUSION COUPLING OPERATORS

A **Linear Extrusion** coupling operator ( $\mathbb{N}$ ) maps an expression defined on a source domain to an expression that can be evaluated on the destination domain. Use this to define a linear mapping of this kind. Linear extrusion can be used when the correspondence between evaluation points in the source and destination is linear, and in some nonlinear cases. Otherwise, use a general extrusion coupling.

These operators define a *linear extrusion* that maps between geometric parts of the same dimension. The parts can exist in geometries of different space dimensions. For example, couple from edges in 2D to those in 3D; or couple 2D domains to 3D faces. In these cases geometries of different space dimensions are needed for the source and destination. Define the linear extrusion by specifying points in both the source and destination. See Defining a Linear Extrusion Model Coupling.

#### ABOUT BOUNDARY SIMILARITY COUPLING OPERATORS

The **Boundary Similarity** coupling operator (**P**) is slightly different for 2D and 3D.

In 3D, the destination map is a similarity that maps a destination boundary, onto a set of source boundaries. The mesh is always viewed in the mesh frame. See Defining a Boundary Similarity Model Coupling.

By default, the algorithm automatically chooses a map when symmetries make several maps possible. To control this choice in 3D, add an Edge Map, One Point Map, or Two Point Map subnode (See). See Defining One-Point, Two-Point, or Edge Maps (3D).

- *Edge Map:* Specify that a certain destination edge should be mapped onto a certain source edge. Their relative direction is given by the property direction. The edges must be adjacent to the given boundary.
- *One-Point Map:* Specify that a certain destination vertex should be mapped onto a certain source vertex.
- *Two-Point Map:* Specify that two destination vertices should be mapped onto two source vertices.

In 2D, it works the same except the destination map is a similarity that maps a destination edge onto a set of source edges and there are no subnodes to add.

#### ABOUT IDENTITY MAPPING COUPLING OPERATORS

An **Identity Mapping** coupling operator maps between geometric entities which overlap, possibly when viewed in different frames. When it is evaluated at a specific set of coordinates in the destination frame, its argument is evaluated with the same coordinates in the source frame.

#### ABOUT SOURCE AND DESTINATION MAPPINGS



Figure 3-1: General extrusion mappings.

The definition of any extrusion model coupling involves two mesh maps, which are important to understand. The *source map* is a one-to-one mapping that maps the mesh of the physical source of dimension **srcedim** to an *intermediate mesh* of the same dimension embedded in a space of dimension idim  $\geq$  srcedim. The *destination map* is a mapping from the destination of dimension dstedim, where the operator can be evaluated, to the same space that contains the intermediate mesh.

When the value of the coupling operator is requested somewhere in the destination, the software transforms the destination points using the destination map. It compares the resulting coordinates to the elements in the intermediate mesh to find corresponding locations in the physical source. This means that the source map must be inverted but not the destination map. The latter can in fact be non invertible, which is, for example, the case when dstedim > idim, leading to an extrusion.

To avoid the need to solve a nonlinear system of equations for every destination point, the software assumes that the source map is linear on each element of the intermediate mesh. In practice, the map is often trivial and leaves the coordinates unchanged, but it can also rescale, stretch, bend, or reflect the mesh. Note

All the graphics in these examples use General Extrusion model coupling.



One application of a **General Extrusion** coupling is to mirror the solution on the *x*-axis. This can be useful for analysis. Both source and destination are two-dimensional, as well as the intermediate mesh (srcedim = idim = dstedim). The source map to enter is x, y, and the destination map is x, -y. This can also be done with **Linear Extrusion**.



Another **General Extrusion** example is to extrude the solution in the 1D geometry to a 2D domain along the *s*-axis. The source map is x, and the destination map is r, so here srcedim = idim = 1, dstedim = 2.



Another example maps values on the lower boundary of a rectangle that extends from x = -1 to x = 1 and from y = 0 to y = 1, to the right boundary on the same rectangle. The source map is (x+1)/2 and the destination map is y. Both maps have a single component since srcedim = idim = dstedim. This map is also linear and can be done with **General** or **Linear Extrusion**, or with **Boundary Similarity**.

#### Extrusion Model Coupling—Example 2

Consider the case of a single rectangular domain where the source term in Poisson's equation comes from the inward flux over the right boundary for the corresponding *y* coordinate.

$$-\Delta u = \frac{\partial}{\partial n} u(x_2, y) \quad \text{on } \Omega$$
$$u = xy \qquad \text{on } \partial \Omega$$



The figure to the left illustrates the extrusion process. The values of the influx on the boundary become available throughout the domain by extrusion along the *y*-axis. The source map is y, and the destination map is y.

## About Projection Model Couplings and Operators

The two types of *projection coupling operators*—General Projection and Linear Projection ( $\ge$ )—evaluate a series of line integrals on the source domain, where the line positions depend on the positions of the evaluation points in the destination domain. In this way it is possible to compute the integral of an expression over one space variable for a range of different points along the other space axis, giving a result that varies over the latter space variable. For example, obtain the average along the *y* direction of a variable *u* defined on some two-dimensional domain in the *xy*-plane by calculating the integral

$$\overline{u}(x) = \int u(x, y) \, dy$$

COMSOL Multiphysics uses a method whereby it first applies a one-to-one map to the mesh of the source domain. The last space dimension in the transformed mesh is the one integrated over, so the lines used to integrate are vertical in the transformed source mesh. The software takes the placement of the vertical lines in the transformed source mesh from the positions of the transformed destination evaluation points. It then carries out the integrals in the source domain over curves that correspond to the vertical lines in the transformed source mesh.

Define the map between source and destination in two ways: as a *linear projection* or as a *general projection*.

#### **EXAMPLES OF PROJECTION COUPLINGS**



All the graphics in these examples use **General Projection** model coupling. These can also be done using **Linear Projection**.

Projection Coupling Operators-Example 1



For each point *r*, the coupling operator returns the integral

$$v(r) = \int_{\substack{y = r/2\\(x, y) \in S_2}} u(x, y) dx$$

The source map is y, x, and the destination map is r/2.



For each point (0, s), the coupling operator returns the integral

$$v(0,s) = \int_{\substack{y=s\\(x,y)\in S_2}} u(x,y)dx$$

The source map is y, x, and the destination map is s.



For each point (r, 0), the coupling operator returns the integral

$$v(r,0) = \int_{\substack{y=r/2\\(x,y) \in S_2}} u(x,y) dx$$

The source map is y, x, and the destination map is r/2.

Note

The integration can also sweep nonrectangular domains. The integrals include only the source domains; they exclude other domains and the external area.

#### Projection Coupling Operators—Example 2

Consider the case of a single rectangular domain with Poisson's equation. Integrate the solution squared along lines parallel to the x-axis and make the result available for analysis on the left boundary.

$$-\Delta u = 1 \quad \text{on } \Omega$$
$$u = 0 \quad \text{on } \partial \Omega$$



The figure illustrates the projection process. Project the integral of the solution squared on the boundary. The source map is y, x and the destination map is y. If the projection operator is called genproj1, the desired result is obtained by evaluating genproj1( $u^2$ ).

## About Scalar Model Couplings and Operators

#### ABOUT INTEGRATION MODEL COUPLINGS AND OPERATORS

An integration coupling operator is the value of an integral of an expression over a set of geometric entities (domains, for example). Thus, the integration coupling operator is always a scalar quantity. The operator can compute an expression at a vertex (point) or the integral of an expression over one or several domains, boundaries, or edges. Integration coupling operators have global destination, so they can be evaluated anywhere in the model. Because it is an operator, define one integration operator (intop1, for example) for a part of the geometry (a boundary, for example) and then use that several times in the model to compute integrals over that boundary for different integrands. For example, intop1(T) is the integral of the temperature T over the boundary, and intop1(1) is simply the length (2D) or area (3D) of the boundary. Also, using the dest operator it is possible to create convolution integrals.

#### Examples of the Use of Integration Coupling Operators



Consider Poisson's equation on a rectangular domain. The integral of the solution squared serves as the influx in a Neumann boundary condition on the right boundary. There is a Dirichlet boundary condition on the left boundary, and the top and bottom boundaries have zero influx.

$$-\Delta u = 1 \qquad \text{on } \Omega$$
$$u = x \qquad \text{on } \partial \Omega_1$$
$$\frac{\partial u}{\partial n} = 0 \qquad \text{on } \partial \Omega_{2,3}$$
$$\frac{\partial u}{\partial n} = -\int_{\Omega} u^2 d\Omega \qquad \text{on } \partial \Omega_4$$

$$\frac{u}{n} = -\int_{\Omega} u^2 d\Omega \quad \text{on } \partial\Omega_4$$

For example, define an integration coupling operator called intop1, with the rectangular domain as source. The influx for the Neumann boundary condition is obtained as intop1(u²).



A second example is when a scalar value from a vertex is used everywhere on a boundary to which the vertex belongs. In structural mechanics use this type of coupling to formulate displacement constraints along a boundary in terms of the displacements of the end point. In electromagnetics the same technique can implement floating contacts.



х

Another example is to use the integral over a domain in a 2D geometry along a domain in another 1D geometry. This approach is helpful for process-industry models where two processes interact.

Integration coupling operators can implement *integral* constraints. First define a coupling operator at some vertex in such a way that it represents the value of the integral to be constrained. Then use a point constraint to set the coupling operator, and thereby the integral, to the desired value.

Integration coupling operators (as well as the average, maximum, and minimum coupling operators are also useful for evaluating, for example, integrated quantities. To evaluate, for example, the total current across a boundary in a 2D Electric Currents model, define an integration coupling operators such as intop1 with a source on the boundary where the current flows. Then the value of intop1(ec.normJ*ec.d), where normJ is the current density norm (SI unit:  $A/m^2$ ) and d is the thickness of the 2D geometry (SI unit: m), is the total current flowing across that boundary (SI unit: A).

#### ABOUT AVERAGE MODEL COUPLINGS

Computes the average of an expression over selected geometric entities. It can be evaluated anywhere in any model, and the value does not depend on the evaluation point. It is similar to the Integration operator; the difference being that the integral is divided by the volume, area, arc length, or number of points in the source, depending on the dimension.

#### ABOUT MAXIMUM AND MINIMUM MODEL COUPLINGS

These operators compute the maximum or minimum of an expression over selected geometric entities and give the maximum and minimum values of the arguments over the source domain. The operator can be evaluated anywhere in any model, and the value does not depend on the evaluation point. Two arguments can be given, and the returned value is the value of the second argument evaluated in the max/min of the first argument. This is useful for evaluating, for example, the location of the maximum or minimum. In a 2D model where the temperature T is solved for, use the following syntax for the maximum operator maxop1 in a **Global Evaluation** node, for example, to get the *x*- and *y*-coordinate for the maximum of the temperature: maxop1(T,x) and maxop1(T,y).



When a **Max/Min Volume**, **Max/Min Surface**, or **Max/Min Line** plot is used, the maximum and minimum values, along with the coordinates for the corresponding locations, appear in a table (underneath the plot with the default COMSOL Desktop layout).

## Defining a General Extrusion Model Coupling

A **General Extrusion** model coupling ( $\bigtriangledown$ ) maps an expression defined on a source domain to an expression that can be evaluated on the destination domain. Use a General Extrusion coupling to define a nonlinear mapping.

If you have the:

- Acoustics Module, see Flow Duct: Model Library path Acoustics_Module/Industrial_Models/flow_duct
- Chemical Reaction Engineering Module, see Packed Bed Reactor: Model Library path Chemical_Reaction_Engineering_Module/ Packed_Bed_Reactors/packed_bed_reactor



- Geomechanics Module, see Concrete Beam With Reinforcement Bars: Model Library path Geomechanics_Module/Tutorial_Models/ concrete_beam
- RF Module, see Radar Cross Section: Model Library path RF_Module/ Tutorial_Models/radar_cross_section
- Subsurface Flow Module, see Aquifer Characterization: Model Library path Subsurface_Flow_Module/Fluid_Flow/aquifer_characterization
- I In the Model Builder, right-click Definitions and select Model Couplings>General Extrusion ().
- 2 Enter an **Operator name** or use the default.
- 3 Under Source Selection, from the Geometric entity level list, select Domain, Boundary, Edge (3D only), or Point. Selection from this list turns on the button with the same name on the Graphics window.
- 4 Select Manual or All domains, All boundaries, All edges, or All points from the Selection list.
  - If Manual is selected, select geometric entities in the Graphics window.
  - Select **All domains**, for example, to add all applicable geometry entities to the **Selection** list.

Use the Add to Selection ( $\rightarrow$ ), Remove from Selection ( $\rightarrow$ ), and Clear Selection ( $\rightarrow$ ) buttons as required on the settings window.

**5** Under **Destination Map**, specify the general extrusion destination map by entering expression in the **x-expression**, **y-expression**, and **z-expression** fields.

This maps each point in the destination to a point in the intermediate mesh, where the argument of the extrusion operator is evaluated. A general extrusion operator can be evaluated at any point where the destination map expressions are defined.

6 Under Source:



The number of destination map expressions is the same as the space dimension of the intermediate mesh. For example, if the intermediate mesh is in two-dimensional space, there is no **z-expression** field.

- **a** Select a **Source frame** to use on the source domain. In most cases the **Source** section's default settings can be used.
- b Optionally, select the Use source map check box and enter expressions in the x-expression, y-expression, and z-expression fields for the source map from the source to the intermediate mesh. The number of source map expressions is the same as the number of destination map expressions. With the default source map expressions, the intermediate mesh can be considered identical to the source.

The dimensionality idim of the intermediate space is determined by the number of non-empty source and destination map expressions, which must be the same, and must also satisfy srcedim  $\leq$  idim  $\leq$  srcsdim, where srcedim is the dimension of the source selection, and srcsdim is the dimension of the source geometry.

- 7 Under Advanced:
  - **a** Select an option from the **Mesh search method** list to specify what should happen if an evaluation point in the destination is mapped to a point outside the source.
  - If **Use tolerance** is selected (the default setting) the result depends on the other field definitions in this section.
  - If **Closest point** is selected, the closest point in the source selection is used.
  - **b** Enter a value in the **Extrapolation tolerance** field. If the mapped point is within a distance of the extrapolation tolerance times the mesh element size, the point is considered to be in the source. Otherwise, the mapping fails.
  - c Select the Use NaN when mapping fails check box to evaluate the operator to NaN (Not-a-Number) when the mapping fails. Otherwise an error occurs.

## Defining a Linear Extrusion Model Coupling

A **Linear Extrusion** model coupling ( $\mathbb{N}$ ) maps an expression defined on a source domain to an expression that can be evaluated on the destination domain. Use a linear extrusion when the correspondence between evaluation points in the source and destination is linear (and in some to nonlinear cases).

If you have the:

- Acoustics Module, see Porous Absorber: Model Library path Acoustics_Module/Industrial_Models/porous_absorber
- CFD Module, see Turbulent Flow Over a Backward Facing Step: Model Library path CFD_Module/Single-Phase_Benchmarks/ turbulent backstep



- Heat Transfer Module, see Turbulent Flow Over a Backward Facing Step: Model Library path Heat_Transfer_Module/Verification_Models/ turbulent_backstep
- Structural Mechanics Module, see Vibrations of an Impeller: Model Library path Structural_Mechanics_Module/Tutorial_Models/impeller
- I In the Model Builder, right-click Definitions and select Model Couplings>Linear Extrusion ( S.).
- 2 Enter an **Operator name** or use the default.
- 3 Under Source Selection, from the Geometric entity level list, select Domain, Boundary, Edge (3D only), or Point. Selection from this list turns on the button with the same name on the Graphics window.
- 4 Select Manual or All domains, All boundaries, All edges, or All points from the Selection list.
  - If Manual is selected, select geometric entities in the Graphics window.
  - Select **All domains**, for example, to add all applicable geometry entities to the **Selection** list.

Use the Add to Selection ( $\clubsuit$ ), Remove from Selection ( $\blacksquare$ ), and Clear Selection ( $\blacktriangle$ ) buttons as required.

- 5 Under Source:
  - **a** Select a **Source frame** to use on the source domain. In most cases the **Source** section default settings can be used.
  - b Optionally, select the Use source map check box and enter expressions in the x-expression, y-expression, and z-expression fields for the source map from the source to the intermediate mesh. With the default source map expressions, the intermediate mesh can be considered identical to the source.
- 6 Under Source Vertices, as required, define a single point (vertex) for Source vertex 1,
   Source vertex 2, Source vertex 3, and Source vertex 4.



The selection of **Source Vertices** and **Destination Vertices** together define the linear mapping from the destination to the source.

- The number of source vertices entered is be the same as the number of destination vertices. This number must be at least one, and not more than 1 + min(srcsdim,dstsdim) where srcsdim and dstsdim are the dimensions of the source and destination geometries, respectively.
- If not all source vertices selections are used, the empty selections must be last.
- Click the Activate Selection button ( ) to define the source vertices. Use the Add to Selection ( ), and Clear Selection ( ) buttons as required.

Select and add one single vertex (point) for each source vertex in the **Graphics** window or from the **Selection List**.

- 7 Under **Destination** define the mapping from destination to source.
  - **a** Select an option from the **Destination geometry** list if there is more than one geometry in the model.
  - A linear extrusion operator can only be evaluated on the destination geometry and the destination vertices must be chosen in the destination geometry.
  - **b** Select an option from the **Destination frame** to evaluate the destination vertex coordinates.
- 8 Under Destination Vertices, as required, select a single destination vertex for each of Destination vertex 1, Destination vertex 2, Destination vertex 3, and Destination vertex
  4. The number of destination vertices should be the same as the number of source vertices. If not all destination vertex selections are used, the empty selections must be last. Click the Activate Selection button ( ⁽¹⁾/₍₁₎) to define the source vertices. Select

and add one single vertex (point) for each destination vertex in the **Graphics** window or from the **Selection List**.

- 9 Under Advanced:
  - **a** Select an option from the **Mesh search method** list to specify what should happen if an evaluation point in the destination is mapped to a point outside the source.
  - If **Use tolerance** is selected (the default) the result depends on the other field definitions in this section.
  - If Closest point is selected, the closest point in the source selection is used.
  - **b** Enter a value in the **Extrapolation tolerance**. If the mapped point is within a distance of the extrapolation tolerance times the mesh element size, the point is considered to be in the source. Otherwise, the mapping fails.
  - c Select the Use NaN when mapping fails check box to evaluate the operator to NaN (Not-a-Number) if the mapping fails. Otherwise an error occurs.

## Defining a Boundary Similarity Model Coupling

A **Boundary Similarity** model coupling (**1**) maps an expression defined on a part of a boundary to another part of a boundary with the same shape. Available in 2D and 3D, it is defined by a similarity mapping from the destination to the source.

- I In the Model Builder, right-click Definitions and select Model Couplings>Boundary Similarity (
- 2 Enter an **Operator name** or use the default.
- **3** Under **Source Boundaries**, select **Manual** or **All boundaries** from the **Selection** list to define the source selection of a boundary similarity operator.
  - If Manual is selected, select geometric entities in the Graphics window.
  - Select All boundaries to add all boundaries in the geometry to the Selection list.

Use the Add to Selection ( $\rightarrow$ ), Remove from Selection ( $\rightarrow$ ), and Clear Selection ( $\rightarrow$ ) buttons as required.

**4** Under **Destination Boundary**, select a single boundary as the destination. There can only be one destination boundary, which you select in the **Graphics** window or from the **Selection List**.

Click the Activate Selection button ( (0)) to define the destination boundary. Use the Add to Selection (  $\frac{1}{2}$  ), and Clear Selection (  $\frac{1}{2}$  ) buttons as required.

#### 5 Under Advanced:



For 2D models, select a relative **Direction** of the source and destination edges—**Automatic orientation** (the default), **Same orientation**, or **Opposite orientation**. This specifies the relative direction of the source and boundary edges and specifies which one of the two possible similarity mappings between the source and destination edge to use.



For 3D models, a similar direction functionality is provided by the subnodes **One Point Map**, **Two-Point Map**, and **Edge Map** to exactly specify the similarity mapping between the source and destination when more than one possibility exists.

- **a** Select the **Use source map** check box to have a nonlinear correspondence between the source and destination. The source map is specified by entering expressions in the **x-expression**, **y-expression**, and **z-expression** fields.
- **b** Select an option from the **Mesh search method** list to specify what should happen if an evaluation point in the destination is mapped to a point outside the source.
- If **Use tolerance** is selected (the default) the result depends on the other field definitions in this section.
- If **Closest point** is selected, the closest point in the source selection is used.
- **c** Enter a value in the **Extrapolation tolerance** field. If the mapped point is within a distance of the extrapolation tolerance times the mesh element size, the point is considered to be in the source. Otherwise, the mapping fails.
- **d** Select the **Use NaN when mapping fails** check box to evaluate the operator to NaN (Not-a-Number) if the mapping fails. Otherwise an error occurs.

Defining One-Point, Two-Point, or Edge Maps (3D)



Only one map feature is allowed per boundary similarity coupling and only one source or destination point per field is allowed.

In the Model Builder, right-click the Boundary similarity node and select One Point Map, Two-Point Map, or Edge Map (1). Then follow these instructions:

#### ONE-POINT MAPS

- I Under Points, click the Activate Selection button ( ) to select a single Point on source adjacent to the source selection. Click in the Graphics window and select the point, or use the Selection List.
- 2 Click the Activate Selection button ( ()) to select a single Point on destination adjacent to the destination selection. Click in the **Graphics** window and select the point, which is mapped to the selected source point by the similarity mapping from destination to source.

Use the Add to Selection (  $\frac{1}{2}$  ) and Clear Selection (  $\frac{1}{2}$  ) buttons as required.

#### TWO-POINT MAPS

- I Under Source Points, click the Activate Selection button ( ) to select a single First point on source. Click in the Graphics window and select the point, or use the Selection List.
- 2 Click the Activate Selection button ( ()) to select a single Second point on source adjacent to the source selection. Click in the Graphics window and select the point, or use the Selection List.
- 3 Under Destination Points, click the Activate Selection button ( ()) to select a single First point on destination. Click in the Graphics window and select the point, or use the Selection List.
- 4 Click the Activate Selection button ( (1)) to select a single Second point on destination adjacent to the destination selection. Click in the Graphics window and select the point, or use the Selection List. The destination points are mapped to the corresponding points on the source by the similarity mapping.

Use the Add to Selection ( 🖶 ) and Clear Selection ( 📥 ) buttons as required.

#### EDGE MAPS

- I Under Edges, click the Activate Selection button ( 1) to select a single Source edge. Click in the Graphics window and select the edge, or use the Selection List.
- 2 Click the Activate Selection button ( ) to select a single Destination edge. Click in the Graphics window and select the edge, or use the Selection List. The destination edge is mapped to the source edge by the similarity mapping from destination to source.

Use the Add to Selection ( 📥 ) and Clear Selection ( 📥 ) buttons as required.

**3** Under Advanced, select a relative Direction of the source and destination edges— Automatic, Same, or Opposite orientation. This specifies the relative direction of the source and boundary edges and specifies which one of the two possible similarity mappings between the source and destination edge to use.

## Defining an Identity Mapping Model Coupling

An **Identity Mapping** model coupling () maps between geometric entities that overlap, possibly when viewed in different frames. When it is evaluated at a specific set of coordinates in the destination frame, its argument is evaluated with the same coordinates in the source frame.



If you have the CFD Module, see Solar Panel in Periodic Flow: Model Library path **CFD_Module/Single-Phase_Tutorials/solar_panel** 

- I In the Model Builder, right-click Definitions and select Model Couplings>Identity Mapping ().
- 2 Enter an **Operator name** or use the default.
- 3 Under Source Selection, from the Geometric entity level list, select Domain, Boundary, Edge (3D only), or Point. Selection from this list turns on the button with the same name on the Graphics window.
- 4 Select Manual or All domains, All boundaries, All edges, or All points from the Selection list.
  - If Manual is selected, select geometric entities in the Graphics window.
  - Select All domains, for example, to add all applicable geometry entities to the Selection list.

Use the Add to Selection ( $\rightarrow$ ), Remove from Selection ( $\rightarrow$ ), and Clear Selection ( $\stackrel{\bullet}{\rightarrow}$ ) buttons as required.

5 Under Frames select a Source frame to use on the source geometric entity and a Destination frame to use on the destination geometric entity. In most cases the default Spatial frame can be used.

#### 6 Under Advanced:

- **a** Select an option from the **Mesh search method** list to specify what should happen if an evaluation point in the destination is mapped to a point outside the source.
- If **Use tolerance** is selected (the default) the result depends on the other field definitions in this section.
- If **Closest point** is selected, the closest point in the source selection is used.
- **b** Enter a value in the **Extrapolation tolerance**. If the mapped point is within a distance of the extrapolation tolerance times the mesh element size, the point is considered to be in the source. Otherwise, the mapping fails.
- **c** Select the **Use NaN when mapping fails** check box to evaluate the operator to NaN (Not-a-Number) if the mapping fails. Otherwise an error occurs.

## Defining a General Projection Model Coupling

A projection coupling operator evaluates an expression defined on a source domain by integration along lines or curves depending on the evaluation point in the destination domain. Use a **General Projection** model coupling  $(\clubsuit)$  to define integration along curves.



It is only possible to use projection model coupling with simplex elements such as triangles and tetrahedra.

#### ABOUT THE GENERAL SOURCE AND DESTINATION MAP VERTICES

The **General Projection** operator is defined by mapping the source to an abstract intermediate space of dimension srcedim, and the destination to the subspace of dimension srcedim–1 obtained by setting the last coordinate to 0. Here srcedim is the dimension of the source selection. To every point in the destination, there corresponds a vertical line in the intermediate space, obtained by allowing the last coordinate to vary while the remaining coordinates are given by the destination map. The set of points in the source selection which are mapped onto this line by the source map, is a line or curve, and the projection operator is evaluated by integrating along this line or curve.

- I In the Model Builder, right-click Definitions and select Model Couplings>General Projection (
- 2 Enter an **Operator name** or use the default.

- **3** Under Source Selection, from the Geometric entity level list, select Domain, Boundary, Edge (3D only), or Point. Selection from this list turns on the button with the same name on the Graphics window.
- 4 Select Manual or All domains, All boundaries, All edges, or All points from the Selection list.
  - If Manual is selected, select geometric entities in the Graphics window.
  - Select **All domains**, for example, to add all applicable geometric entities to the **Selection** list.

Use the Add to Selection ( $\rightarrow$ ), Remove from Selection ( $\rightarrow$ ), and Clear Selection ( $\stackrel{\bullet}{\rightarrow}$ ) buttons as required on the settings window.

**5** Under **Source Map**, specify the general projection source map by entering expressions in the **x-expression**, **y-expression**, and **z-expression** fields.



The dimension of the intermediate space equals the dimension sreedim of the source selection. If the selection has lower dimension than the source geometry, specify only the first sreedim expressions.

Use expressions containing space coordinates in the source geometry when defining the map. Remember that the map must be approximately linear within each mesh element.

- 6 Select a Source frame from the list.
- 7 Under Destination Map, enter an x-expression and, depending on dimensions,y-expression for each coordinate except the last in the intermediate space.

The destination map has one field less than the source map. When defining the map it is permissible to use expressions containing space coordinates in the destination geometry. The destination mapping can be highly nonlinear or non invertible.

- If the selection has lower dimension than the source geometry, specify only the first sreedim-1 expressions. A general projection operator can be evaluated at any point where its destination map is defined.
- If the source selection has dimension 1, no destination map needs to be specified, and consequently this section is not shown if the source geometry is 1D. In this case, it is probably better to use an **Integration coupling**.
- 8 Under Advanced, enter an Integration order of the numerical integration method.

### Defining a Linear Projection Model Coupling

Use a **Linear Projection** model coupling ( ) when the argument is to be integrated along a line, and the line depends linearly on the evaluation point.

The linear projection maps between source domains and destination domains of the nearest lower dimension. The domains can exist in geometries of different space dimensions. For example, couple from domains in 2D to edges in 3D; or couple 3D domains to 2D domains. Define the linear projection by specifying points in both the source and destination domains.

# Note

It is only possible to use projection model coupling with simplex elements such as triangles and tetrahedra.

#### ABOUT THE LINEAR SOURCE AND DESTINATION MAP VERTICES

The **Source Vertices** and **Destination Vertices** together define a linear mapping from the destination to the source. An evaluation point in the destination geometry is first orthogonally projected onto the linear space spanned by the destination vertices (unless they span the entire space). The projected point is then mapped to the source geometry by a linear mapping taking each destination vertex to the corresponding source vertex. Let L be the line through this point which is parallel to a line through the first and the last source vertex.

If the source selection lies in the linear space spanned by the source vertices, the Linear Projection operator is evaluated by integrating along the line L. In general the operator is evaluated by integrating along the line or curve in the source selection which is mapped to L under orthogonal projection onto the linear space spanned by the source vertices.

- I In the Model Builder, right-click Definitions and select Model Couplings>Linear Projection (
- 2 Enter an Operator name or use the default.
- 3 Under Source Selection, from the Geometric entity level list, select Domain, Boundary, Edge (3D only), or Point. Selection from this list turns on the button with the same name on the Graphics window.

- 4 Select Manual or All domains, All boundaries, All edges, or All points from the Selection list.
  - If Manual is selected, select geometric entities in the Graphics window.
  - Select All domains, for example, to add all applicable geometry entities to the Selection list.

Use the Add to Selection ( $\Rightarrow$ ), Remove from Selection ( $\Rightarrow$ ), and Clear Selection ( $\frac{1}{2}$ ) buttons as required on the settings window.

**5** Under **Source**, select a **Source frame** from the list to evaluate the coordinates of the source vertices in the selected frame.

Now specify the linear projection by giving a set of points in the source geometry and in the destination geometry. The order of the vertices is significant. COMSOL Multiphysics constructs a linear projection from the source domain to the destination domain using the subspaces spanned by the vertices. Denote the map rank by n, denote the source vertices by  $x_0, x_1, ..., x_n$ , and denote the destination vertices  $x'_0, x'_1, ..., x'_n$ . After padding the source and destination vertices' vectors with zeros as necessary, the software solves the following matrix equation for a *transformation matrix* T and a *translation vector* V:

$$x'_{0} = Tx_{0} + V$$
  

$$x'_{1} - x'_{0} = T(x_{1} - x_{0})$$
  
...  

$$x'_{n} - x'_{0} = T(x_{n} - x_{0})$$

For the projection model coupling there must be one more vertex in the source geometry than in the destination geometry.

6 Under Source Vertices, as required, select a single source vertex for each of Source vertex 1, Source vertex 2, Source vertex 3, and Source vertex 4.



The selection of **Source Vertices** and **Destination Vertices** together define the linear mapping from the destination to the source.

- Select sreedim + 1 source vertices where sreedim is the dimension of the source selection. Depending on the dimension of the source selection, it may be that some of the last source vertex selections should be left empty.
- If not all source vertices selections are used, the empty selections must be last.
- Click the Activate Selection button ( ) to define the source vertices. Use the Add to Selection ( ) and Clear Selection ( ) buttons as required.

Select and add one single vertex (point) for each source vertex in the **Graphics** window or from the **Selection List**.

- 7 Under Destination, select an option from the Destination geometry list if there is more than one geometry in the model.
  - A linear projection operator can only be evaluated on the destination geometry and the destination vertices must be chosen in the destination geometry.
  - The destination vertex coordinates are evaluated in the selected Destination frame.
- 8 Under Destination Vertices, as required, select a single destination vertex for each of Destination vertex I, Destination vertex 2, and Destination vertex 3. The number of destination vertices should be one less than the number of source vertices. If not all destination vertex selections are used, the empty selections must be last.
  - Select sreedim destination vertices where sreedim is the dimension of the source selection. Depending on the dimension of the source selection, it may be that some of the last destination vertex selections should be left empty.
  - Click the Activate Selection button ( ) to define the source vertices. Use the Add to Selection ( ) and Clear Selection ( ) buttons as required.

Select and add one single vertex (point) for each destination vertex in the **Graphics** window or from the **Selection List**.

9 Under Advanced enter an Integration order of the numerical integration method.

#### Defining an Integration Model Coupling

An **Integration** model coupling ( $\int du$ ) integrates an expression over selected geometric entities. This is evaluated by integrating the argument over the source domain or summing the argument over the node points in the source domain. The operator can

be evaluated anywhere in any model, and the value does not depend on the evaluation point.

 Acoustics of a Muffler: Model Library path: COMSOL_Multiphysics/ Acoustics/automotive_muffler



- Fluid Valve: Model Library path COMSOL_Multiphysics/Fluid_Dynamics/ fluid_valve
- I In the Model Builder, right-click Definitions and select Model Couplings>Integration ( fdu).
- 2 Enter an **Operator name** or use the default. This is the name that is used to access the operator in the model, so use a name that describes the integration operator.
- **3** Under Source Selection, from the Geometric entity level list, select Domain, Boundary, Edge (3D only), or Point. Selection from this list turns on the button with the same name on the Graphics window. The source selection defines the part of the geometry that the integration operator integrates over.
- 4 Select Manual or All domains, All boundaries, All edges, or All points from the Selection list.
  - If Manual is selected, select geometric entities on the Graphics window.
  - Select **All domains**, for example, to add all the applicable geometric entities to the **Selection** list.

Use the Add to Selection ( $\rightarrow$ ), Remove from Selection ( $\rightarrow$ ), and Clear Selection ( $\rightarrow$ ) buttons as required on the settings window.

5 Under Advanced, from the Method list select Integration or Summation over nodes. In most cases use integration. Summation over nodes is useful, for example, for calculating reaction forces. If Integration is selected, enter a value in the Integration order field. Also, when working with multiple frames, select a Frame from the list for the volume element to be used in the integration. For axisymmetric geometries, select the Compute integral in revolved geometry check box to perform the integration in 3D (for a 2D axisymmetric model) or in 2D (for a 1D axisymmetric model).

# Defining an Average Model Coupling

An **Average** model coupling  $(A_{v})$  computes the average of an expression over selected geometric entities. It can be evaluated anywhere in any model, and the value does not

depend on the evaluation point. It is similar to the Integration operator; the difference being that the integral is divided by the volume, area, arc length, or number of points in the source, depending on the dimension.



Effective Diffusivity in Porous Materials: Model Library path COMSOL_Multiphysics/Diffusion/effective_diffusivity

- I In the Model Builder, right-click Definitions and select Model Couplings>Average (
- 2 Enter an **Operator name** or use the default. This is the name that is used to access the operator in the model, so use a name that describes the average operator.
- **3** Under Source Selection, from the Geometric entity level list, select Domain, Boundary, Edge (3D only), or Point. Selection from this list turns on the button with the same name on the Graphics window. The source selection defines the part of the geometry that the average operator computes the average for.
- 4 Select Manual or All domains, All boundaries, All edges, or All points from the Selection list.
  - If Manual is selected, select geometric entities on the Graphics window.
  - Select **All domains**, for example, to add all applicable geometric entities to the **Selection** list.

Use the Add to Selection ( $\stackrel{\bullet}{\leftarrow}$ ), Remove from Selection ( $\stackrel{\bullet}{\frown}$ ), and Clear Selection ( $\stackrel{\bullet}{\bullet}$ ) buttons as required on the settings window.

- 5 Under Advanced:
  - a Enter an Integration order.
  - **b** When working with multiple frames, select a **Frame** from the list for the volume element to be used in the average.

The **Maximum**  $(\Delta_{\nabla})$  and **Minimum**  $(\Delta_{\nabla})$  coupling operators compute the maximum or minimum of an expression over selected geometric entities and gives the maximum or minimum value of the expression in the argument over the source domain. The

operator can be evaluated anywhere in any model, and the value does not depend on the evaluation point.



Deformation of a Feeder Clamp: Model Library path COMSOL_Multiphysics/Structural_Mechanics/feeder_clamp

Defining Maximum and Minimum Model Couplings

- I In the Model Builder, right-click Definitions and select Model Couplings>Maximum (△,) or Minimum (△,).
- 2 Enter an **Operator name** or use the default (maxop1, for example). This is the name that is used to access the operator in the model, so use a name that describes the maximum or minimum operator.
- **3** Under Source Selection, from the Geometric entity level list, select Domain, Boundary, Edge (3D only), or Point. Selection from this list turns on the button with the same name on the Graphics window. The source selection defines the part of the geometry that the maximum or minimum operator computes the maximum or minimum within.
- 4 Select Manual or All domains, All boundaries, All edges, or All points from the Selection list.
  - If Manual is selected, select geometric entities on the Graphics window.
  - Select **All domains**, for example, to add all applicable geometric entities to the **Selection** list.

Use the Add to Selection ( $\Rightarrow$ ), Remove from Selection ( $\Rightarrow$ ), and Clear Selection ( $\frac{1}{2}$ ) buttons as required on the settings window.

- **5** Under **Advanced**, the **Point type** controls the choice of evaluation points—the result is more accurate with more points but more points also means a slower evaluation.
  - a From the Point type list, select Node points (the default), Integration points, or
     Lagrange points to compute the maximum or minimum by evaluating the argument expression at a finite set of points in the source and taking the maximum or minimum of these values.
  - **b** If Integration points is selected, enter an Integration order. The default is 4.
  - c If Lagrange points is selected, enter a Lagrange order. The default is 2.

# Coordinate Systems

In this section:

- About Coordinate Systems
- About Base Vector Coordinate Systems
- Defining a Base Vector System
- About Boundary Coordinate Systems
- Defining a Boundary System
- About Cylindrical Coordinate Systems
- Defining a Cylindrical System
- About Mapped Coordinate Systems
- Defining a Mapped System
- About Rotated Coordinate Systems
- Defining a Rotated System
- About Spherical Coordinate Systems
- Defining a Spherical System
- About Scaling Coordinate Systems
- Defining a Scaling System
- About Scaling Coordinate Systems
- Defining a Scaling System
- · About Infinite Element Domains and Perfectly Matched Layers

#### About Coordinate Systems

COMSOL Multiphysics uses a global Cartesian coordinate system by default to specify material properties, loads and constraints in all physics interfaces and on all geometric entity levels (points, edges, boundaries, and domains). In boundary conditions and fluid domains, the global system is generally interpreted as having fixed axis directions in space, that is, it is a *spatial frame* system. When specifying properties of solid materials, the global system axes are instead fixed in the material. In other words, it is a *material frame* system in that context.

Not only the global coordinate system, but also systems defined as a rotation relative to the global system, are context-dependent in this way. Such systems are collectively referred to as *relative coordinate systems*, to distinguish them from *absolute coordinate systems*.

For 2D and 3D models, the **Boundary System** node is automatically added under **Definitions**.

To add another coordinate system to the **Model Builder**, right-click **Definitions**, and select a **Coordinate Systems** from Table 3-12.

The spatial Cartesian coordinate system coordinates default to the following names in 2D and 3D (in 2D axisymmetric geometries, COMSOL Multiphysics uses cylindrical coordinates):

GEOMETRY	DEFAULT NAME OF SPACE COORDINATES
2D	ху
3D	x y z
Axial symmetry 2D	rφz

In 3D, an image displays in the lower-left corner of the **Graphics** window x = 1 to indicate the orientation of this coordinate system.

User-defined coordinate systems can be used on all geometric entity levels to simplify the modeling process. In some of the physics interfaces, these coordinate systems can be used to define orthotropic and anisotropic material properties that are not aligned with the global Cartesian coordinate system, for example. See Table 3-12 for an overview of the available coordinate systems. Note in particular that some coordinate



systems specify absolute directions in space, while others specify a rotation relative to the default global system, as indicated by the Type column in the table.

TABLE 3-12: COORDINATE SYSTEM DESCRIPTIONS

COORDINATE SYSTEM	ICON	ТҮРЕ	DESCRIPTION
About Base Vector Coordinate Systems	R.	relative	ID, 2D, and 3D. Define this using a set of base vectors to form a coordinate system, which are declared as orthonormal.
About Boundary Coordinate Systems	L.	absolute	2D and 3D. A local base vector system on 2D boundaries (t, n) and on 3D boundaries (t1, t2, n). Use it to apply loads that apply in a normal or tangential direction on a boundary that is not aligned with the global Cartesian coordinate system. This coordinate system is always available.
About Cylindrical Coordinate Systems	<u>,</u>	absolute	2D and 3D. Use this where rotational symmetry about the axis is required. Not applicable in geometries with 2D axial symmetry, where a cylindrical coordinate system is the default coordinate system.
About Mapped Coordinate Systems	4	absolute	ID, 2D, and 3D. This can deal with translated and rotated coordinate systems. Use this to create a system that defines a mapping from the frame coordinate system.
About Rotated Coordinate Systems	*	relative	2D and 3D. Use this to define rotation about the out-of-plane direction in 2D and Euler angles in 3D.
About Spherical Coordinate Systems	Þ	absolute	3D only. Use this when a field or property using spherical coordinates is to be specified.
About Scaling Coordinate Systems	Ĺ	absolute	For physics interfaces that support infinite elements or perfectly matched layers only. Use this coordinate system, which is similar to a mapped coordinate system, to arbitrarily deform the domain.

- Coordinate Systems
- Sorting Nodes by Space Dimension and Type
- See Also

2

• Spatial Coordinate Variables

#### About Base Vector Coordinate Systems

Define a **Base Vector System** ( ) using a set of base vectors to form a coordinate system. The system does not necessarily need to be orthonormal, but when it is, declaring it orthonormal and linear enables simplifications which improve performance.

If you have the:

- Acoustics Module, see SAW Gas Sensor: Model Library path Acoustics_Module/Industrial_Models/saw_gas_sensor
- Model
- MEMS Module, see SAW Gas Sensor: Model Library path MEMS_Module/Sensors/saw_gas_sensor
- Structural Mechanics Module, see Piezoelectric Shear-Actuated Beam: Model Library path Structural_Mechanics_Module/Piezoelectric_Effects/ shear_bender

A vector **F** is represented by its contravariant components  $[F_1, F_2, F_3]^T$  in the base of the new base vector system defined by the base vectors  $\mathbf{u}_1, \mathbf{u}_2$ , and  $\mathbf{u}_3$  on the form  $\mathbf{F} = F_1 \mathbf{u}_1 + F_2 \mathbf{u}_2 + F_3 \mathbf{u}_3$ . Expressing the base vectors as components in another system, for example the global spatial system  $[\mathbf{e}_x, \mathbf{e}_y, \mathbf{e}_z]$ , gives the transformation matrix between bases:

$$\begin{bmatrix} F_x \\ F_y \\ F_z \end{bmatrix} = \begin{bmatrix} \mathbf{u}_1 \ \mathbf{u}_2 \ \mathbf{u}_3 \end{bmatrix} \cdot \begin{bmatrix} F_1 \\ F_2 \\ F_3 \end{bmatrix}$$
$$\begin{bmatrix} F_1 \\ F_2 \\ F_3 \end{bmatrix} = \begin{bmatrix} \mathbf{u}_1 \ \mathbf{u}_2 \ \mathbf{u}_3 \end{bmatrix}^{-1} \cdot \begin{bmatrix} F_x \\ F_y \\ F_z \end{bmatrix} = \begin{bmatrix} |\mathbf{u}_i| = 1 \\ \mathbf{u}_i \cdot \mathbf{u}_j = \delta_{ij} \end{bmatrix} = \begin{bmatrix} \mathbf{u}_1 \ \mathbf{u}_2 \ \mathbf{u}_3 \end{bmatrix}^T \cdot \begin{bmatrix} F_x \\ F_y \\ F_z \end{bmatrix}$$

where the last equality holds when the base vector system is orthonormal.

Note that you specify the base vectors as components in the default global system, which is context-dependent. The base vector system is therefore a relative coordinate system whose interpretation depends on the interpretation of the global system in the current context.

- I In the Model Builder, right-click Definitions and select Coordinate Systems>Base Vector System (1).
- **2** In the **Coordinate System Identifier** section, enter an **Identifier** or use the default identifier.
- **3** Under **Settings**, in the **Coordinate names** table, the default names are entered—x1, x2, and x3. In planar 2D models, x1 and x2 are typically the in-plane coordinates, and x3 is the out-of-plane coordinate. Note that these coordinate names are only used as indices for vector and tensor variable names and cannot be evaluated as variables.
- 4 Under **Base vectors**, define the base vectors in terms of the global Cartesian coordinates (typically x, y, and z); one base vector on each row (two for 2D and three for 3D).

ID	For 1D models, select which basis vector is parallel to the 1D geometry. Select an option from the <b>In-plane index</b> list. The default is <b>1</b> .
----	----------------------------------------------------------------------------------------------------------------------------------------------------------



For 2D models, select which basis vector to compute as the cross product of the two in-plane vectors specified. Select an option from the **Out-of-plane index** list. The defaults are **3** for a plane 2D model and **2** for an axisymmetric 2D model. For example, to map the first vector, **x1**, to the direction defined by y = x in 2D, enter **1** in the fields under **x** and **y** on the **x1** row.

**5** Under **Simplifications**, you can set properties for the base vector systems which help simplifying the coordinate transformations. Select the **Assume orthonormal** check box if the coordinate system is orthonormal.

# For 2D and 3D models, a **Boundary System** node is automatically added under **Definitions**.

A **Boundary System** ( $[\mathbf{j}_{2}]$ ) is a local base vector system on 2D boundaries ( $\mathbf{t}$ ,  $\mathbf{n}$ ) and on 3D boundaries ( $\mathbf{t}_{1}$ ,  $\mathbf{t}_{2}$ ,  $\mathbf{n}$ ). Use it to apply loads and other boundary conditions in a normal or tangential direction on a boundary that is not aligned with the global Cartesian coordinate system.



Ø

2D

3D

Many Model Library examples use this coordinate system. For one example, see Electric Sensor: Model Library path **COMSOL_Multiphysics/** Electromagnetics/electric_sensor

Common applications for this coordinate system include specifying pressure or normal displacement on a surface.

To specify the boundary coordinate system, specify the direction of the normal and a direction that is projected onto the boundary, normalized, and used as the first tangent vector.

The normal direction is in most cases the outward-pointing normal vector. The general definition of the normal (for shells, for example), is the direction of the normal vector  $\mathbf{n}$ , which can be plotted using the variables for its components (typically nx, ny, and nz). See Normal Variables.

	In 2D the local coordinate system is defined by $(\mathbf{t}_1, \mathbf{n}, \mathbf{t}_0)$ , representing				
	the tangential and normal direction of the boundary. This coordinate				
	system is always right-oriented. For exterior boundaries the normal is by				
	default directed out from the domain. The user can reverse the normal				
	direction.				
2D	The second tangent direction $(\mathbf{t}_0)$ is the cross product between normal				
	vector $(\mathbf{n})$ and the first tangent direction $(\mathbf{t}_1)$ . This method always gives a				
	right-oriented orthonormal system, unless the tangent direction is parallel				
	to the normal.				

### 3D Boundary Coordinate System

	In 3D the local coordinate system is defined by $(\mathbf{t}_1, \mathbf{t}_2, \mathbf{n})$ , representing two tangential directions $(\mathbf{t}_1 \text{ and } \mathbf{t}_2)$ and one normal direction $(\mathbf{n})$ . This coordinate system is always right-oriented but not always orthogonal. For exterior boundaries the normal is by default directed out from the domain. The user can reverse the normal direction.
SD	Common applications for this coordinate system include specifying pressure or normal displacement on a surface.
	The second tangent direction $(\mathbf{t}_2)$ is the cross product between the specified normal vector $(\mathbf{n})$ and the first tangent vector $(\mathbf{t}_1)$ . This method always gives a right-oriented orthonormal system, unless the tangent direction is parallel to the normal.

# Defining a Boundary System

For 2D and 3D models, a **Boundary System** node is automatically added under **Definitions**.

0

2D

**3**D

- I In the Model Builder, right-click Definitions and select Coordinate Systems>Boundary System (
- **2** In the **Coordinate System Identifier** section, enter an **Identifier** or use the default identifier.
- **3** Under Settings, select a Frame type—Geometry coordinate system, Reference configuration, or Deformed configuration (the default).
- 4 In the Coordinate names table, the default names are entered—t1, t2, and n (for 3D models) or t1, n, and to (for 2D models). Click the table cells to edit the names.
- **5** To reverse the direction of the normal for the boundary system, select the **Reverse normal direction** check box.
- 6 Select an option from the Create first tangential direction from list: Global Cartesian or Manual.
- 7 If Global Cartesian is selected, select 1, 2, or 3 (that is, x, y, or z) from the Axis list.
- 8 If Manual is selected, default values are displayed for the local tangent variables t1x, t1y, and t1z (3D) or t1x and t1y (2D). Enter other values as required to define a tangent direction by specifying directions for a local tangent plane in the x, y, and z fields.

### About Cylindrical Coordinate Systems

A **Cylindrical System** ( ) can be used in 2D and 3D where rotational symmetry about the axis is required.



The cylindrical coordinate system is not applicable in geometries with 2D axial symmetry.



If you have the AC/DC Module and Particle Tracing Module, see Magnetic Lens: Model Library path ACDC_Module/Particle_Tracing/ magnetic_lens

The local coordinate system is defined by  $(r, \varphi, a)$  where *r* represents the radial distance from the longitudinal axis,  $\varphi$  is the azimuthal angle, and *a* is the distance from the origin along the longitudinal axis. In 2D models, only the origin can be specified,

whereas in 3D models, the longitudinal axis direction, **a**, and the radial base vector,  $\mathbf{e}_r$  ( $\phi = 0$ ), can be specified as well. These direction vectors are automatically normalized.

The definitions of the cylindrical coordinates in terms of the global Cartesian coordinates  $\mathbf{r} = \mathbf{r}(x, y, z)$  are

$$\begin{bmatrix} r \\ \varphi \\ a \end{bmatrix} = \begin{bmatrix} \mathbf{r} - (\mathbf{r}_0 + \mathbf{a}(\mathbf{a} \cdot (\mathbf{r} - \mathbf{r}_0))) \\ \operatorname{atan} \frac{(\mathbf{a} \times \mathbf{e}_r) \cdot (\mathbf{r} - \mathbf{r}_0)}{\mathbf{e}_r \cdot (\mathbf{r} - \mathbf{r}_0)} \\ \mathbf{a} \cdot (\mathbf{r} - \mathbf{r}_0) \end{bmatrix}$$

### Defining a Cylindrical System

- I In the Model Builder, right-click Definitions and select Coordinate Systems>Cylindrical System (
- **2** In the **Coordinate System Identifier** section, enter an **Identifier** or use the default identifier.
- **3** Under Settings, select a Frame type—Mesh (x, y, z), Material (x, y, z), Spatial (x, y, z) (the default), or Geometry (x, y, z). Select the frame type that matches the frame used by the physics interface where the cylindrical coordinate system is used.



If the frame type does not match the one used by the physics interface, the coordinate system does not appear in the physics interface's **Coordinate system** lists.

- 4 In the Coordinate names table, the default Coordinate names are entered—r, phi, and
  a. In planar 2D models, r and phi are in-plane polar coordinates, and a is the out-of-plane coordinate.
- 5 Specify the location of the Origin of the cylindrical coordinate system in the global Cartesian system. The default is an origin coinciding with the one from the global system.
- 6 For 3D, enter the Longitudinal axis direction. The default is the z direction in the global system.
- 7 In 3D, specify the Direction of axis φ =0, where φ is the azimuthal angle. The default direction is the *x* direction in the global system.

Use a **Mapped System** () to create a system that defines a mapping from the frame coordinate system.

This method can deal with translated and rotated coordinate systems:

$$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} u_1(x, y, z) \\ u_2(x, y, z) \\ u_3(x, y, z) \end{bmatrix}$$

# Defining a Mapped System

- I In the Model Builder, right-click Definitions and select Coordinate Systems>Mapped System ( ,).
- **2** In the **Coordinate System Identifier** section, enter an **Identifier** or use the default identifier.
- **3** Under **Settings**, select a **Frame type**—**Mesh (x,y,z)**, **Material (x,y,z)**, **Spatial(x,y,z)** (the default), or **Geometry frame coordinate**. Select the frame type that matches the frame used by the physics interface where the cylindrical coordinate system is used.



If the frame type does not match the one used by the physics interface, the coordinate system does not appear in the physics interface's **Coordinate system** lists.

- **4** In the **Coordinate names** table, the default names are entered—x1, x2, and x3. In planar 2D models, x1 and x2 are typically the in-plane coordinates, and x3 is the out-of-plane coordinate.
- **5** Under **Coordinate mapping**, the **Coordinate** column displays the **Coordinate names** with the **Expression** column displaying the associated mapped coordinate.
- **6** Under **Simplifications**, select the **Assume orthonormal** check box if the defined coordinate system is orthonormal.

Use a **Rotated System** ( ) to define rotation about the out-of-plane axis in 2D and Euler angles in 3D.



If you have the MEMS Module, see Gecko Foot: Model Library path **MEMS_Module/Actuators/gecko_foot**.

On the **Rotated System** page, define the rotation relative to the global Cartesian coordinate system. In 3D models, specify the local coordinate system  $(x_1, y_1, z_1)$  using three consecutive Euler angles (rotation angles)  $\alpha$ ,  $\beta$ , and  $\gamma$ . See Figure 3-2.

In 2D models, describe the rotated coordinate system by the rotation angle about the out-of-plane vector. In both cases the origin of the coordinate system can be defined.



Figure 3-2: 3D Euler angles in a rotated coordinate system.

The transformation matrix for the 3D case is then

$$\begin{vmatrix} x_1 \\ y_1 \\ z_1 \end{vmatrix} = \begin{bmatrix} \cos\alpha \cos\gamma - \sin\alpha \cos\beta \sin\gamma - \cos\alpha \sin\gamma - \sin\alpha \cos\beta \cos\gamma & \sin\beta \sin\alpha \\ \sin\alpha \cos\gamma + \cos\alpha \cos\beta \sin\gamma - \sin\alpha \sin\gamma + \cos\alpha \cos\beta \cos\gamma & -\sin\beta \cos\alpha \\ \sin\beta \sin\gamma & \sin\beta \cos\gamma & \cos\beta \end{vmatrix}^T \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

#### Defining a Rotated System

- I In the Model Builder, right-click Definitions and select Coordinate Systems>Rotated System ( .).
- **2** In the **Coordinate System Identifier** section, enter an **Identifier** or use the default identifier.
- 3 Under Settings, in the Coordinate names table, the default names are entered—x1, x2, and x3. In planar 2D models, x1 and x2 are typically the in-plane coordinates, and x3 is the out-of-plane coordinate.
- 4 Specify an out-of-plane axis or Euler angles:



For 2D models, select an out-of-plane axis from the **Out-of-plane axis** list (first, second, or third coordinate direction into or out-of screen), and then if necessary adjust the base vectors in the table under **Base vectors**. Enter the **Rotation about out-of-plane axis** (in radians). The default is 0.



**5** In the **Origin** edit field, specify the location of the origin of the rotated coordinate system. Define it as a vector with two (for 2D) or three (for 3D) components.

The default is the origin for the global Cartesian coordinate system. Using another origin translates the coordinates in the rotated system by that distance from the global Cartesian origin.

#### About Spherical Coordinate Systems

Use a **Spherical System** ( ) to define a spherical coordinate system in 3D by its origin, zenith axis, and azimuth axis.

The coordinates of a local spherical coordinate system are  $(r, \theta, \phi)$  where *r* represents the radial distance from the origin,  $\theta$  is the inclination, and  $\phi$  is the azimuthal angle. Specify—in terms of the global Cartesian coordinates *x*, *y*, and *z*—the position of the origin, the axis  $\theta = 0$  (the zenith axis, **Z**), and the axis  $\theta = \pi/2$ ,  $\phi = 0$  (the azimuth axis, **A**). The direction vectors are automatically normalized.

This is a mapped normalized system using the following transform in global coordinates

$$r = |\mathbf{r} - \mathbf{r}_{0}|$$
  

$$\theta = \operatorname{acos}\left(\frac{\mathbf{Z} \cdot (\mathbf{r} - \mathbf{r}_{0})}{|\mathbf{r} - \mathbf{r}_{0}|}\right)$$
  

$$\varphi = \operatorname{atan2}(\mathbf{r}_{\perp} \cdot (\mathbf{Z} \times \mathbf{A}), \mathbf{r}_{\perp} \cdot \mathbf{A})$$

where  $\mathbf{r}_0$  is the position of the origin,  $\mathbf{Z}$  is a unit vector along the axis  $\theta = 0$ , and the component of  $\mathbf{r} - \mathbf{r}_0$  in the plane  $\theta = \pi/2$  is

$$\mathbf{r}_{\perp} = (\mathbf{r} - \mathbf{r}_{0} - \mathbf{Z}(\mathbf{Z} \cdot (\mathbf{r} - \mathbf{r}_{0})))$$

# Defining a Spherical System

- I In the Model Builder, right-click Definitions and select Coordinate Systems>Spherical System (
- **2** In the **Coordinate System Identifier** section, enter an **Identifier** or use the default identifier.
- **3** Under Settings, select a Frame type—Mesh (x, y, z), Material (x, y, z), Spatial (x, y, z) (the default), or Geometry (x, y, z). Select the frame type that matches the frame used by the physics interface where the cylindrical coordinate system is used.



If the frame type does not match the one used by the physics interface, the coordinate system does not appear in the physics interface's **Coordinate system** lists.

- 4 In the Coordinate names table, the default Coordinate names are entered—r, theta, and phi.
- **5** Enter the location of the **Origin** in the global Cartesian coordinate system. The default is an origin coinciding with that of the global system.
- 6 Enter the Direction of axis θ=0 (the *zenith axis*). The default axis direction is the z direction in the global Cartesian system.
- 7 Define the **Direction of axis**  $\theta = \pi/2$ ,  $\varphi = 0$  (the *azimuth axis*). The default direction is the *x* direction in the global Cartesian system.

### About Scaling Coordinate Systems

Use a **Scaling System** ( $\[\]_{\text{inne}}\]$ ) to create a system that maps the geometry, as represented by the independent coordinates of an underlying frame, onto a virtual geometry represented by virtual scaling system coordinates. Physics interfaces that support infinite elements or perfectly matched layers accept the scaling system coordinates as being the physical domain, in which the underlying frame coordinates are seen as a parameterization. Therefore, using a scaling coordinate system you can arbitrarily deform the domain, essentially in the same way as when using Deformed Geometry with a Prescribed Deformation feature.



The Scaling System is only available for physics interfaces that support infinite elements or perfectly matched layers (PMLs).



About Infinite Element Domains and Perfectly Matched Layers

The scaling coordinate system is defined as a map from real frame coordinates to virtual scaling system coordinates:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1(x, y, z) \\ x_2(x, y, z) \\ x_3(x, y, z) \end{bmatrix}$$

The selected (setting invisible if there is only one frame) frame coordinates are seen as a parameterization of the "true geometry" in which the physics is solved. What you specify in the **Coordinate mapping** table is therefore "true position" for each point in the mesh, expressed in the frame coordinates. When applied to a domain with a compatible material model in a physics interface, the equations in that domain are first reformulated in terms of the virtual  $x_1, x_2$ , and  $x_3$  coordinates but then automatically mapped back to the frame coordinates. This leads to explicit transformation expressions appearing in the equations.

- I In the Model Builder, right-click Definitions and select Coordinate Systems>Scaling System ([†]_{1.00}).
- **2** In the **Coordinate System Identifier** section, enter an **Identifier** or use the default identifier.
- **3** Under **Coordinate mapping**, the **Coordinate** column displays the virtual coordinate names with the **Expression** column displaying the map from underlying frame coordinates to virtual coordinates. The default expressions are the spatial coordinates x, y, and z, which means no scaling.

About Infinite Element Domains and Perfectly Matched Layers

#### SIMULATION OF INFINITE DOMAINS

Simulation of unbounded, infinite, domains is a challenge encountered in many types of physics. Normally, any physics interface simulates a process within a bounded domain represented by the geometry drawn in, or imported into, COMSOL Multiphysics. But in many cases the domain is delimited only by artificial boundaries inserted to limit the extent of the model to a manageable *region of interest*. You may not be interested in the details of the solution far away from any sources or material inhomogeneities, but the solution inside the region of interest must not be affected by the presence of the artificial boundaries. You simply want it to behave as if the domain was really of infinite extent.

Artificial truncation of the domain can be handled in a number of different ways. Some physics interfaces include special boundary conditions to absorb outgoing propagating waves without spurious reflections, so called low-reflecting boundary conditions. Others allow impedance boundary conditions which can be tuned to account for a finite impedance between the model boundary and a reference at infinity. Such boundary conditions are often efficient and useful, but generally lack some generality and sometimes accuracy.

Another way to accomplish the same desired effect is to apply a coordinate scaling to a layer of virtual domains surrounding the physical region of interest. For stationary and transient problems, these virtual domains can be stretched out towards infinity, giving rise to *infinite elements*. To absorb outgoing waves in a frequency-domain problem, you must instead stretch the virtual domains into the complex plane, creating *perfectly matched layers* (PMLs). Because of their common background as coordinate stretching, infinite elements and PMLs in COMSOL Multiphysics share a number of important features. They share part of the user interface and many modeling principles can be translated directly from one to the other. In the description below, infinite elements and PMLs are therefore sometimes referred to collectively as *scaling systems*.

#### STANDARD GEOMETRY CONFIGURATIONS

Automatic scaling systems are available in COMSOL Multiphysics for three distinct geometrical configurations: Cartesian, Cylindrical and Spherical. Which ones you can use depends on the space dimension of the model.

Plane 2D Models

The available scaling types in plane 2D models are Cartesian and Cylindrical. Cartesian domains are stretched in one or two directions depending on whether they are attached to an edge or to a corner of the physical region of interest.



It is important that separate, normally quadratic, domains are drawn at the corners.



Figure 3-3: Typical Cartesian scaling configuration. Note the distinction between edge and corner domains.



Figure 3-4: Example of cylindrical scaling configuration in plane 2D. You must specify the center point of the model when different from the origin of the coordinate system.

#### Axisymmetric 2D Models

The available scaling types in 2D axisymmetric models are cylindrical and spherical. The axisymmetric cylindrical configuration from the practical point of view behaved identically to the plane 2D Cartesian option. Similarly, the axisymmetric spherical scaling is very similar to plane 2D cylindrical scaling, except that it is always centred on the axis.



Figure 3-5: Axisymmetric cylindrical scaling uses domains of three distinct types: with radial stretching, with axial stretching, and with both radial and axial stretching. The latter are the corner zones, which must be drawn as distinct domains.



Figure 3-6: Axisymmetric spherical scaling assumes radial stretching in an annulus centered at a point on the axis. If the centre point is not the origin of the coordinate system, you must specify its axial position.

#### 3D Models

The available scaling types in 3D are Cartesian and spherical. The Cartesian scaling domains are of three different types. Depending whether they are attached to a surface, an edge or a point in the physical domain, they are stretched in one, two or three directions respectively. Spherically scaled domains are always stretched only in the spherical domain's radial direction.



Figure 3-7: Typical Cartesian scaling system configuration. Note the distinction between face, edge and corner domains.



Figure 3-8: Typical spherical scaling system configuration.

#### NOTE ON AVAILABILITY

Infinite elements ( <u>)</u> and perfectly matched layers are available only for some physics interfaces and when COMSOL Multiphysics is used together with certain add-on modules. If you have not added to your model any physics interface which is compatible with infinite elements or perfectly matched layers under the available licenses, you cannot add any of these features to the model.

Further, after turning a domain into a perfectly matched layer or infinite element, that domain is not allowed in the active selection of physics interfaces and individual features which are not compatible with these special domain types. This means that the scaled domains are either not be selectable at all, or display as **Not applicable** in the selection list.

#### NOTE ON COMPATIBILITY WITH PREVIOUS IMPLEMENTATIONS

In older versions of COMSOL, both infinite elements and PMLs are in two different places in the user interface: in some cases, the features are added from the **Definitions** context menu and in some cases from the individual physics interface context menu. This description concerns only the functionality found on the **Definitions** context menu. The infinite element and PML features still present in the physics interfaces are documented together with their interface. But those will eventually be phased out in favor of the implementation under **Definitions**.

# Identity and Contact Pairs

In this section:

- About Pairs
- Identity Pairs
- Contact Pairs

#### About Pairs

Pairs are available for assemblies (that is, geometries created by not forming a union of all geometry objects as the final step), where there is a need to connect boundaries between parts. By default, pairs are created automatically when forming an assembly. There are two types of pairs:

• An *Identity pair* is a pair that by default make the fields across two connected boundaries (one from each connecting part) continuous. This is equivalent to the continuity that is obtained by default on interior boundaries in a geometry created by forming a union. Some physics interfaces provide special boundary conditions for identity pairs to model "slit conditions" such as resistive layers.

Use an identity pair to specify two selections of boundaries that overlap but belong to different parts of an assembly. Then assign a boundary condition to connect the physics in the two parts in a physics interface. Identity pairs connect overlapping boundaries in different connecting parts of an assembly.

• A *Contact pair* is a pair that define boundaries where the parts may come into contact but cannot penetrate each other under deformation for modeling of structural contact and multiphysics contact.

Use a contact pair to specify two selections of boundaries that cannot penetrate each other under deformation. The contact pairs define boundaries for parts that can come into contact.



Contact pair modeling requires the Structural Mechanics Module or MEMS Module.

- Identity Pairs
- Contact Pairs
- Sorting Nodes by Space Dimension and Type



- Specifying Boundary Conditions for Identity Pairs
- About Selecting Geometric Entities
- Selecting and Deselecting Geometric Entities

#### Identity Pairs

Use an **Identity Pair** node () to specify two selections of boundaries that overlap but belong to different parts of an assembly. Then assign a boundary condition to connect the physics in the two parts in a physics interface. Identity pairs connect overlapping boundaries in different connecting parts of an assembly.



Thin-Layer Diffusion: Model Library path COMSOL_Multiphysics/Diffusion/ thin_layer_diffusion

- In the Model Builder, right-click Definitions>Pairs and select Identity Boundary Pair ()()(the most common), Identity Edge Pair (3D only) ()()), or Identity Point Pair ()(). An identity edge pair, for example, can be useful for connecting two edges in a shell model.
- 2 In the **General** section, enter a **Pair name**. It is used as a suffix in names of operators and variables defined by the pair. Also, for boundary pairs, it is possible to change the type of pair from an identity pair to a contact pair from the **Pair type** list. For automatically generated pairs, select the **Manual control of selections** check box to change the selection of source and destination boundaries (edges, points).

The operator mapping an expression E on the source side to the destination side is denoted  $src2dst_pn(E)$ , where pn is the pair name. The *variable*  $src2dst_pn$  (defined on the destination) is 1 where there is a corresponding source point, and 0 otherwise. The corresponding operator and variable for use on the source side are denoted  $dst2src_pn$ .

- **3** Under Source Boundaries (Source Edges or Source Points):
  - a Click the Activate Selection button ( ()) to define the source boundaries.
  - **b** Select Manual or All Boundaries for the boundaries on the source side.

If **Manual** is selected, click in the **Graphics** window to add boundaries to the **Selection** section.

Use the Add to Selection ( $\clubsuit$ ), Remove from Selection ( $\blacksquare$ ), and Clear Selection ( $\frac{1}{2}$ ) buttons as required.

- 4 If required, click the Swap Source and Destination button ( <a>theta</a>) to swap the source boundaries and the destination boundaries.
- 5 Under Destination Boundaries:
  - a Click the Activate Selection button ( 👍 ) to define the source boundaries.
  - **b** Select Manual or All Boundaries for the boundaries on the destination side.

These boundaries should overlap the source boundaries. The condition that connects the physics on the destination and source boundaries is specified in the physics interface. For example, it can be a constraint that constrains a dependent variable (temperature, for example) on the destination side to be equal to a dependent variable on the source side.

If **Manual** is selected, click in the **Graphics** window to add boundaries to the **Selection** section.

Use the Add to Selection ( $\clubsuit$ ), Remove from Selection ( $\blacksquare$ ), and Clear Selection ( $\frac{1}{4}$ ) buttons as required.

- 6 If there are several frames in the model, the **Frame** section is available. Select the **Source frame** and the **Destination frame**. Source and destination points are connected if their coordinates in their respective frames are equal.
- 7 If required, click the Swap Source and Destination button ( <a>( <a>) to swap the source boundaries and the destination boundaries.</a>

#### Contact Pairs

Use a **Contact Pair** node  $(\mathbf{M})$  to specify two selections of boundaries that cannot penetrate each other under deformation. The contact pairs defined boundaries for parts that may come into contact (boundaries that cannot penetrate each other under deformation). For more information about contact modeling and guidelines for

selecting source and destination boundaries for contact pairs, see the Structural Mechanics Module or MEMS Module documentation.



Mode

Contact pair modeling requires the MEMS Module or Structural Mechanics Module.

- If you have the MEMS Module, see Microgripper: Model Library path MEMS_Module/Piezoelectric_Devices/microgripper
- If you have the Nonlinear Structural Materials Module, see Snap Hook: Model Library path Nonlinear_Structural_Materials_Module/Plasticity/ snap_hook
- If you have the Structural Mechanics Module, see Cylinder Roller Contact: Model Library path Structural_Mechanics_Module/ Verification_Models/cylinder_roller_contact
- I In the Model Builder, right-click Definitions>Pairs. Select Contact Pair ( ).
- 2 In the **General** section, enter a **Pair name**. It is used as a suffix in names of operators and variables defined by the pair. Also change the type of pair from an identity pair to a contact pair from the **Pair type** list. For automatically generated pairs, select the **Manual control of selections** check box to change the selection of source and destination boundaries.

The operator mapping an expression E on the source side to the destination side is denoted  $src2dst_pn(E)$ , where  $_pn$  is the pair name. Similarly, for a contact pair there is an operator  $src2dst_pn_mph$  that is suited for use in multiphysics coupling. The variable geomgap_dst_pn is the geometric gap between the source and the destination, seen from the destination side (following the normal of the destination boundary).

The corresponding operators and variables for use on the source side are denoted dst2src_pn, dst2src_pn_mph, geomgap_src_pn.

- **3** Under Source Boundaries:
  - a Click the Activate Selection button ( ()) to define the source boundaries.
  - **b** Select Manual or All Boundaries for the boundaries on the source side.

If **Manual** is selected, click in the **Graphics** window to add boundaries to the **Selection** section.

Use the Add to Selection ( $\clubsuit$ ), Remove from Selection ( $\blacksquare$ ), and Clear Selection ( $\frac{1}{2}$ ) buttons as required.

- 4 If required, click the Swap Source and Destination button ( <a>theta</a>) to swap the source boundaries and the destination boundaries.
- 5 Under Destination Boundaries:
  - a Click the Activate Selection button ( 👍 ) to define the source boundaries.
  - **b** Select Manual or All Boundaries for the boundaries on the destination side.

If **Manual** is selected, click in the **Graphics** window to add boundaries to the **Selection** section.

The contact algorithm constrains the destination boundaries so that they do not penetrate the source boundaries.

- 6 If required, click the Swap Source and Destination button ( <a>( ) to swap the source boundaries and the destination boundaries.</a>
- 7 Under Advanced:
  - a The Search method defaults to Fast—the algorithm only keeps track of source and destination points that have a distance less than a certain *search distance*. Select **Direct** for a slower, but more robust, search.
  - **b** Select the **Manual control of search distance** check box to tune the search distance (SI unit: m). By default, the search distance is taken as 0.01 times the diagonal of the geometry's bounding box.
  - **c** If the **Manual control of search distance** check box is selected, enter a different value in the **Distance** field.

# Probes

In this section:

- About Probes
- Domain Probes, Boundary Probes, and Edge Probes
- Defining a Domain Point Probe and Adding a Point Probe Expression
- Defining a Boundary Point Probe and Adding a Point Probe Expression
- Global Variable Probes

#### About Probes

Probes ( ) monitor the development of a scalar-valued quantity (real or complex-valued number) from a time-dependent, frequency-domain, or parametric simulation by two different results presentations: tabulated data and 1D graph plots. It is meaningful both to probe while solving as a monitor and diagnostic tool, and to probe after the computation is finished for results analysis. On top of this functionality, also a probe variable with entire model scope is defined. This variable can be used as any other variable, for example in equations, boundary conditions or in a Stop condition.

*Plot while solving* is a technique used to briefly interrupt the simulation and launch some predefined plot commands and then continue with the simulation. Both normal plots and graphs can be plotted for probes during the simulation.

There are these types of probes (see Table 3-13 for the icon by space dimension):

- *Domain probes, boundary probes,* and *edge probes* make it possible to probe the average, minimum, maximum, or integral of a field quantity over a domain, on a boundary, or along an edge.
- *Domain point probes* and *boundary point probes* provide the value of some field quantity at a point in the domain or on a boundary. Any point within the domain or on the boundary can be defined.
- Use *Global variable probes* ( *p*) for probing the value of any global variable.

The probes automatically create a **Probe Table** node for displaying numerical results in the **Results** window and an associated plot group with a **Probe Table Plot** node that plots the probe data as a line graph in a separate **Probe Plot** window. For further processing,

the probes also add data sets such as **Domain Point Probe** data sets ( • ), which contain the probe data. For further control, specify the table and plot window each probe uses.

When the simulation has finished, click the **Update Results** button ( $\bigcirc$ ) in the probe settings windows to change the settings for a probe and update the results information. Then right-click the **Definitions** node and select  $\checkmark$  **Update Probes**.

ICON	PROBE TYPE	MODEL SPACE DIMENSION
٢	Domain	3D
Ø	Domain	2D
	Domain	ID
Å	Boundary	3D
ß	Boundary	2D
_2	Boundary	ID
Å	Edge	3D
2	Domain Point	3D
Å	Domain Point	2D
ß	Boundary Point	3D
ø	Global Variable	1D, 2D, and 3D

TABLE 3-13: PROBE TYPES AND ICONS BY SPACE DIMENSION

	• Domain Probes, Boundary Probes, and Edge Probes
Q	• Defining a Domain Point Probe and Adding a Point Probe Expression
	• Defining a Boundary Point Probe and Adding a Point Probe Expression
	Global Variable Probes
See Also	Sorting Nodes by Space Dimension and Type
	Getting Results While Solving
	About Selecting Geometric Entities
	Selecting and Deselecting Geometric Entities

# Domain Probes, Boundary Probes, and Edge Probes

Use a **Domain Probe** ( ), **Boundary Probe** ( ), or **Edge Probe** ( ) to monitor the development of a scalar-valued quantity (real or complex valued number) from a dynamic simulation (time-dependent, frequency-domain, or parametric solution).

If you have the Batteries & Fuel Cells Module:

 For a boundary probe example, see Edge Effects in a Spirally Wound Li-Ion Battery: Model Library path Batteries_and_Fuel_Cells_Module/ Batteries/li_battery_spiral_2d



 For a domain probe example, see Mass Transport Analysis of a High Temperature PEM Fuel Cell: Model Library path Batteries_and_Fuel_Cells_Module/PEMFC/ht_pem

If you have the Nonlinear Structural Materials Module:

- For a boundary probe example, see Snap Hook: Model Library path Nonlinear_Structural_Materials_Module/Plasticity/snap_hook
- In the Model Builder, right-click Definitions and select Probes>Domain Probe, Boundary Probe, or Edge Probe (3D).

The **Domain**, **Boundary**, or **Edge Probe** page opens in the settings window and a node is added in the **Model Builder**.

- 2 Under Probe Settings, select an option from the Type list—Average, Maximum, Minimum, or Integral.
- 3 If needed, enter or edit a name for the Probe variable.
- Under Source Selection, from the Selection list, select Manual or All domains, All boundaries, or All edges. The default is to use all domains, boundaries, or edges. If Manual is selected, select the applicable geometric entity in the Graphics window. Use the Add to Selection ( -), Remove from Selection ( -), and Clear Selection ( ) buttons as required in the settings window.
- 5 Under Expression:
  - a Click the **Replace Expression** ( ► ) or **Insert Expression** ( + ) buttons to select predefined expressions based on the physics of the model. Or enter a user-defined **Expression**.
  - **b** Optionally select a compatible unit from the **Unit** list or select the **Description** check box to enter a description of the data set (or edit the default).
- 6 Optionally, adjust the settings in the Integration Settings section:
  - **a** From the **Method** list, select **Integration** (the default) or **Summation**. Only reaction forces use the summation method.
  - **b** Enter an integer value in the **Integration order** field.
  - **c** When working with multiple frames, select a **Frame** from the list for the volume element to be used in the integration.
- 7 Optionally, adjust the table and plot window to use for outputting the probe data in the Table and Window Settings section.
  - **a** From the **Output table** list, select **Default**, **New table**, or any existing probe table. By default, COMSOL Multiphysics uses a probe table that is created automatically.
  - **b** From the **Plot window** list, select **Default**, **New window**, or any existing plot window. By default, COMSOL Multiphysics uses a probe table plot that is created automatically.

# Defining a Domain Point Probe and Adding a Point Probe Expression

Use a **Domain Point Probe** ( $\swarrow$ ) to monitor the development of a scalar-valued quantity (real or complex-valued number) from a dynamic simulation (a time-dependent, frequency-domain, or parametric simulation). A **Point Probe Expression** ( $\mathscr{P}$ ) can be

added as a subnode to **Domain Point Probes** and **Boundary Point Probes**. A default **Point Probe Expression** subnode is always available.

# • Process Control Using a PID Controller: Model Library path COMSOL_Multiphysics/Multidisciplinary_Models/pid_control



- If you have the RF Module, see Second Harmonic Generation of a Gaussian Beam: Model Library path **RF_Module/Optics_and_Photonics/** second_harmonic_generation
- I In the Model Builder, right-click Definitions and select Probes>Domain Point Probe.
- 2 Under Point Selection select an option from the Line entry method list (3D only)—
   Point and surface normal (the default), Point and direction, Two points, or None. If
   None is selected, or in 2D, go to Step c to define coordinates for the probe location directly.
  - a If Point and surface normal is selected, click at a position on the surface of the geometry. The direction becomes the inward surface normal as defined by the geometry, which for an exterior boundary means that the probe location can be anywhere from the start position to the end of the geometry in the normal direction, as indicated by the value in the Depth along line field. If Point and direction is selected, the direction becomes that of a ray directed away from the point in the current camera view (that is, the direction depends on the view). If Two points is selected, from the Point being modified list, first select First point and click on the geometry to define the first point (starting point). Then select Second point and click to define the second point (ending point) for the line. Select None to enter coordinates directly.
  - **b** Enter a **Depth along line** or use the slider to select a value between 0 and 1 that determines the probe location along the line anywhere from the stating point (0) to the ending point (1).
  - c Enter Coordinates. For 2D enter x and y coordinates; for 3D enter x, y, and z coordinates. In the 3D case, the Line entry method switches to None.
  - **d** Select the **Snap to closest boundary** check box to snap the selected points to the grid.

3 Define an expression to probe at the point in the **Point Probe Expression** subnode.



A Point Probe Expression subnode is automatically added under Domain Point Probe. To add more such nodes, right-click Domain Point Probe and select Point Probe Expression.

In the Model Builder, under Domain Point Probe, click Point Probe Expression.

- 4 Edit or enter a name for the **Probe variable**.
- 5 Under Expression:
  - a Click the **Replace Expression** ( ► ) or **Insert Expression** ( ← ) buttons to select predefined expressions based on the physics of the model. Or enter an **Expression**.
  - **b** Optionally select a compatible unit from the **Unit** list or select the **Description** check box to enter a description of the data set (or edit the default).
- **6** Optionally, adjust the table and plot window to use for outputting the probe data in the **Table and Window Settings** section.
  - **a** From the **Output table** list, select **Default**, **New table**, or any existing probe table. By default, COMSOL Multiphysics uses a probe table that is created automatically.
  - **b** From the **Plot window** list, select **Default**, **New window**, or any existing plot window. By default, COMSOL Multiphysics uses a probe table plot that is created automatically.

# Defining a Boundary Point Probe and Adding a Point Probe Expression

Use a **Boundary Point Probe** ( ) to monitor the development of a scalar-valued quantity (real or complex valued number) from a dynamic simulation (time-dependent, frequency, parametric). A **Point Probe Expression** ( ) can be added as a subnode to **Domain Point Probes** and **Boundary Point Probes**. A default **Point Probe Expression** subnode is always available.

- I In the Model Builder, right-click Definitions and select Probes>Boundary Point Probe.
- 2 In the Graphics window, select a single boundary to add to the Boundary Selection section's Selection. Use the Add to Selection ( -) and Clear Selection ( -) buttons

as required. To add a boundary, first select it in the **Graphics** window or from the **Selection List**.

- **3** Under **Point Selection** enter the **Coordinates**. The position of the point is indicated by a red dot on the selected surface in the **Graphics** window. Click on the surface to move the point, or enter **x**, **y**, and **z** coordinates. If the point is not on the boundary, the probe location becomes the closest point on the boundary, with coordinates indicated by **On surface** under the fields.
- 4 Define an expression for the **Point Probe Expression**.



A Point Probe Expression node is automatically added under Boundary Point Probe. To add more nodes, right-click Boundary Point Probe and select Point Probe Expression.

In the Model Builder, under Boundary Point Probe, click Point Probe Expression.

- 5 Edit or enter a name for the **Probe variable**.
- 6 Under Expression:
  - a Click the **Replace Expression** ( ► ) or **Insert Expression** ( + ) buttons to select predefined expressions based on the physics of the model. Or enter an **Expression**.
  - **b** Optionally select a compatible unit from the **Unit** list or select the **Description** check box to enter a description of the data set (or edit the default).
- **7** Optionally, adjust the table and plot window to use for outputting the probe data in the **Table and Window Settings** section.
  - **a** From the **Output table** list, select **Default**, **New table**, or any existing probe table. By default, COMSOL Multiphysics uses a probe table that is created automatically.
  - **b** From the **Plot window** list, select **Default**, **New window**, or any existing plot window. By default, COMSOL Multiphysics uses a probe table plot that is created automatically.

### Global Variable Probes

Use a **Global Variable Probe** ( ) to monitor the development of a scalar-valued quantity (real or complex-valued number) from a dynamic simulation (time-dependent, frequency, parametric).

If you have the:

 Plasma Module, see Harmonic Content of the Power Deposition into a Dual Frequency Capacitively Coupled Plasma: Model Library path Plasma_Module/Capacitively_Coupled_Plasmas/harmonic_content



- RF Module, see Microwave Filter on PCB: Model Library path RF_Module/RF_and_Microwave_Engineering/ pcb_microwave_filter_with_stress
- MEMS Module, see Transient Response of a Biased Resonator—2D: Model Library path MEMS_Module/Actuators/ biased_resonator_2d_transient
- I In the Model Builder, right-click Definitions and select Probes>Global Variable Probe.

The **Global Variable Probe** page opens in the settings window and a node is added in the **Model Builder**.

- 2 Edit or enter a name for the Probe variable.
- 3 Under Expression:
  - a Click the **Replace Expression** ( ► ) or **Insert Expression** ( ← ) buttons to select predefined expressions based on the physics of the model. Or enter an **Expression**.
  - **b** Optionally select a compatible unit from the **Unit** list or select the **Description** check box to enter a description of the data set (or edit the default).
- **4** Optionally, adjust the table and plot window to use for outputting the probe data in the **Table and Window Settings** section.
  - **a** From the **Output table** list, select **Default**, **New table**, or any existing probe table. By default, COMSOL Multiphysics uses a probe table that is created automatically.
  - **b** From the **Plot window** list, select **Default**, **New window**, or any existing plot window. By default, COMSOL Multiphysics uses a probe table plot that is created automatically.

# Visualization and Selection Tools

COMSOL Multiphysics provides a number of tools to visualize and control how you view models and select parts of the model geometry in the Graphics window and the settings windows.

In this chapter:

- Working with Geometry
- User-Defined Selections
- User-Defined Views
- Capturing and Copying Screenshots

4

# Working with Geometry

In this section:

- About Using Geometry in COMSOL Multiphysics
- About Geometric Entities
- About Selecting Geometric Entities
- The Graphics Toolbar Buttons
- Using the Selection List Window
- Selecting and Deselecting Geometric Entities
- · Zooming In and Out in the Graphics Window
- Changing Views in the Graphics Window
- Moving Around and Rotating 3D Geometry in the Graphics Window
- · Lighting, Transparency, and Wireframe Rendering
- Hiding and Showing Geometric Entities

## About Using Geometry in COMSOL Multiphysics

COMSOL Multiphysics has many ways to zoom, rotate, and move around the **Graphics** window in order to adjust the view of a model during its creation and analysis. There are also several ways to select each part of the geometry, the geometric entities, and create reusable selections and views.

For example:

- Highlight, select, or hide any part of the geometry using buttons, mouse clicks, keyboard shortcuts, or combinations of actions. See About Geometric Entities and About Selecting Geometric Entities.
- Create User-Defined Selections to reuse throughout the model.
- View an object where the edges of a part are represented by solid lines (*wireframe rendering*). See User-Defined Views.
- Learn about Capturing and Copying Screenshots of the Graphics window.

COMSOL Multiphysics also provides many visual tools to help you create a model. For example:

- Different colors, thicker edges (with OpenGL and Software rendering only, not DirectX—see Editing Preferences Settings), or larger points to highlight the different geometric entities selected.
- A Selection List window to list all the specific geometric entities in the model and to locate and select complex geometric entities.
- Logical selection of overlapping objects in the Graphics window.
- A variety of Show/Hide and Select buttons in the Graphics toolbar.
- Highlighting of geometry objects in the Graphics window when selecting the corresponding geometry feature node in the Model Builder.
- The option to create predefined Views of the geometry.
- The ability to choose different view combinations of Names, Identifiers, Tags, and Types in the Model Builder (see Building a COMSOL Model).

# About Geometric Entities

Conceptually, a geometry is a collection of bounded *geometric entities*. The entities are *connected manifolds*, that is, volumes, surfaces, curves, or points. Table 4-1 summarizes the technical terms used for these entities.

Geometric entities of the maximum dimension are called *domains*, while of the next highest dimension they are called *boundaries*. The boundaries are sometimes referred to as *faces* in 3D and *edges* in 2D. The *vertices* are also called *points*.

The following rules apply to domains:

- The (interiors of the) domains are disjointed. However, this is only strictly true if the finalization method is to form a union. When it is to form an assembly, domains may overlap (though that is normally considered a modeling error).
- Every geometric entity is bounded by entities of smaller dimension. In particular, a domain (in 3D, 2D, or 1D) is bounded by boundaries, edges (in 3D), and vertices (in 3D and 2D). A boundary (in 3D or 2D) is bounded by edges (in 3D) and vertices. An edge is bounded by vertices.

COMSOL Multiphysics geometric entities include *domains*, *boundaries*, *edges* (3D only), and *points*. For example, a 3D cube consists of one domain with six boundaries. The six boundaries have 12 edges and the edges connect at eight points (see

Figure 4-1). This enables visualization of a cube by displaying one or more of these four types. For instance, generate a wireframe plot by rendering only the cube's edges.

ENTITY DIMENSION	NAME IN 3D	NAME IN 2D	NAME IN ID	NAME IN 0D
3D	domain			
2D	boundary	domain		
ID	edge	boundary	domain	
0D	vertex	vertex	boundary	domain

TABLE 4-1: NAMES OF GEOMETRIC ENTITIES IN DIFFERENT SPACE DIMENSIONS

Geometry objects are *adjacent* if they connect directly to each other. Hence all boundaries, edges, and points on the cube are adjacent to the domain. An edge on the cube is adjacent to two boundaries and two points.



Figure 4-1: A 3D geometry comprises domains, boundaries, edges, and points.

Throughout COMSOL there are many selection lists all based on the same principle select a *domain*, *boundary*, *edge*, or *point* and use the same methods to add or remove these geometric entities. For example, physics interface windows for defining equations and material properties, boundary conditions, sources, and other parts of the model's physics, or the **Variables** node's ( **a=**) variable definitions for variables that are not defined in the entire model.

There are toolbar buttons, mouse click options, page settings, and keyboard shortcuts available to help move, select, and highlight geometric entities. Often there is more than one way to do the same thing. The power of COMSOL is that every level of geometry can be treated individually. See Table 4-4 for a list of different ways to complete the same task.

Table 4-2 lists the buttons that display on every settings window that has a geometric entity selection list as displayed in Figure 4-4.

BUTTON	NAME	DESCRIPTION
C.	Create Selection	Use this button to create Selection nodes under model Definitions to represent various parts of the geometry and simplify the process of assigning materials, model equations, boundary conditions, and other model features. See Creating User-Defined Selection Nodes. See also Object Selection in the COMSOL Multiphysics Reference Guide for information about making object selections in the Geometry branch; that way you can make a selection that only includes a few of the geometric entities from one or more geometry objects.
-	Copy Selection	Use this button to copy the selection from the list in the settings window to the clipboard.
Ē	Paste Selection	Use this button if you have a list of geometric entities in a file or document that you want to type in and then paste into a selection list. If you copy a selection from a document to the clipboard, you can paste the selection directly using Ctrl+V. An example is a list of geometric entity numbers described as a step in a COMSOL Multiphysics modeling instruction. See Pasting Selections.
۰ <b>0</b> ۰	Zoom Selected	Use this button to zoom into the selected geometric entity.

TABLE 4-2: GEOMETRIC ENTITY SELECTION LIST BUTTONS

BUTTON	NAME	DESCRIPTION
÷	Add to Selection	Use this button to add a geometric entity to the Selection list. See Table $4-4$ .
-	Remove from Selection	Use this button to remove a geometric entity from the Selection list. See Table 4-4.
<u>_</u>	Clear Selection	Use this button to clear a selection.

TABLE 4-2: GEOMETRIC ENTITY SELECTION LIST BUTTONS

### VISUALIZATION AIDS TO HELP WITH SELECTION

Geometric Entities Highlighted in Color in the Graphics Window COMSOL Multiphysics highlights geometric entities at different stages of selection. Selected lines also have a thicker line width and selected points are larger. In Figure 4-1, each geometric entity is highlighted in red, blue, green, or with no highlight to indicate its status. It cycles between red (left-click to select the geometric

entity), blue (right-click to add it to the selection), green (left-click to show that it is added), and no highlight (right-click to cancel the selection).



Figure 4-2: Selecting geometric levels - highlighted to indicate status.

**Red** The geometric entity is highlighted but not added to the model selection list. Left-click once with the mouse. If you right-click it locks all red geometric entities. See Figure 4-2 for an example. **Blue** The geometric entity has been added to the model selection list. The selection is highlighted in blue after you right-click once. See Figure 4-1 for an example.

**Green** After the geometric entity is added to the selection list, when you click anywhere (directly in the Graphics window, from the settings window, or in the Selection window) it is highlighted green, which corresponds to the name of the geometric entity in the Selection section in the settings window. See Figure 4-1 and Figure 4-2 for examples.

No highlight If the geometric entity is not highlighted it means it is not selected.

### About Overlapping Objects

When you click a 3D geometry comprised of several objects, geometric entities of the same type might overlap at the point where you click. Overlapping objects are selected starting with the closest geometric entity and ending with the overlapping entity the furthest away.

For example, if you click a circle boundary that overlaps with a sphere boundary as well as a square boundary, the first click selects the circle boundary (the point of origin), then the second click selects the next closest boundary on the sphere, and the last click selects the boundary on the square. Then the cycle starts again with the point of origin, the circle boundary.

## The Graphics Toolbar Buttons

Some of the toolbar buttons available on the **Graphics** window are different based on the space dimension of the model. The buttons also correspond to domain, boundary, edge, and point level nodes that display under the physics interface, which are also based on the model space dimension.



Physics Nodes by Space Dimension

TABLE 4-3: GRAPHICS TOOLBAR BUTTONS BY SPACE DIMENSION

BUTTON	NAME	
ID and ID Axisymmetric Models		
•	Select Boundaries	

BUTTON	NAME
-[0]-	Select Box
	Select Domains
_	Select Objects
2D and 2D	Axisymmetric Models
	Select Boundaries
	Select Box
$\bigcirc$	Select Domains
6	Select Objects
•	Select Points
¢	Align with Work Plane*
4	Work Plane Clipping*
	tons are available when using a Work Plane to 0 object in 3D. See Drawing on the 2D Work D.
3D Models	
<u>a</u>	Select Boundaries
œ	Select Box
9	Select Domains

TABLE 4-3: GRAPHICS TOOLBAR BUTTONS BY SPACE DIMENSION

Ð

Select Edges

BUTTON	NAME
$\bigcirc$	Select Objects
<b>(D</b> )	Select Points
ху	Go to XY View
yz	Go to YZ View
ZX	Go to ZX View
1	Scene Light
	Transparency
	Wireframe Rendering
Available on	all Toolbars
	Hide Selected
۲	Show Selected
G	Reset Hiding
۲	View All
۲	View Hidden Only
0	View Unhidden
€	Zoom In
Q,	Zoom Out

TABLE 4-3: GRAPHICS TOOLBAR BUTTONS BY SPACE DIMENSION

BUTTON	NAME
¢.	Zoom Selected
¢	Zoom Extents
$\checkmark$	Go to Default View
	Image Snapshot

# Using the Selection List Window

Use the **Selection List** window to make it easier to choose objects, for example, while working with complex geometries and when you need to easily locate a geometric entity that is not easily viewed. The Selection List is particularly useful when you know the geometric entity number to select; for example, when you are following Model Library instructions to build a model (in that case you can also copy and paste the selections directly from the instructions).

To open this window from the main menu, select **View>Selection List** (**N**). COMSOL determines the geometric entities listed based on where in the model you are working.

The **Selection List** window displays all geometric entities of a certain type (boundaries, for example). This is different from the selection lists in the settings window, which contains a list of the selected entities only. Click on any item to see it highlighted in the Graphics window and select items as described in Selecting and Deselecting Geometric Entities. For example, use the Selection List in these situations:

- When in the Model Builder under the **Geometry** node () the geometry objects are displayed in the Selection List, for example, blk1 and cone1. The display is a tree structure with the geometry features as parent nodes and the objects that it generates as child nodes. Selecting a top-level node in the tree automatically selects all child nodes.
- When in the Model Builder under the Mesh node (), the list includes also information on which entities are meshed. If the Geometry has Mesh Construction

entities, the list also specifies if a construction entity has been removed, see Mesh Control Entities.

- When working in windows with Selection or Geometric Scope sections (a Selection window under a Definitions node ( ≡ ) for example), or anywhere you assign materials, physics, boundary conditions, and other model settings. The Selection List displays the specific *geometric entity level* selected (domain, boundary, edge, or point). See Figure 4-3.
- When working in the Geometry node with *Chamfer* or *Fillet* features and you want to locate specific points. Specify the selection level by clicking the Select Points buttons in the Graphics toolbar and add the points to the Vertices to fillet or chamfer.



Figure 4-3: Using a combination of the Selection List and Selection window to choose boundaries on a 3D model.

Click the **Create Selection** button ( ) to create an explicit named selection that includes the selected entities from the **Selection List** window. Click the **Copy Selection** button ( ) to copy the selection to the clipboard (from which you can paste it into other selection lists). Click the **Paste Selection** button ( ) to paste a selection from the clipboard (or another selection that you type) in the **Selection** field in the **Paste Selection** dialog box that opens.

Figure 4-4 shows the difference between a **Selection List** window ( ) and the selection lists that are found in the settings window for many nodes. Normally the list of selected entities is shorter in the settings window, which only shows the selected entities (boundaries in this case). See also Figure 4-3 above and Figure 4-6 in the

User-Defined Selections section for more examples and comparisons of the different Selection features.



Figure 4-4: Selection List window compared to the Selection list in the settings window.

#### AN EXAMPLE OF SELECTING BOUNDARIES WITH THE SELECTION LIST

This example demonstrates the selection of boundaries. When there is the possibility of overlapping geometric entities, it is recommended that you use the **Selection List** window to ensure the correct part of the geometry is selected.

- I From the main menu, select View>Model Library.
- 2 Navigate to the COMSOL Multiphysics>Structural Mechanics>mast_diagonal_mounting model file. Double-click to open it.
- 3 In the Model Builder, click the Model node.
- **4** In the Graphics toolbar, click the **Select Boundaries** button (*m*).

5 From the main menu, select View>Selection List.

The Selection List window lists all the boundaries contained in all the domains.

There are many ways to select the boundaries:

- Click on any boundary contained in the Selection List window.
- Ctrl+click to select more than one boundary from the list at a time. The boundaries are highlighted at the same time in the **Graphics** window.
- Rotate the geometry as required and click on it to highlight boundary numbers in the **Selection List** window.
- In the Selection List, shift-click to select contiguous items.
- In the **Graphics** window, shift-click to add an object to the selection. If objects are overlapping, you may need to click more than twice to select all objects.
- 6 For a selection in the Selection List window, right-click to confirm the selection (which adds it to a currently selected boundary condition, for example). Also click the Create Selection button ( ) to create an explicit named selection that includes the selected entities from the Selection List window. Click the Copy Selection button ( ) to copy the selection to the clipboard (from which you can paste it into other selection lists).

## Selecting and Deselecting Geometric Entities



The same methods are used when working with 2D geometric entities except there are no edges.

Add and remove 3D geometric entities (domains, boundaries, edges, or points) to selection lists in different ways, including buttons on the Graphics toolbar, using the **Selection List** window, clicking directly on the geometry, or clicking buttons in the settings window. In the **Graphics** window the geometric entities are color highlighted as you make the selections and you can lock items as you select them.

At various stages of selecting geometric entities, it is also useful to lock a selection to prevent it from being removed by accident—for example, if you are making multiple selections among many overlapping objects. When an object is locked (that is to say, added to a selection list) it is highlighted in blue.

If you start by setting the **Geometric entity level** to **Boundary**, and then select **All Boundaries**, the **Selection** list displays all these boundaries. If you make any changes to this list, for example, remove a boundary, the **Selection** list reverts to **Manual**. This option is useful, however, for locating and determining which items to add or remove from the selection and is the same as those geometric entities that display in the **Selection List** window.

See Table 4-4 for the many different ways to select geometric entities using toolbar buttons, mouse click options, page settings, and keyboard shortcuts.

TASK	ACTION
Select any level of geometry:	In the Graphics window, click the geometric entity.
	In the settings window, select from a selection list.
	Open the Selection List window and click entity names.
Select all parts of the geometry:	From the main menu select <b>Edit&gt;Select All</b> or press Ctrl+A. This highlights and selects all entities but does NOT confirm the selection or lock it if the model changes.
	To lock a selection, on some pages in the <b>Setting</b> window, the option to select <b>All domains</b> , <b>All boundaries</b> , <b>All edges</b> , or <b>All points</b> adds all geometric entities of that type to the list. The selected items are highlighted in the <b>Graphics</b> window and all entities are kept selected even if the geometry changes.
	Open the <b>Selection List</b> window, shift+click to select all the entity names. You can also click the main geometry feature to select all entities that the feature includes.
Deselect all parts of the	From the main menu select Edit>Deselect All.
geometry not added to a selection list:	In the <b>Graphics</b> window, click outside of the geometry or press Ctrl+D to deselect all selections whereas locked selections remain intact.
Select adjacent geometric entities (3D):	In the <b>Graphics</b> window, click a geometric entity, for example, an edge. Then click multiple times to cycle through all the edges that are next to an edge. Hold the Ctrl key down while clicking to confirm selection of all the adjacent geometric entities at the same time.

TABLE 4-4: DIFFERENT WAYS TO SELECT GEOMETRIC ENTITIES

TASK	ACTION
Select, move, and rotate at the same time:	Multiple mouse actions can be done at the same time in 3D. For example, use the mouse to rotate or move the object left and right to locate the geometric entity to add to a selection list, then right-click and left-click to add to the selection or click the <b>Select Box</b> button (3D $(20, 20, 20, 20)$ , and ID $(20, 20, 20)$
Lock parts of the geometry during selection:	On some settings windows, click the Select all (domains, boundaries, edges, or points) check box. See Creating User-Defined Selection Nodes for an example.
Add items to a selection list:	For user-defined selections this action must be completed on the selection page. See Creating User-Defined Selection Nodes for information.
	In the <b>Graphics</b> window, left-click (red highlight) then right-click (blue highlight) a geometric entity. Or select one or more geometric entities and click the <b>Add to Selection</b> button (
	In the <b>Selection List</b> window, select the entity names to add, and click the <b>Add to Selection</b> button ( +) in the settings window.
	You can also paste selections from a file. See Pasting Selections for information.
Select multiple parts of the geometry:	In the <b>Graphics</b> window, click the <b>Select Box</b> button (3D (2), 2D (2), and ID (3)) then click and hold the left mouse button to draw a square over the geometry. It is like a "rubberband" selecting all entities enclosed by this operation. Shift-click adds additional geometric entities to the <b>Selection list</b> .
	In the Selection List window, select the entity names to add using the Shift or Ctrl keys. Click the Add to Selection button ( +) in the settings window to add the geometric entity to the Selection list.
Use an -OR operation with the current selection 2D	2D only: In the <b>Graphics</b> window, press Ctrl+click on the geometric entity you want to select. Then click the <b>Select Box</b> button (()) (and click and hold the left mouse button to draw a square over the geometry. Presently selected objects are deselected when inside the <b>Select Box</b> and vice versa.

#### TABLE 4-4: DIFFERENT WAYS TO SELECT GEOMETRIC ENTITIES

TASK	ACTION
Use an -AND operation with the current selection 3D	3D only: In the <b>Graphics</b> window, press Ctrl+click on the geometric entity you want to select. Then click the <b>Select</b> <b>Box</b> button () and click and hold the left mouse button to draw a square over the geometry. Only the presently selected objects inside the rubber-band box stay selected. This makes it possible to select a detail from several selected objects.
Select only objects:	In the <b>Graphics</b> window, click the <b>Select Objects</b> button (3D , 2D , and ID ). To select more than one at a time, press Ctrl+click or Shift+click.
Select only domains:	In the <b>Graphics</b> window, click the <b>Select Domains</b> button (3D ), 2D ), and ID ). To select more than one at a time, press Ctrl+click or Shift+click.
	In the settings window, select <b>Domain</b> from a <b>Selection list</b> and then click in the <b>Graphics</b> window. Only domains are highlighted.
Select only boundaries:	In the <b>Graphics</b> window, click the <b>Select Boundaries</b> button (3D (3D, 2D (-), and ID)). To select more than one at a time, press Ctrl+click or Shift+click.
	In the settings window, select <b>Boundary</b> from a <b>Selection list</b> and then click in the <b>Graphics</b> window. Only boundaries are highlighted.
Select only edges:	In the <b>Graphics</b> window, click the <b>Select Edges</b> button (77). To select more than one at a time, press Ctrl+click or Shift+click.
	In the settings window, select <b>Edge</b> from a <b>Selection list</b> and then click in the <b>Graphics</b> window. Only edges are highlighted.
Select only points:	In the <b>Graphics</b> window, click the <b>Select Points</b> button (3D and 2D . To select more than one at a time, press Ctrl+click or Shift+click.
	In the settings window, select <b>Point</b> from a <b>Selection list</b> and then click in the <b>Graphics</b> window. Only points are highlighted.

TABLE 4-4: DIFFERENT WAYS TO SELECT GEOMETRIC ENTITIES

TASK	ACTION
Remove a geometric entity from a selection list:	For user-defined selections this action must be completed on the selection page. See Creating User-Defined Selection Nodes for information.
	In the <b>Graphics</b> window, highlight or select the geometric entity and click the <b>Remove from Selection</b> button ( $-$ ) in the settings window.
	In the <b>Graphics</b> window, left-click to highlight and select the geometric entity to remove. Any blue geometric entity turns green. To remove that geometric entity, right-click the mouse button.
	In the Selection List window, select the entity names to remove using the Shift or Ctrl keys. Click the <b>Remove from</b> Selection button ( — ) in the settings window to remove the geometric entity from the Selection list.
Clear all items from a selection list:	For user-defined selections this action must be completed on the selection page. See Creating User-Defined Selection Nodes for information.
	Click the Clear Selection button ( ${\displaystyle \bigsqcup_{}}$ ) in the settings window.

TABLE 4-4: DIFFERENT WAYS TO SELECT GEOMETRIC ENTITIES

# Zooming In and Out in the Graphics Window

TASK	ACTION	
Zoom in and out:	Click the <b>Zoom In</b> button ( $\textcircled{eq}$ ) to zoom in.	
	Click the <b>Zoom Out</b> button ( ) to zoom out.	
	3D only: Click the middle mouse button and drag it forward and backward to zoom in and out of the object. The zoom is centered where the first click is made in the <b>Graphics</b> window.	
Zoom into a general area of the geometry:	Click the <b>Zoom Box</b> button (((1)) then click and drag to highlight a section of the geometry to zoom into.	
Zoom into a geometric entity:	Click any domain, boundary, edge, or point. Click the <b>Zoom</b> <b>Selected</b> button () to display to the extent of the window. This button is also available in connection with the selection lists for domains, boundaries, edges, and points.	
Zoom out to the view the complete geometry:	Click the <b>Zoom Extents</b> button ( ) to zoom out and fit the complete geometry into the window.	

# Changing Views in the Graphics Window

TASK	ACTION	
Change the view to the xy-, yz-, or zx-plane (3D models	Click the Go to View XY ( [xy]), YZ ( [yz]), or ZX ( [zx]) buttons.	
only):	The first click selects the plane view with a positive normal direction. A second click on the same button switches to a negative normal direction.	
Change the view to the default:	Click the <b>Go to Default View</b> button (,). This is available for all space dimensions.	
Display a user-defined view:	After creating a <b>View</b> under the <b>Definitions</b> node, click the down arrow next to the <b>Go to View</b> button $(1)$ and select a user-defined view from the list.	

TASK	ACTION AND RESULT	OPERATION ORDER
Rotate the geometry about the axes:	Left-click and hold down the mouse button while dragging it in any direction.	left-click
	This rotates the scene around the axes parallel to the screen X- and Y-axes with origin in the scene rotation point.	
Move the visible frame on the image plane in any direction, (like using a camera shift lens):	Right-click and hold down the mouse button while dragging it in any direction.	right-click
Rotate about the X- and Y axes in the image plane (tilt and pan the camera):	Press Ctrl and left-click. While holding down both buttons, drag the mouse in any direction.	Ctrl+left-click
	This places the rotation coordinate system in the camera and rotates around the axes parallel to the screen X- and Y-axes.	
Move the camera in the plane parallel to the image plane:	Press Ctrl and right-click. While holding down both buttons, drag the mouse in any direction.	Ctrl+right-click
Rotate the camera around the axis:	Press Ctrl+Alt, then left-click. While holding down all buttons, drag the mouse in any direction.	Ctrl+Alt+ left-click
Move the scene in the plane orthogonal to the direction the camera looks at:	Right-click then press Ctrl. While holding down both buttons, drag the mouse in any direction.	right-click+Ctrl
Move the scene in the plane orthogonal to the axis between the camera and the scene rotation point:	Right-click the mouse and press Alt. While holding down both buttons, drag the mouse in any direction.	right-click+Alt
Move the camera into and away from the object (dolly in/out):	Click the middle mouse button and then press Ctrl. While holding down both buttons, drag the mouse in any direction.	middle-click+Ctrl

Moving Around and Rotating 3D Geometry in the Graphics Window

TASK	ACTION AND RESULT	OPERATION ORDER	
Rotate the camera about its axis between the camera and the scene rotation point (roll direction):	Press Alt, then left-click. While holding down both buttons, drag the mouse in any direction.	Alt+left-click	
Move the camera along the axis between the camera and the scene rotation point:	Press Alt, then middle-click. While holding down both buttons, drag the mouse in any direction.	Alt+middle-click	

# Lighting, Transparency, and Wireframe Rendering

**5** 3D The following features are available for the 3D View.

TASK	ACTION
Turn Scene Light ON or OFF:	In the <b>Graphics</b> window or any other plot window, click the <b>Scene Light</b> button ( <b>)</b> . See Figure 4-5.
	When creating a <b>View</b> , this action toggles the <b>Scene light</b> check box on the <b>View</b> page.
Turn Transparency ON or OFF:	In the <b>Graphics</b> window or any other plot window, click the <b>Transparency</b> button (). See Figure 4-5. When creating a <b>View</b> , this action toggles the <b>Transparency</b> check box on the <b>View</b> page.
Turn Wireframe Rendering ON or OFF:	In the <b>Graphics</b> window, click the <b>Wireframe Rendering</b> button (). See Figure 4-5. When creating a <b>View</b> , this action toggles the <b>Wireframe Rendering</b> check box on the <b>View</b> page.
	See also Editing Preferences Settings to set the level of graphic detail to Wireframe and speed up the rendering of complex models or to improve visual appearance.



Figure 4-5: Scene light, transparency, and wireframe rendering examples applied to a geometry.

Hiding and Showing Geometric Entities

Note

Selection methods vary based on the model's space dimension.

Selecting an item in any **Selection list** highlights the corresponding geometric entities or objects in the **Graphics** window for selection or deselection. Only the geometric

entities you can see in the **Graphics** window are available for selection; that is to say hidden objects cannot be selected.

TASK	ACTION	
Hide selected geometric entities:	In the <b>Graphics</b> window, select any geometric entity (domain, boundary, edge, or point) and click the <b>Hide Selected</b> button ( $\infty$ ).	
	When creating a View, right-click the View node and select Hide Geometry Objects. Select a Geometric entity level from the list to hide.	
	When creating a <b>View</b> , right-click the <b>View</b> node and select <b>Hide Geometry Entities</b> . Select a <b>Geometric entity level</b> from the list to hide.	
Show selected geometric entities:	In the <b>Graphics</b> window, select any geometric entity (domain, boundary, edge, or point) and click the <b>Show Selected</b> button ( ( ).	
Reset all hidden objects to the default:	In the <b>Graphics</b> window, click the <b>Reset Hiding</b> button ( <b>C</b> ) to reset all hidden domains, boundaries, edges, or points to the default.	
	This removes any <b>Hide Geometry Objects</b> or <b>Hide</b> <b>Geometric Entities</b> subnode added to a <b>View</b> node.	
View hidden geometric entities:	In the <b>Graphics</b> window, click the <b>View Hidden Only</b> button ((((in))) to display only hidden domains, boundaries, edges, or points.	
View unhidden geometric entities:	In the <b>Graphics</b> window, click the <b>View Unhidden</b> button ((1)) to display any domains, boundaries, edges, or points not hidden.	
View all geometric entities:	In the <b>Graphics</b> window, click the <b>View All</b> button (()) to display all hidden and unhidden domains, boundaries, edges, or points.	

Note

The View Hidden Only button (()), View Unhidden button (), or View All button ()) that appears on the Graphics window toolbar indicates the view you get when you click the button, whereas the bullet in the associated menu containing these three options shows the current view.

# **User-Defined Selections**

In this section:

- About the Selections Node
- Opening an Example Model
- Creating User-Defined Selection Nodes
- Defining an Explicit Selection Node
- Defining a Boolean Selection Node
- Defining an Adjacent Selection Node
- Defining a Box or Ball Selection Node
- Duplicating a Selection Node from the Definitions Node Level
- Creating a Selection Node from the Selection List Window
- Creating a Selection Node from a Settings Window
- Creating Selections From Geometric Primitives and Features
- Pasting Selections

# About the Selections Node

Create selection nodes under model **Definitions** to represent various parts of the geometry and simplify the process of assigning materials, model equations, boundary conditions, and other model features.

Each user-defined Selection can be reused during the model design and renamed with descriptive titles—for example, "Tube," "Wall," or "Fluid." Changes to the Selection (for example, by adding or removing a boundary) updates all features in the model that use that particular Selection.

There are different types of selections—**Explicit Selections**, different types of **Boolean Selections**, selections of adjacent geometric entities (**Adjacent Selections**), and selections by enclosing part of the geometry by a bounding box or ball (**Ball and Box Selections**) to add these, right-click a **Definitions** node and select from the **Selections** options as listed in Table 4-5. In the selection settings windows (except explicit selections) click the **Zoom Selected** (4) button to zoom in on the selected geometric entities.

SELECTION TYPE	ICON	SEE	DESCRIPTION
Explicit	C.	Defining an Explicit Selection Node	Use an Explicit node to create the selection using the normal selection tools for individual geometric entities (boundaries, for example) on the geometric entity level chosen.
Union	8+8	Defining a Boolean Selection Node	Use the Union node to create the selection as the union (addition) of two or more selections.
Intersection	8*8		Use the Intersection node to create the selection as the intersection of two or more selections.
Difference	8-8		Use the Difference node to create the selection as the difference between a set of one or more selections and another set of one or more selections.
Complemen t	C.C.		Use the Complement node to create the selection as the complement (inverse) of one or more selections.
Adjacent	GR.	Defining an Adjacent Selection Node	Use the Adjacent node to create the selection as the adjacent geometric entities (boundaries, for example) to one of more selections.
Ball	<b>B</b>	Defining a Box or Ball Selection Node	Use the Ball node to create the selection by enclosing part of the geometry by a bounding ball (sphere) to select geometric entities that are partially or completely inside the ball.
Box	<b>1</b>		Use the Box node to create the selection by enclosing part of the geometry by a bounding box to select geometric entities that are partially or completely inside the box.

TABLE 4-5: SELECTION TYPE DESCRIPTIONS

- Object Selection in the COMSOL Multiphysics Reference Guide
- User-Defined Selections
- Sorting Nodes by Space Dimension and Type
- Creating Selections From Geometric Primitives and Features



- Pasting Selections
- About Selecting Geometric Entities
- Selecting and Deselecting Geometric Entities

# Opening an Example Model

Figure 4-6 uses a Model Library model example where several user-defined selections have already been created.

### TO OPEN THIS MODEL

- I From the main menu, select View>Model Library.
- 2 Navigate to the COMSOL Multiphysics>Structural Mechanics>mast_diagonal_mounting model file. Double-click to open it.
- 3 Click the Definitions node under Model I. Several nodes display in the Model Builder.
- 4 Click the Fixed face and Force faces nodes to see how each are defined.
- 5 Click the Boundary Load node under Solid Mechanics. The Boundary Load page opens in the settings window. Under Boundaries, Force faces is the Selection. Fixed face is also available to be selected from the Selection list.



Figure 4-6: An example of an Explicit selection window for the Mount, mod level node. The Selection nodes under Definitions are renamed by the user.

## Creating User-Defined Selection Nodes

There are several ways to create Selection nodes using the **Create Selection**  $({}^{\car{a}}_{\car{a}})$  button.

- · Defining an Explicit Selection Node
- Defining a Boolean Selection Node
- Defining an Adjacent Selection Node
- Defining a Box or Ball Selection Node
- Duplicating a Selection Node from the Definitions Node Level
- Creating a Selection Node from the Selection List Window
- Creating a Selection Node from a Settings Window
- Creating Selections From Geometric Primitives and Features

Figure 4-6 is an example of working with the Selection nodes under Definitions. In the settings windows for all selection nodes except **Explicit** selection nodes click the **Zoom Selected** (



About Selecting Geometric Entities, Using the Selection List Window, and, Selecting and Deselecting Geometric Entities for other examples using the Selection List feature.

# Defining an Explicit Selection Node

Use an **Explicit** node ( $\P_{a}$ ) to create the selection using the normal selection tools for individual geometric entities (boundaries, for example) on the geometric entity level that chosen.

## Acoustics of a Muffler: Model Library path: COMSOL_Multiphysics/ Acoustics/automotive_muffler



- Effective Diffusivity in Porous Materials: Model Library path COMSOL_Multiphysics/Diffusion/effective_diffusivity
- See also Figure 4-6 for a model example
- I In the Model Builder, right-click any Definitions node ( ≡ ) under a Model, and choose Selections>Explicit ( ,).
- 2 Right-click or press F2 to Rename the Explicit node as required.
- **3** Under **Input Entities** add geometric entities.
  - **a** Select a **Geometric entity level—Domain, Boundary, Edge** (3D only), or **Point** for the geometric entities to add or remove from the selection list.
  - b Select and add geometric entities of the chosen type in the Graphics window or other selection methods, or select the All domains, All boundaries, All edges, or All points check box to add all of the geometric entities of that type to the list. The selected items are highlighted in the Graphics window. Selecting the check box for all geometric entities locks all entities as selected even if the geometry changes.



For 2D models, there are no edges, and the related selection options are not available.



For 1D models, there are no edges or points, and the related selection options are not available.



If a particular selection is used elsewhere in the model, including in other selections, it is not possible to change the output type, for example, from domains to boundaries.

- **4** Define the geometric objects that the selection contains. The options available and defaults depend on the selection in the **Geometric entity level** list.
  - If **Domain** is the input the default output is the **Selected domains**. Select other options as required. Select **Adjacent boundaries**, **Adjacent edges**, or **Adjacent points** to use the boundaries, edges, or points next to the selected domains as the selection output (available options depend on the space dimension of the model). This makes it possible to, for example, make a selection of all boundaries around a domain by first selecting the domain. Depending on the selection output, choose to include **Exterior boundaries** (the default) or **Interior boundaries**; **Exterior edges** (the default) or **Interior edges**; or **Exterior points** (the default) or **Interior points**. Click to select or clear the check boxes as needed.
  - If **Boundary** is the input, the default output is the **Selected boundaries**. Select other options as required. Select **Adjacent edges** or **Adjacent points** to use the edges or points next to the selected boundaries as the selection output (available options depend on the space dimension of the model). Depending on the selection output, choose to include **Exterior edges** (the default) or **Interior edges** for edges, or **Exterior points** (the default) or **Interior points**. Click to select or clear the check boxes as needed.
  - If **Edge** is the input, the default output is **Selected edges**.

Select **Adjacent points** to include the points next to the selected edges as the selection output either as **Exterior points** (the default) or **Interior points**. Click to select or clear the check boxes as needed.

- The **Point** output is the same as the selection input (that is, the selected points).

Boolean selections are useful to combine two or more selections (union), create a selection of overlapping geometric entities (intersection), create selection of entities that are in one selection but not in another (difference), and to create a selection as the complement (inverse) of one or more selections (all boundaries except the inflow boundaries, for example). The complement can be convenient if, for example, a selection is needed that consists of all boundaries except one or a few. Then it is easier to create a selection that is the complement (just the one boundary, for example) and use a **Complement** selection node to create its complement.

The Boolean selection nodes—Union  $(\frac{2}{2}+\frac{2}{3})$ , Intersection  $(\frac{2}{3}+\frac{2}{3})$ , Difference  $(\frac{2}{3}-\frac{2}{3})$ , and Complement  $(\frac{2}{3})$ —contain similar sections.

- In the Model Builder, right-click any Definitions node ( ≡ ) under a Model, and choose Selections>Union ( ≥+≥), Selections>Intersection ( ≥+≥),
   Selections>Difference ( ≥-≥), or Selections>Complement ( <->).
- 2 Right-click or press F2 to Rename the Union node, for example, as required.
  - Select a **Geometric entity level—Domain, Boundary, Edge** (3D only), or **Point** for the selections to add.

For 2D models, there are no edges, and the related selection options are not available.



P

2D

For 1D models, there are no edges or points, and the related selection options are not available.

3 In the Selections to add list, for example, add the selections to form the union or other Boolean operations. Click the Add button ( → ) to open an Add dialog box that contains all existing selections for the same geometric entity level. Add the selections to add (union), intersect, or invert (complement). For the Difference selection node add selections to add and selections to subtract. Also delete selections from the lists using the Delete button ( ) and move them using the Move Up ( ) and Move Down ( ) buttons.



If a particular selection is used elsewhere in the model, including in other selections, it is not possible to change the output type, for example, from domains to boundaries.

# Defining an Adjacent Selection Node

The **Adjacent** (**%**) selection type outputs selections adjacent to specified geometric entities or selections. For example, select all domains adjacent to some boundaries or all boundaries adjacent to some domains.

The adjacent geometric entities can be of any type (domains, boundaries, edges, or points) regardless of the geometric entity level for the input selections.

- I In the Model Builder, right-click any Definitions node ( ≡ ) under a Model, and choose Selections>Adjacent ( ♣).
- 2 Right-click or press F2 to Rename the Adjacent node as required.
- **3** Under Input Entities, select a Geometric entity level—Domain, Boundary, Edge (3D only), or Point for the selections to add.
- 4 In the Input selections list, add the selections for which you want to select adjacent geometric entities. Click the Add button ( ♣ ) to open an Add dialog box that contains all existing selections for the same geometric entity level. Add the selections to use as the source for the selection of adjacent geometric entities. Also delete selections from the lists using the Delete button ( ♣) and move them using the Move Up ( ♠ ) and Move Down ( ♣ ) buttons.

2D

For 2D models, there are no edges, and the related selection options are not available.

ID

For 1D models, there are no edges or points, and the related selection options are not available.



If a particular selection is used elsewhere in the model, including in other selections, it is not possible to change the output type, for example, from domains to boundaries.

- **5** Under **Output Entities**, define the adjacent geometric objects that the selection contains:
  - Select **Adjacent domains** to create a selection that contains all domains adjacent to the input selections.
  - Select **Adjacent boundaries** to create a selection that contains all boundaries adjacent to the input selections. If the input selections contain domains, select the **Exterior boundaries** and **Interior boundaries** check boxes to control which types of adjacent boundaries the output selection contain. By default, the output selection contains adjacent exterior boundaries only.
  - Select **Adjacent edges** to create a selection that contains all edges adjacent to the input selections. If the input selections contain domains or boundaries, select the **Exterior edges** and **Interior edges** check boxes to control which types of adjacent edges the output selection contain. By default, the output selection contains adjacent exterior edges only.
  - Select **Adjacent points** to create a selection that contains all points adjacent to the input selections. If the input selections contain domains, boundaries, or edges, select the **Exterior points** and **Interior points** check boxes to control which types of adjacent points the output selection contain. By default, the output selection contains adjacent exterior points only.

# Defining a Box or Ball Selection Node

Another way to selection geometric entities is to define an enclosing **Ball** ( $\{v_{i}\}$ ) or **Box** ( $\{v_{i}\}$ ) to select geometric entities that are completely or partially inside the ball or box.

- I In the Model Builder, right-click any Definitions node ( ≡ ) under a Model, and choose Selections>Ball ( ) or Selections>Box ( ).
- 2 Right-click or press F2 to Rename the Box or Ball node as required.
- 3 Select a Geometric entity level—Domain, Boundary, Edge (3D only), or Point for the selections to add. To base the selection on other selections, select From selections under Input Entities and then use the buttons under the Selections list to add selections.

- 4 For these selections, define the dimension of the ball or box and select the condition for the geometric entities to be selected (from the **Include entity if** list under **Output Entities**):
  - Select **Entity intersects ball** or **Entity intersects box** (the default) to select all geometric entities that intersect the enclosing ball or box; that is, the selection includes all entities that are partially or completely inside the ball or box.
  - Select **Entity inside ball** or **Entity inside box** to select all geometric entities that are completely inside the enclosing ball or box; that is, the selection includes all entities that are completely inside the ball or box.
  - Select **Some vertex inside box** or **Some vertex inside ball** to select all geometric entities where at least some vertex is inside the enclosing ball or box.
  - Select **All vertices inside ball** or **All vertices inside box** to select all geometric entities where all vertices are inside the enclosing ball or box. This selection might differ slightly compared to when selecting **Entity inside ball** or **Entity inside box** if the geometric entity is outside the ball or box at some points between the vertices.



The ball and box selections use the rendering mesh to determine which entities fit the selection condition. You can control the detail for the rendering in the **Preferences** dialog box (select **Graphics** and then use the **Detail** list under **Rendering**).

5 Define the position and dimension of the enclosing box or ball using the fields for the maximum and minimum coordinates for the box or the position and radius for the ball. The inputs are based on the length unit for the geometry.

## Duplicating a Selection Node from the Definitions Node Level

In the **Model Builder**, under **Definitions** right-click any **Selection** node and select **Duplicate** (

# Creating a Selection Node from the Selection List Window

I From the main menu, select **Options>Selection List** (

COMSOL displays the geometric entities in this window based on where in the model you are working.

**2** On the **Selection List** window, select the geometric entities to duplicate and add to the new **Selection** node added under **Definitions**.

- 3 Click the **Create Selection** button ( ) and enter a **Selection name** in the window that opens. See Figure 4-7.
- 4 In the Model Builder the new Selection node is added under Definitions.



Figure 4-7: Creating a selection from the Selection List window.

Creating a Selection Node from a Settings Window

- I At any time during model creation, click a feature node that has the option to add a geometric entity to a selection (for example, under the Materials node or the Solid Mechanics physics interface node).
- 2 In the settings window that opens, select an option from the Selection list, for example, Manual or All boundaries.
- 3 Click the **Create Selection** button ( and enter a **Selection name** in the window that opens. See Figure 4-8.
- 4 In the Model Builder the new Selection node is added under Definitions.



Figure 4-8: Creating a selection from the settings window for a Fixed Constraint feature.

### Creating Selections From Geometric Primitives and Features

For all geometric primitives in 3D, 2D, and 1D geometries—for example, blocks, spheres, squares, polygons, and intervals—as well as for all geometry features—for example, union, intersection, fillet, array, and mirror—create selections for each type of geometric entity that the resulting geometry objects consist of. The following list shows the geometric entity types for geometry objects that are "solids" in each space dimension:

- 3D: domains, boundaries, edges, and points
- 2D: domains, boundaries, and points
- 1D: domains and points

To create these selections, click the geometry node in the **Model Builder** and then select the **Create selections** check box in the settings window's **Selections of Resulting Entities** section.

The selections become available with the name of the geometry node (Block 1, for example) in all applicable **Selection** lists in the settings windows for the physics interface nodes, for example. There are no explicit Selection nodes for these selections.

Also create an explicit **Object Selection** node (**b**) for selecting all or a few of the geometric entities at a specific geometric entity level for one or more of the nodes above the **Object Selection** node in the geometry sequence. This way it is possible to make a selection that only includes a few of the geometric entities from one or more geometry objects.

Using selections based on a geometry object makes it possible to track, for example, all boundaries in the final geometry that belong to that geometric object, even if its original boundaries are intersected by other geometry objects.

### Pasting Selections

If you have a list of geometric entities (boundaries, for example) in a file or document you can copy it to the clipboard and then use Ctrl+V to directly paste that list into a selection list in a settings window. An example of this is a list of geometric entity numbers described as a step in a COMSOL Multiphysics modeling instruction.

You can also use the **Paste Selection** button () if you have a list of geometric entities that you want to paste into a selection list. The button is available in the same places as the **Create Selection** button (see Figure 4-6, Figure 4-7, and Figure 4-8) You can type selection data directly into the **Paste Selection** window that opens when the button is clicked.

#### PASTING GEOMETRIC ENTITY INFORMATION INTO A SELECTION LIST

- I Prepare or copy the information to insert into the selection list. For example, copy a list of numbers from a text file or PDF file (highlight and press Ctrl+C).
- 2 On the window or page next to the selection list where you want to add a selection from file, press Ctrl+V to paste the selection directly, or click the Paste Selection button (
- 3 In the **Paste Selection** window, paste (press Ctrl+V) or enter the list of geometric entities into the **Selection** field. Data in the list or entered in the field can include commas and spaces as separators (1, 3), ranges (10–34), and words (*and*). Click **OK** to paste the selection into the selection list.

## User-Defined Views

In this section:

- The View Nodes
- Editing the 2D View and Axis Nodes
- About 3D Views
- About the 3D View Light Sources and Attributes
- Editing the 3D View Node
- Editing the 3D View Camera Node
- Editing the 3D View Light Source Nodes
- · Hiding Geometry Objects and Geometric Entities in a View

### The View Nodes

By default a **View** node is added to all 2D ( **by** ), 2D axisymmetric ( **by** ), and 3D ( **c**) models.



3D

For 2D and 2D axisymmetric models, an  $Axis( \underset{i=1}{\overset{i=1}{\searrow}})$  subnode is also added where you can set the axis coordinates and manual spacing.

The **View** nodes and subnodes have information about a view. For 2D and 2D axisymmetric models, it controls the settings to display or hide geometry labels and direction arrows, and lock the axis.

For 3D models, a **Camera** subnode (**Solution**) and three **Directional Light** nodes (**Solution**), including default settings, are also added.

The **View** nodes and subnodes have information about a view. For 3D models the settings include (in addition to, for example, settings for displaying geometry labels and direction arrows) transparency, lighting sources (directional lights, headlights, spotlights, and point lights), lighting attributes (diffuse, specular, and ambient light), and camera settings.

Also right-click the **View** node to add **Hide Geometric Entities** and **Hide Geometry Object** nodes for any space dimension.

If a **View** is customized—for example, by renaming it *Transparency with spotlight*—it can be selected from the list of views (1) on the **Graphics** toolbar. Create additional **View** nodes by right-clicking **Definitions** ( $\equiv$ ) and selecting **View** and then experiment by switching views to find the best way to illustrate a model.



To display the **Views** node under **Results** (], click the **Show** button (**)**, and select **Advanced Results Options**. This is useful, for example, when 2D axisymmetric revolved plots or 2D cut plane plots for 3D models are created.

To reset the **View** node's settings and its subnodes to the default settings, right-click the **View** node and select **Reset to Default** (**___**).

Editing the 2D View and Axis Nodes



For 2D and 2D axisymmetric models, the **View** node  $(1 \times 1)$  controls the settings to display or hide geometry labels and lock the axis.

Also right-click the View node to add Hide Geometric Entities and Hide Geometry Object nodes.

- I To add additional View nodes, in the Model Builder, right-click Definitions ( $\equiv$ ) and select View ( $\uparrow xy$ ) or click View to edit the default node.
- 2 Click to select the **Show geometry labels** to display the geometry short name labels in the **Graphics** window. Depending on what you are selecting, the **Graphics** window shows labels for the geometry objects or geometric entities (domain labels, boundary labels, edge labels, or point labels).
- **3** Click to select the **Show direction arrows** to display the direction arrows in the **Graphics** window.
- **4** Select the **Lock axis** check box to store the current axis limits so that the zoom tools can temporarily be used, for example, but by revisiting the **View** node restore the axis limits to the values in the view at the time the **Lock axis** check box is selected.

- **5** To define the **Axis**, in the **Model Builder**, under **Definitions>View**, click the **Axis** node  $(1^{14}x)$ .
- 6 In the Axis section, enter x minimum, x maximum, y minimum, and y maximum coordinates for 2D models and r minimum, r maximum, z minimum, and z maximum coordinates for 2D axial symmetry.
- 7 Select the Manual spacing check box to enter x spacing and y spacing coordinates for 2D models and r spacing and z spacing coordinates for 2D axial symmetry, to control the grid spacing manually.
- 8 Under Grid, enter Extra x and Extra y values for 2D models and Extra r and Extra z for 2D axisymmetric models if extra grid points are required in addition to the ones generated by the settings for the grid spacing. Click the Range button (



The default precision for the 2D grid axis labels is 4 digits. You can change the precision in the **Preferences** dialog box, using the **2D axis** field under **Precision** on the **Graphics** page.

### About 3D Views

The **3D View** node (,) has many options to add light sources and define the light attributes. Other functions include displaying or hiding geometry labels, transparency, wireframe rendering, a numbered grid, and axis orientation features in the **Graphics** window. See Figure 4-9. The rest of this section describes the available 3D View features.

	About the 3D View Light Sources and Attributes
	• Editing the 3D View Camera Node
0	• Editing the 3D View Node
See Also	• Editing the 3D View Light Source Nodes
	• Hiding Geometry Objects and Geometric Entities in a View



Figure 4-9: An example of a 3D View settings window with all View option check boxes selected. The Graphics window shows what the check boxes represent.

The default precision for the 3D grid axis labels is 3digits. You can change the precision in the **Preferences** dialog box, using the **3D grid** field under **Precision** on the **Graphics** page.

## About the 3D View Light Sources and Attributes

Note

*Light sources* are the **Directional Light**, **Point Light**, **Spotlight**, or **Headlight** nodes. *Light attributes* are the scene light components, which include diffuse, specular, and ambient light (see Figure 4-10). Combined, these attribute and source settings enable the software to render the 3D model to look realistic.

#### LIGHT ATTRIBUTES



Figure 4-10: Scene light is a combination of ambient, diffuse, and specular light attributes. The default Scene light color is white and in this example the attributes display as different shades of black and gray. The Scene light is further enhanced using the various light source nodes.

#### Scene Light

For all geometry, scene light is applied by default and is a combination of the different light attributes (or types)—diffuse, specular, and ambient light. The light intensity and ambient intensity levels are also attributes of the scene light. The diffuse, specular, and ambient light attributes can be turned ON or OFF by selecting or clearing the corresponding check boxes (see Editing the 3D View Node). The intensity levels are adjusted either with a slider or by entering a number between 0 and 1.

Think of **Scene light** as being comprised of ambient light, the base amount of light, plus specular light to add depth to curves and diffuse light to soften the lighting and add contrast. See Figure 4-10 for examples of the attributes:

- Ambient light is the available light surrounding the geometry. By itself, ambient light makes a 3D object look like a 2D object. The addition of diffuse and specular light adds the contrast and depth needed to define 3D geometry.
- **Diffuse light** is directional and spreads out over the object, like a flashlight shining on a sphere. This generally adds contrast and depth of field to 3D objects.
- **Specular light** is directional and reflects off the surface of a sphere or curve in a geometry. It is based on the angle between the viewer and the light source.

Apply the different sources of light (**Directional Light**, **Point Light**, **Spotlight**, or **Headlight** nodes) to further enhance how the geometry displays.

#### LIGHT SOURCES

	For 3D models, also add these light source nodes—Directional		
	Light ( ), Point Light ( ), Spotlight ( ), and Headlight ( )–		
	to adjust how the color and shading displays in the Graphics window		
3D	using different combinations of these settings. Each light source is		
	described below. See also Editing the 3D View Light Source Nodes.		

Each light source has a unique light marker displayed in the Graphics window, which can be set to different colors to determine the angle and intensity to display the light, for example. Figure 4-11 shows three directional light settings and markers displayed in the Graphics window. The light markers are placed at the user-defined x, y, and z coordinates and are used to adjust the light and specular intensities on the object. You can show or hide the markers and change the color. The color of the marker corresponds to the light hitting the object.

#### Directional Light

A *directional light* represents light that falls from a direction on all objects in the scene, like sunlight where all the light rays are parallel. Directional lights therefore have no position. Figure 4-11 is an example of three **Directional Light** ( $\searrow$ ) nodes where the color is changed and the light intensity adjusted for Directional Light 3. The markers are labeled 1, 2, and 3 to correspond to the nodes. The **Directional Light 3** node's light intensity setting is changed from 0.24 to 1—the change in arrow size corresponds to the increase in light intensity. The wireframe around a light marker means that the corresponding node is selected in the **Model Builder**. Adjust the direction of the light, the light and specular intensity levels, and the color as required.



Figure 4-11: Examples of directional light markers and the location of each directional light. The markers and light can be color coded to see which areas need adjustment. The markers indicate which node is selected in the Model Builder (a wireframe around the arrow in 2 and 3a), and the level of light intensity applied (the size of the arrow; compare 3 and 3a).

#### Point Light

A *point light* is like a light bulb. The light has a position and emits the light equally in all directions. Point light have therefore no direction. Figure 4-12 is an example of two **Point Light** ( ) nodes added to the **View** and all other nodes disabled. The position of the light, the light and specular intensity levels, and the color can be adjusted as required.



Figure 4-12: An example of two Point Light nodes added to a View. All other nodes are disabled to show only the Point Light effects to the geometry. Point Light 5 is selected in the Model Builder as indicated by the wireframe around the light marker.

#### Spotlight

A *spotlight* is like a flashlight and has both a position and a direction. Figure 4-13 is an example of two **Spotlight** ( ) nodes added to a **View** with all other nodes disabled. The position and direction of the light, the light and specular intensity levels, and the color can be adjusted as required. In addition, the spread angle can be adjusted as shown in the figure. The width of the light marker corresponds to the spread angle.



Figure 4-13: Two Spotlight nodes displayed with all other nodes disabled showing where the Spotlight is focused. When the spread angle is changed from 20 to 100 for Spotlight 7 (as indicated by the change in marker width between 7 and 7a), a corresponding change is made to the model.

#### Headlight

A *headlight* is a directional light, which points to the scene from the camera position. The **Headlight** ( $__$ ) is similar to the **Directional Light** with the only difference being that it is always locked to the camera's coordinate system and a direction pointing from the camera is used. Figure 4-14 is an example of one **Headlight** node added to a **View** with the **Directional Light** nodes enabled. The headlight's position and direction cannot be changed; it is based on the **Directional Light** node's (or nodes') x, y, and z coordinates. The light and specular intensity levels and the color can be adjusted as required.



Figure 4-14: An example of a blue Headlight source with three Directional light sources set to white. If the geometry is rotated, you can adjust and view the effects of the Headlight source on the geometry based on the shades of blue and white.

Editing the 3D View Node

The 3D View node (1) has the following sections (see Figure 4-9):

#### VIEW

- Select the Wireframe rendering check box to view the edges of the object as solid lines. The Wireframe Rendering button ( ) is turned on or off in the Graphics window at the same time.
- Select the **Show geometry labels** check box to display the geometric short name in the **Graphics** window.
- Select the **Show direction arrows** check box to display direction arrows on edges in the **Graphics** window. The direction arrows indicate the directions for which the edge parameterization values increase.
- By default the **Show grid** check box is selected and displays a numbered grid in the **Graphics** window around the object. Click to clear the check box to hide the grid.
- By default the **Show axis orientation** check box is selected and the axis orientation indicator for the global Cartesian coordinate directions is displayed in the lower-left

corner of the **Graphics** window. Click to clear the check box to hide the axis orientation indicator.

• Select the Lock camera check box to store the current camera settings so that the zoom tools can temporarily be used, for example, but by revisiting the View node restore the camera settings s to the values in the view at the time the Lock camera check box is selected.

#### LIGHT

The **Scene light** setting is a default that always displays and is based on the geometry. The **Scene light**, **Diffuse light**, **Specular light**, and **Ambient light** check boxes are selected by default. To hide and disable all light sources, click to clear the **Scene light** check box. The **Scene Light** button ( $\searrow$ ) is turned on or off in the **Graphics** window at the same time.

- Click to clear the **Diffuse light**, **Specular light**, and **Ambient light** check boxes as required.
- Enter a value for the **Ambient intensity** or use the slider to select a level. Watch the changes in the **Graphics** window at the same time to help choose a level.
- Select a Color from the list—Custom, Black, Blue, Cyan, Gray, Green, Magenta, Red,
   White (default), or Yellow. The color is only applied to ambient light. If you select
   Custom, click the Color button to choose a color from the Custom color palette.

#### TRANSPARENCY

Select the **Transparency** check box to turn on transparency. The **Transparency** button (
) is activated in the **Graphics** window at the same time. Enter a value between 0
and 1 in the **Alpha** field for the alpha blending, where 0 means a fully transparent color
and 1 means a fully opaque color, or use the slider to select a transparency level. Watch
the changes in the **Graphics** window at the same time to help choose a level.



Editing the 3D View Camera Node

### Editing the 3D View Camera Node

Use the **Camera** node (**1**) to orient the camera view in 3D models.

- I In the **Model Builder**, under **Definitions** click to expand the **View** node where you want to define the camera position.
- 2 Click the Camera (🐔) node.
- **3** In the **Camera** section, select **Perspective** (the default) or **Orthographic** (parallel) from the **Projection** list as required. The perspective projection shows distant objects as smaller to provide a realistic 3D projection, whereas the orthographic projection shows all objects using their actual size regardless of the distance. Also enter a **Zoom angle** or use the **Zoom** buttons on the **Graphics** toolbar. The **Preserve aspect ratio** check box is selected by default to make the increments equal in the *x* and *y*-directions. Click to clear this check box to make the geometry fill the graphics window with unequal increments. This can be useful when working with slender geometries.
- 4 In the Graphics window, left-click and hold the mouse to orient the geometry on the axes. The corresponding coordinates are displayed in the settings window under the Position, Target, and Up Vector sections. Or enter x, y, and z coordinates in each section.
  - The **Position** is the location of the camera and the **Target** default is 1 length unit in front of the camera position. The **Up Vector** value assigns the orientation of the camera roll direction, usually in the *z* plane.
- 5 By default the values in the Center of Rotation section define the center of the geometry in the view. Explicitly control the center of rotation by entering a center location in the x, y, and z fields and then click the Apply button ( C? ) at the top of the settings window.
- 6 Right-click the mouse and shift the geometry left, right, up, or down as required. This shift operation moves the currently visible frame on the image plane. The corresponding dimensionless values that display in the settings window under View Offset are relative to the image width and height, respectively. Alternatively, enter x and y values for the view offset. The value in the Orthographic scale field defines the size in scene length of the viewing block along the longest side of the canvas. If the view's camera setting uses orthotropic projection, zoom in or out by increasing or decreasing the value of the orthographic scale. For a perspective projection this setting has no effect.

## Editing the 3D View Light Source Nodes

For 3D models, add these light source nodes—**Directional Light** (**S**), **Point Light** (**S**), **Spotlight** (**S**), or **Headlight** (**S**)—to adjust how the color and shading

displays in the **Graphics** window using different combinations of these settings. Add a maximum of eight light sources (nodes) in any combination to each View. For example, add three Directional Light, two Point Light, two Spotlight, and one Headlight node combination.

#### POSITION

This setting is available for the **Point Light** () and **Spotlight** () features. Enter **x**, **y**, and **z** coordinates for the position of the light source.

#### DIRECTION

This setting is available for the **Directional Light**  $(\mathbf{N})$  and **Spotlight**  $(\mathbf{N})$  features.

The  $\mathbf{x}$ ,  $\mathbf{y}$ , and  $\mathbf{z}$  coordinates define the direction in which the light falls on the objects in the scene. For directional lights the arrow is a visualization of that direction with a placement that is calculated automatically depending of the scene's bounding box. The arrow points in the direction of the light.

# <mark>т</mark>р

Change the color to something other than white to observe where the light hits the object.

#### SETTINGS

Specify a number of settings for the light.

#### Spread Angle

This setting is available for the **Spotlight** () feature. Enter a **Spread angle** (in degrees). Also watch the changes in the **Graphics** window at the same time to help choose an angle. When adjusting the spread angle, the arrow increases and decreases in width as the angle value increases and decreases. The default is 20 degrees. See Figure 4-13 for an example.

#### Light Intensity

This setting is available for all light sources. Enter a **Light Intensity** or use the slider to select values between 0 and 1 (default value: 0.5). Watch the changes in the **Graphics** window at the same time to help choose a level. When adjusting the light intensity, the light marker changes in length as the corresponding intensity is changed on the object.

#### Specular Intensity

This setting is available for all light sources. **Specular Intensity** is the intensity of the light that reflects off the surface of the geometry and is used to define spheres and curves. This setting is turned ON and OFF on the View page (the default is ON), and the levels are adjusted for each **Specular intensity** using the field or the slider to select values between 0 and 1 (default value: 1). Watch the changes in the **Graphics** window at the same time to help choose a level. See Figure 4-10 for an example of specular light.

#### Color

This setting is available for all light sources. Select a **Color**—**White** (default), **Custom**, **Black**, **Blue**, **Cyan**, **Green**, **Magenta**, **Red**, or **Yellow**. See also Color for the **View** node's settings window to set the color of the scene light.

#### Lock to Camera Coordinate System

This setting is available for all light sources. By default, the **Lock to camera coordinate system** check box is selected to make the light rotate together with the camera. Click to clear as required; the light then follows the geometry.



To lock the camera settings, see Editing the 3D View Camera Node.

#### Show Light Marker

This setting is available for all light sources. By default, the **Show light marker** is selected. The light marker is associated to the type of light (directional light, point light, spotlight, or headlight) being applied to the object. See Figure 4-15 for examples. Click to clear the check box as required and remove the marker from the **Graphics** window.

A wireframe around a light marker indicates that its node is selected in the Model Builder. When adjusting the light intensity, the light marker changes in length as the corresponding intensity is changed on the object. When adjusting the spread angle for a spotlight, the arrow increases and decreases in width as the angle value increases and decreases.



Figure 4-15: The light markers for each type of light source (1) Headlight (2) Point light (3) Direction light, and (4) Spotlight.

## Hiding Geometry Objects and Geometric Entities in a View

Hide a set of geometry objects or some of their geometric entities—in the created or imported geometry—or geometric entities—in the analyzed (finalized) geometry used for modeling—at a specific geometric entity level for any View.



The **Hide Geometry Objects** feature hides geometry objects or parts of such objects and affects the the view in the Geometry branch only. The **Hide Geometric Entities** feature hides geometric entities (domains, boundaries, edges, or points) in the analyzed geometry and affects the view in the Materials, physics interfaces, Mesh, studies, and Results branches.

- I In the **Model Builder**, under **Definitions** click to expand the **View** node where you want to hide the geometry objects or entities. See also About Geometric Entities.
- 2 Right-click View and select:
  - Hide Geometry Objects ( 🔊 ) to hide geometry objects or some of their geometric entities in a View setting when viewing the geometry in the Geometry branch. For example, hide a geometry objects, or hide a boundary of a 3D geometry object to make it possible to view the inside of the object.
  - Hide Geometric Entities ( 🔊 ) to hide specific geometric entities (in the analyzed geometry) in a View setting when viewing the model for defining, for example, materials, physics, and meshes, and for results and plotting. For example, hide some domains that are not of interest in the model, or some boundaries only on a specific domain to get a clearer view of some of the model. You can include the

hidden objects (entities) in a plot by selecting the **Show hidden objects** check box in the corresponding plot group's settings window.

3 If Hide Geometry Objects is selected, in the Selection section select a Geometric entity level to hide—Object (the default), Domain, Boundary, Edge, or Point. Then select the geometry objects or some of their geometric entities that you want to hide. The list under the Geometric entity level list contains the selected objects. Use the Add to Selection ( +), Remove from Selection ( -), Clear Selection ( ), and Zoom Selected () buttons as required.

If Hide Geometric Entities is selected:

- **a** From the **Geometric entity level** list, select **Domain**, **Boundary**, **Edge**, or **Point**. Selection from this list activates the selection button with the same name in the **Graphics** window's toolbar.
- **b** Select Manual (the default) or All domains, All boundaries, All edges, or All points from the Selection list. The list under the Selection list contains the selected entities that the View hides when working with the materials, physics, meshes, studies, and results.
- If **Manual** is selected, go to the **Graphics** window and select the geometric entities that you want to hide.
- Select All domains, for example, to hide all applicable geometric entities (domains, boundaries, edges, or points) by adding them to the list of selected entities. Use the Create Selection ( ), Copy Selection ( ), Paste Selection ( ), Zoom Selected ( ), Add to Selection ( ), Remove from Selection ( ), and Clear Selection ( ) buttons as required.

## Capturing and Copying Screenshots

To quickly capture a screenshot image of a plot, press Ctrl+C when the Graphics window or another plot window has focus. The screenshot image is then available on the clipboard so that you can paste it into, for example, a document. Also use the **Image Snapshot** button (**[m**]) on the Graphics toolbar to capture an image snapshot of a plot. To do so, follow these steps:

- I In the Graphics window ( ) or any other plot window, click the Image Snapshot button ( ) to open the Image Snapshot dialog box.
- 2 Under Image, from the Size list select Manual (the default) to define the image size manually using the settings below, or select Current to use the current size of the Graphics window. Of the settings below, only the Antialiasing check box is then available.
- **3** Select a **Unit** to define the image size—**Millimeters (mm)**, **Inches (in)**, or **Pixels (px)** (the default).
- **4** Select the **Lock aspect ratio** check box to maintain the calculation of the width and height (if one or the other is changed).
- 5 Enter the Width and Height in the units selected for the image.
- 6 Enter the **Resolution** for the image in DPI (dots per inch). The default value is 96 DPI.
- 7 The **Antialiasing** check box is selected by default. Click to clear if required. Antialiasing minimizes distortion such as jagged edges in the image.
- 8 Under Layout, the Title, Legend, Axes, and Logotype check boxes (1D and 2D images) or the Title, Legend, Grid, Axis orientation, and Logotype check boxes (3D images) are selected by default to display the information on the screenshot if you select the **Include** check box. You can then also edit the selections for including these parts of the plot.
- 9 Enter a Font size in points (pt). The default value is 9 pt.
- 10 Select a Background—Current or Color. Current is the background color in the plot window on the COMSOL Desktop. If Color is chosen, click the Color button to select a custom color from the color palette that opens.
- II Under **Output**, select the target: **Clipboard** (the default) copies the image to the clipboard. **File** saves the image to a file.

- **12** If **File** is selected:
  - a Select a file Format—BMP, JPEG, or PNG (the default).
  - **b** Enter a file path in the **Filename** field, or click **Browse** to specify the name and location of the file.

**I3** Click **OK** to generate the image snapshot.



## Geometry Modeling and CAD Tools

The CAD tools in COMSOL Multiphysics provide many possibilities to create geometries using solid modeling and boundary modeling. This chapter covers geometry modeling in 1D, 2D, and 3D with examples of solid modeling, boundary modeling, Boolean operators, and other CAD tools in COMSOL Multiphysics. In addition, it shows how to use the tools for exploring geometric properties, such as volumes and surfaces. There is also information about using external CAD data. For details about the different geometry primitives and operations, see Geometry Modeling Features in the COMSOL Multiphysics Reference Guide.

In this chapter:

- Creating a Geometry for Successful Analysis
- Working with the Geometry Sequence
- The COMSOL Multiphysics Geometry and CAD Environment
- Creating a 1D Geometry Model
- Creating a 2D Geometry Model
- Creating a 3D Geometry Model
- Using Virtual Geometry Operations

# Creating a Geometry for Successful Analysis

Several techniques can ensure that a geometry results in a good mesh and gives reasonable solution times for the finite element analysis. They include the use of symmetry and eliminating small details, gaps, holes, and singularities.

#### USING SYMMETRIES

Using symmetry is one of the most effective ways to reduce the size of a finite element model. For axially symmetric geometries, a 2D axisymmetric model is sufficient. You can easily visualize the results in a full 3D geometry using a Revolution 2D data set. Other common cases of symmetry are sector symmetry and symmetry and antisymmetry planes, which can reduce the size of a 3D model.

#### MAKING THE GEOMETRY MATCH THE BOUNDARY CONDITIONS

In many solutions, the modeling domain is unbounded or too large for successful meshing and analysis. For these cases a suitable boundary condition can replace the exterior of the domain.



It is important for the geometry to be large enough to validate the boundary conditions.

For outflows in fluid-flow models, for example, the boundary should be perpendicular to the fully developed flow. Inspections and modifications of the solved model might be necessary to verify the validity of the boundary condition. Also, for some applications, infinite elements or perfectly matched layers (PMLs) are available for modeling diffusion or wave propagation in unbounded domains.

#### AVOIDING EXCESSIVELY SMALL DETAILS, HOLES, AND GAPS

Many geometries, especially those designed using a CAD system without finite element analysis, contain small holes, details, and gaps. These small features can make the domain unbounded and must be removed before analysis. Small details and holes can lead to large meshes and finite element models or even failure during mesh generation. Make sure the snapping feature is activated to avoid small gaps and mismatches between the geometry objects.

The CAD Import Module contains tools for automatic and interactive repair and defeaturing of 3D CAD data.

For a 2D or a 3D model you can also remove small details and prepare the geometry for efficient meshing by using *virtual geometry operations*.

#### AVOIDING SINGULARITIES AND DEGENERACIES IN THE GEOMETRY

A singularity in a geometry is a sharp corner or angle that can create problems during meshing and analysis. In reality, a sharp reentrant corner leads to infinite stress values in a stress analysis of a perfectly elastic material. To avoid a singularity, round sharp corners using fillets. The stress value for a sharp corner is finite in the finite element analysis, but refinement of the mesh increases the stresses in the corner without limit.

A degeneracy in the geometry can occur during solid modeling. For example, fillet areas that taper to a point and the apex of a cone can become degenerate points. These degeneracies might cause problems for the mesh generator and problems during the analysis of the model. A common degeneracy in the geometry occurs when a 3D solid is created (for example, a cylinder) by rotation about an axis that touches the rotation area. In such cases, it is better to create the solid object by extruding a cross section or to use geometric 3D primitives.

#### ASSOCIATIVE GEOMETRY

Associative geometry is a concept for the automatic updating of applied physical properties, such as boundary conditions and equation coefficients, under geometric transformations. Thus, once you have defined the physical properties of a finite element model and return to the Geometry branch to modify the geometric model, COMSOL Multiphysics updates the physical properties according to the geometry modifications.

The associative geometry functionality utilizes geometry-mapping information between the groups of geometric entities (points, edges, boundaries, and domains) in the *finalized geometry* and the corresponding groups in the geometric model.

This geometry mapping is not always without ambiguities. Thus, COMSOL Multiphysics makes some heuristic decisions when mapping the physical properties between the finalized geometry (the object on which the physical properties are imposed) and the geometric model. In some cases the resulting updated physical properties might not be the ones that are expected.

## Working with the Geometry Sequence

Once you have added a model, a Geometry node, representing the *geometry sequence* of the model, appears in the window. Initially, a geometry sequence only contains a **Form Union** node (see Finalizing the Geometry for more information on this node). You create the model's geometry by adding nodes to the sequence and building them. The following 2D example illustrates how to work with the geometry sequence. The example includes the following sections:

- Adding a Model Geometry
- · Adding and Building Nodes
- Editing Nodes
- The Current Node
- Errors and Warnings

## Adding a Model Geometry

I Start a new model by clicking the **New** button  $( \Box )$  in the main toolbar.

2 In the Model Wizard window, select 2D as space dimension and click Finish ( 🔬 ).

A new Model node appears in **Model Builder** containing a geometry sequence node **Geometry I**.

#### Adding and Building Nodes

- I Add a Square node to the sequence by right-clicking Geometry I and selecting Square ( ).
- 2 Click the **Build Selected** button ( ) in the settings window to build the node and to create a unit square.
- **3** Add a Circle node by right-clicking **Geometry I** and selecting **Circle** (**(**)).
- **4** Set **Radius** to 0.25 and in the **Size and Shape** section and **y** to 0.5 in the **Position** section.

**5** Add a Difference node by right-clicking **Geometry I** and selecting **Difference** () in the **Boolean Operations** menu.



When you add the Difference node, the software builds the Circle node (and all its preceding nodes) before showing the settings window for the Difference node.

- 6 Select the object sql and right-click to add it to the Objects to add list.
- 7 Click the Activate Selection button ( ) in the Objects to subtract section and add cl to its list.
- 8 Click **Build Selected** ( ) to build the node and to subtract the circle from the square.
- 9 Click the **Zoom Extents** button () in the Graphics toolbar to view the resulting object.



Also notice that when selecting a node that represents a geometry object in the Model Builder highlights that geometry object in the Graphics window.

**I** Note If you select multiple nodes in the Geometry branch, the settings window and the highlighting in the Graphics window represent the geometry object for the topmost of the selected nodes only. The Model Builder shows the three added nodes.

٨	ø	Untitled.mph
		😑 Global Definitions
	⊿	💋 Model 1
		Definitions
		🔺 🖄 Geometry 1
		📒 Square 1
		💭 Circle 1
		🔁 Difference 1
		Form Union
		Materials
		🚱 Mesh 1
	$\triangleright$	🛅 Results

#### Editing Nodes

To edit a node, select it in **Model Builder**, and make changes in the settings window that appears. Nodes that you have edited display with an asterisk (*) at the upper-right corner of their icons in the **Model Builder** window. Feature nodes that depend on edited nodes display with a yellow triangle at the lower-right corner of the feature node's icon to indicate that they need to be rebuilt.

I Select **Circle I** in **Model Builder** and set **Radius** to 0.4 in the **Size and Shape** section and **y** to 0.6 in the **Position** section of the settings window.

An asterisk and a yellow triangle appears in **Model Builder** in the icons of **Circle I** and **Difference I**, respectively.



2 Right-click Geometry I and select Build All to build all nodes in the sequence (except Form Union) using the new settings.

The following geometry appears in the Graphics window.



The icons of **Circle I** and **Difference I** in **Model Builder** now appear without the asterisk and the yellow triangle, respectively.

## The Current Node

When you add a geometry node, it is inserted in the sequence after the *current node*. To indicate the current node, it appears with a quadratic frame around its icon. When you have added a node, it automatically becomes the current node. If you select a node and build it, this node becomes current. At this stage **Difference I** is the current node in this example. In **Model Builder** you can see a quadratic frame around its icon.



The frame is green to show that the current node is built. If the current node needs to be rebuilt the frame becomes yellow.

#### ADDING A NODE AT AN ARBITRARY POSITION

Add a Rectangle node between Circle I and Difference I.

- 3 Right-click Difference I in Model Builder and select Build Preceding (
- 4 Right-click Geometry I and select Rectangle (____).
- 5 Set Width to 0.2 and Height to 0.6 in the Size section and set x to 0.6 and y to 0.2 in the Position section.
- 6 Click the **Build Selected** button ( ) in the settings window to build the node and to create the rectangle.
- 7 Select Difference I in Model Builder, click the Activate Selection button ( ) in the Objects to subtract section, add rI to its list, and click Build Selected ( ).

The following geometry appears in the Graphics window.



## Errors and Warnings

If an error occurs when you build a node, the build stops. The node with the problem then gets an **Error** subnode ( $\bigotimes$ ) that contains the error message. Also, the feature node's icon appears with a red cross in the lower-left corner.

I Select Difference I in Model Builder, click the Activate Selection button ( ^b/_b) in the Objects to subtract section, click the Clear Selection button ( ^b/_b), and click Build Selected ( ^b/_b).

Note that an Error node appears in Model Builder.

a 🔞 Untitled.mph			
😑 Global Definitions			
a 🕖 Model 1			
Definitions			
a 🆄 Geometry 1			
Square 1			
💴 Rectangle 1			
Circle 1			
Difference 1			
😣 Error			
🖋 Form Union			
🏶 Materials			
🛞 Mesh 1			
Results			

After a successful build of a node, a warning message can sometimes appear as a **Warning** subnode ( $\underline{A}$ ). If a warning message exists, the node's icon appears with a yellow triangle in the lower-left corner.

## The COMSOL Multiphysics Geometry and CAD Environment

In this section:

- · Overview of Geometry Modeling Concepts
- Geometric Primitives
- General Geometry Features
- Boolean Operations
- Geometry Object Transforms
- Geometry Object Conversions
- The Geometry Toolbar Buttons
- · Selecting the Space Dimension for the Model Geometry
- About Selecting the Space Dimension and Coordinate System
- Creating Composite Geometry Objects
- Adding Affine Transformations to Geometry Objects
- Creating an Array of Identical Geometry Objects
- Copying and Pasting Geometry Objects
- Converting Geometry Objects
- Editing 2D Geometry Objects
- Splitting Geometry Objects
- · Deleting Objects, Entities, and Sequences
- Creating 3D Geometries From 2D Work Planes and 3D Faces
- Drawing on the 2D Work Plane in 3D
- Finalizing the Geometry

	About Sequencing in COMSOL Multiphysics
	Opening a Context Menu to Add Nodes
	Moving Nodes in the Model Tree
0	• Copying, Pasting, and Duplicating Nodes
See Also	• Expanding and Collapsing All Nodes
	• Geometry Modeling Features in the COMSOL Multiphysics Reference Guide
	• Geometry in the COMSOL Java API Reference Guide

## Overview of Geometry Modeling Concepts

In COMSOL Multiphysics use *solid modeling* or *boundary modeling* to create objects in 1D, 2D, and 3D. They can be combined in the same geometry (*hybrid modeling*).

During solid modeling, a geometry is formed as a combination of solid objects using *Boolean operations* like union, intersection, and difference. Objects formed by combining a collection of existing solids using Boolean operations are known as *composite solid objects*. Boundary modeling is the process of defining a solid in terms of its boundaries, for example using lines to create a solid hexagonal domain in 2D. You can combine such a solid with *geometric primitives*—common solid modeling shapes like blocks, cones, spheres, rectangles, and circles, which are directly available in COMSOL Multiphysics.

In 3D, you can form 3D solid objects by defining 2D solids in *work planes* and then *extruding* and *revolving* these into 3D solids. It is also possible to *embed* 2D objects into the 3D geometry.



Details about how to define the geometric primitives and CAD operations are found in Geometry Modeling Features in the COMSOL Multiphysics Reference Guide.

You can also overlay additional nonsolid objects on top of solid objects to control the distribution of the mesh and to improve analysis capabilities. For example, you can add a curve object to a geometry to control the element size in the vicinity of this curve,

or add a point to guarantee a mesh vertex in a specific location or to create a time-dependent or parametric-value graph at that location in the geometry.

The settings for the nodes making up a geometry sequence can be changed at any time and the whole sequence can be re-run. It is also possible to parameterize the geometry using one or more parameters that define properties of a geometric primitive, for example. COMSOL Multiphysics then takes the parameterization into account as part of the geometry sequence for each step in a parametric sweep. You can also insert geometry sequences from other models into your current sequence.

You can import 2D geometries from DXF files and 3D geometries from STL and VRML files.



See Import in the *COMSOL Multiphysics Reference Guide* for details of how to import these CAD file formats.

The CAD Import Module provides an interface for the import of CAD files in Parasolid, SAT (ACIS), Inventor, Pro/E, SolidWorks, STEP, and IGES formats. In addition, the CATIA V5 Import Module provides an interface for CATIA V5 files.

The products LiveLink for Inventor, LiveLink for Pro/ENGINEER, and LiveLink for SolidWorks, offer bidirectional links to these respective products. Using these, run parametric geometry sweeps driven from the COMSOL environment but operating directly on the geometries in the respective CAD package environments.

The following sections provide an overview of available geometric primitives and geometry operations and features.

Geometric Primitives

	Creating Selections From Geometric Primitives and Features
	The Geometry Toolbar Buttons
2	In the COMSOL Multiphysics Reference Guide:
See Also	Features for Geometric Primitives
	Insert Sequence from File

You can combine and operate on all geometric primitives using Boolean operations and other geometry operations described in this section and, in more detail, in the *COMSOL Multiphysics Reference Guide*. The geometric primitives provide building blocks of basic geometric shapes for creating geometries in 1D, 2D, and 3D.

If you want to refer to the domains, boundaries, edges, or points (geometric entities) in the model, COMSOL Multiphysics can create selections for all geometric entities that a geometric primitive consists of. It is also possible to create selections in the geometry feature nodes for the resulting geometry objects from such operations.

For some geometric primitives (blocks and spheres, for example) you can also add layers for modeling of sandwich structures of for creating, for example, layers of layers of concentric spheres).:



Right-click the **Geometry** node to add the geometric primitives in Table 5-6 to the geometry sequence. In 3D, some options are found under the **More Primitives** submenu.

TABLE 5-1: ID, 2D, AND 3D GEOMETRY PRIMITIVES

ICON	NAME	DIMENSION	LINK TO THE COMSOL MULTIPHYSICS REFERENCE GUIDE
N	Bézier Polygon	2D, 3D	Bézier Polygon
Ø	Block	3D	Block
$\bigcirc$	Circle	2D	Circle
	Cone	3D	Cone
	Cylinder	3D	Cylinder
	Eccentric Cone	3D	Eccentric Cone
$\sim$	Ellipse	2D	Ellipse
0	Ellipsoid	3D	Ellipsoid
s	Helix	3D	Helix
6	Hexahedron	3D	Hexahedron

ICON	NAME	DIMENSION	LINK TO THE COMSOL MULTIPHYSICS REFERENCE GUIDE
Γ	Interpolation Curve	2D, 3D	Interpolation Curve
1	Interval ID		Interval
F(s)	Parametric Curve	2D, 3D	Parametric Curve
2	Parametric Surface	3D	Parametric Surface
•	Point	I D, 2D, 3D	Point
д	Polygon	2D, 3D	Polygon
	Pyramid	3D	Pyramid
-	Rectangle	2D	Rectangle
0	Sphere	3D	Sphere
	Square	2D	Square
	Tetrahedron	3D	Tetrahedron
0	Torus	3D	Torus

TABLE 5-1: ID, 2D, AND 3D GEOMETRY PRIMITIVES

## General Geometry Features

For 2D geometry objects, you can use geometry features such as fillets and tangents to construct the geometry. There are also general geometry features in all space dimensions for splitting geometry objects and to delete geometry objects or geometric entities (domains, boundaries, edges, and points). The following table provides an overview of available general geometry features:

TABLE 5-2: GENERAL GEOMETRY FEATURES

ICON	NAME	DESCRIPTION	LINK TO THE COMSOL MULTIPHYSICS REFERENCE GUIDE
	Chamfer	Create a chamfer at a corner of a 2D geometry object.	Chamfer
	Fillet	Create a fillet at a corner of a 2D geometry object.	Fillet

TABLE 5-2: GENERAL GEOMETRY FEATURES

ICON	NAME	DESCRIPTION	LINK TO THE COMSOL MULTIPHYSICS REFERENCE GUIDE	
~	Tangent	Create a tangent from an edge to another edge or point in a 2D geometry.	Tangent	
/	Split	Split one or several objects into their entities.	Split	
1	Delete Entities	Delete geometric entities from the objects they belong to or to delete entire geometry objects,	Delete Entities	
Ċ	Edit Object	Edit the properties of a 2D object.	Edit Object	

# **Boolean** Operations

Use Boolean operations to create new geometry objects by forming unions, set differences, and intersections—and combinations of those operations—of existing geometry objects. You have access to the following Boolean operations in all space dimensions:

TABLE 5-3: BOOLEAN OPERATIONS

ICON	NAME	DESCRIPTION	LINK TO THE COMSOL MULTIPHYSICS REFERENCE GUIDE
Ð	Union	Create the union of the selected objects.	Union
₽	Intersection	Create the intersection of the selected objects.	Intersection
Ð	Difference	Create a set difference by taking the selected object with the largest volume (area, length) and subtract the others.	Difference
*	Compose	Compose a geometry object by specify Boolean operations using a set formula.	Compose

## Geometry Object Transforms

You can use the transforms to create arrays of geometry objects and to move, rotate, mirror, and scale geometry objects. All the transforms are available in all space dimensions, except Rotate, which is not applicable for 1D geometries.

ICON	NAME	DESCRIPTION	LINK TO THE COMSOL MULTIPHYSICS REFERENCE GUIDE
	Array	Create an array of geometry objects.	Array
÷	Сору	Copy a geometry object.	Сору
0	Mirror	Mirror a geometry object.	Mirror
\$	Move	Move a geometry object.	Move
Ċ	Rotate	Rotate a geometry object.	Rotate
	Scale	Scale a geometry object.	Scale

TABLE 5-4: GEOMETRY OBJECT TRANSFORMS

## Geometry Object Conversions

The geometry conversion operations make it possible to, for example, convert a 3D solid to a surface (boundary) object for modeling a shell or other thin structure. The following conversion operations are available:

TABLE 5-5: GEOMETRY OBJECT CONVERSION OPERATIONS

ICON	NAME	DESCRIPTION	LINK TO THE COMSOL MULTIPHYSICS REFERENCE GUIDE
<b>G</b>	Convert to Solid	Convert a geometry object to a solid.	Convert to Solid
6	Convert to Surface	Convert a geometry object to a surface (3D only).	Convert to Surface
<b>B</b>	Convert to Curve	Convert a geometry object to a curve (2D, 3D).	Convert to Curve

ICON	NAME	DESCRIPTION	LINK TO THE COMSOL MULTIPHYSICS REFERENCE GUIDE
€ <mark>1</mark>	Convert to Point	Convert a geometry object to a point.	Convert to Point
8	Convert to COMSOL	Available with the CAD Import Module. Converts an object to a COMSOL kernel representation (3D).	See the CAD Import Module User's Guide.

TABLE 5-5: GEOMETRY OBJECT CONVERSION OPERATIONS

The Geometry Toolbar Buttons





Figure 5-1: The 3D, 2D, and 1D geometry toolbars.

BUTTON	NAME	DIMENSION	ACTION AND NOTES
•	Draw Point	ID, 2D	To draw a point, first click the Draw Point button, then click in the Graphics window.
1	Draw Interval	ID	To draw an interval in ID, first click the Draw Interval button, then click the start and end points in the Graphics window.
1	Draw Line	2D	To draw a polygon consisting of line segments or Bézier curves in 2D, first click one of the buttons
<u>(</u>	Draw Quadratic	2D	Draw Line, Draw Quadratic, or Draw Cubic. Then click the control points of the segments in
M	Draw Cubic	2D	the Graphics window. Click one point for each linear segment, two points for each quadratic segment, and three points for each cubic segment. If you want to switch segment type, click one of the buttons and then click some more control points. Close the polygon by right-clicking anywhere in the Graphics window. Then, a solid Bézier polygon appears, and a corresponding Bézier Polygon feature node appears in the geometry sequence. If you want to modify the polygon (for instance, change from solid to curve) you can edit the Bézier Polygon node by clicking it to display its settings window.
	Draw Square	2D	To draw a square, click Draw Square or Draw Square (center). Then, click one corner (or the
	Draw Square (Center)	2D	center) of the square in the Graphics window. Drag the mouse to the desired position of a corner. When you release the mouse button, a solid square appears, and a Square feature node appears in the geometry sequence.
-	Draw Rectangle	2D	To draw a rectangle, click Draw Rectangle or Draw Rectangle (center). Then, click one corner
	Draw Rectangle (Center)	2D	(or the center) of the rectangle in the Graphics window. Drag the mouse to the desired position of a corner. When you release the mouse button, a solid rectangle appears, and a Rectangle feature node appears in the geometry sequence.

TABLE 5-6: ID, 2D, AND 3D GEOMETRY TOOLBAR BUTTONS

BUTTON	NAME	DIMENSION	ACTION AND NOTES	
$\bigcirc$	Draw Circle	2D	To draw a circle, click Draw Circle (center) or Draw Circle. Then, click the circle's center (or	
	Draw Circle (Center)	2D	one corner of the circle's bounding box) in the Graphics window. Drag the mouse to the desire position of a corner of the circle's bounding bo When you release the mouse button, a solid circle appears, and a Circle feature node appear in the geometry sequence.	
<b>~</b>	Draw Ellipse	2D	To draw an ellipse, click Draw Ellipse (center) or Draw Ellipse. Then, click the ellipse's center (or	
	Draw Ellipse (Center)	2D	one corner of the ellipse's bounding box) in the Graphics window. Drag the mouse to the desired position of a corner of the ellipse's bounding box. When you release the mouse button, a solid ellipse appears, and an Ellipse feature node appears in the geometry sequence.	
53 54 73 53 53 53 14 53 1.0 53	Snap Coordinates	ID, 2D	By default, the mouse pointer snaps to the grid points and geometry vertices (for example, the corners of a rectangle). To disable snapping, click the the Snap Coordinates button.	
д	Draw Solid	2D	The Draw Solid button is used to toggle between drawing solid (2D) objects or outlines (curves) and can be used in combination with all the draw buttons on the toolbar (for example, to draw squares, circles, and rectangles). It is selected by default to draw solid objects. When used to draw a polygon in combination with the Draw Line, Draw Quadratic, and Draw Cubic operations, the solid object (or outline) displays once the object is closed or the points joined.	
Ð	Union	ID, 2D, 3D	Select the objects to compose in the Graphics window and click the Union button to create a union of the selected objects.	
Ð	Intersection	ID, 2D, 3D	Select the solid objects to compose in the Graphics window and click the Intersection button to create an intersection of the selected objects.	

TABLE 5-6: ID, 2D, AND 3D GEOMETRY TOOLBAR BUTTONS
----------------------------------------------------

BUTTON	NAME	DIMENSION	ACTION AND NOTES
Ð	Difference	ID, 2D, 3D	Select the solid objects to compose in the Graphics window and click the Difference button to take the selected object with the largest volume (area, length) and subtract the others.
<b>G</b>	Convert to Solid	ID, 2D, 3D	Select the objects to convert in the Graphics window and click Convert to Solid.
<b>C</b>	Convert to Surface	3D	Select the objects to convert in the Graphics window and click Convert to Surface.
₿	Convert to Curve	2D, 3D	Select the objects to convert in the Graphics window and click Convert to Curve.
<del>(</del>	Convert to Point	ID, 2D, 3D	Select the objects to convert in the Graphics window and click Convert to Point.
3	Convert to COMSOL	3D	Available with the CAD Import Module. Select the objects to convert in the Graphics window, and then click the Convert to COMSOL button.
Ċ	Edit Object	2D	To edit a 2D object, select the object and click the Edit Object button.
/	Split	ID, 2D, 3D	To split one or several objects into their entities, select them in the Graphics window, and then click the Split button.
1	Delete	ID, 2D, 3D	To delete geometric entities (domains, boundaries, edges, or points) from the objects they belong to or to delete entire geometry objects, select the entities or objects and click the Delete button. If you delete objects corresponding to primitive features their nodes disappear from the sequence. If you delete other objects or if you delete geometric entities a Delete Entities node appears in the sequence.
<u>den</u>	Measure	ID, 2D, 3D	To measure the volume, area, or length of a selected domain, face, or edge, respectively, click the Measure button. The result appears in the Messages window. Using this button it is also possible to view the coordinates of a vertex, the distance between two vertices, or the number of entities and the geometry representation (only if you have license for the CAD Import Module) of an object.

TADIES 4.			TOOLBAR BUTTONS
TABLE J-0.	1D, 2D, AND	3D GEOMETRI	IOOLBAR BUTTONS

Most of the problems solved with COMSOL Multiphysics are three-dimensional (3D) in the real world. In many cases, it is sufficient to solve a two-dimensional (2D) or one-dimensional (1D) problem that is close, or equivalent, to the real problem.



It is good practice to start a modeling project by building one or several 2D (or 1D) models before going to a 3D model.

This is because 2D models are easier to modify and solve much faster. Thus, modeling mistakes are much easier to find when working in 2D. Once the 2D model is verified, you are in a much better position to build a 3D model.



Not all physics interfaces are available in all space dimensions. See the documentation for the physics interfaces in COMSOL Multiphysics and its modules for the supported space dimensions.

## ID PROBLEMS



The following is a guide through some of the common approximations made for 1D problems. Remember that modeling in 1D usually represents some 2D or 3D geometry under the assumption that nothing changes in the other dimensions.

## Cartesian Coordinates

In a 1D model you view a single straight line thar represents the only space dimension where there is spatial variation. 1D models can represent structural elements such as beams and bars with a given cross section using special elements.

## Axial Symmetry (Cylindrical Coordinates)

In an axially symmetric 1D model you view a straight line that represents the radial direction in an axially symmetric geometry.

Ø.

2D

# The following is a guide through some of the common approximations made for 2D problems. Remember that modeling in 2D usually represents some 3D geometry under the assumption that nothing changes in the third dimension.

## Cartesian Coordinate Systems

In this case you view a cross section in the xy-plane of the actual 3D geometry. The geometry is mathematically extended to infinity in both directions along the z-axis, assuming no variation along that axis. All the total flows in and out of boundaries are per unit length along the z-axis. A simplified way of looking at this is to assume that the geometry is extruded one unit length from the cross section along the z-axis. The total flow out of each boundary is then from the face created by the extruded boundary (a boundary in 2D is a line).

There are usually two approaches that lead to a 2D cross-section view of a problem:

- When it is known that there is no variation of the solution in one particular dimension
- When there is a problem where the influence of the finite extension in the third dimension can be neglected.

In some applications there are special 2D assumptions, such as the *plane strain* and *plane stress* conditions for 2D stress analysis in solid mechanics.

In addition to the unit-depth assumption, some physics interfaces (for solid mechanics and heat transfer, for example) provide the thickness as a user-defined property in 2D models. In the case of heat transfer, the thickness is used when including out-of-plane heat transfer in the model.

Axial Symmetry (Cylindrical Coordinates)

ID Axi 2D Axi

If the 3D geometry can be constructed by revolving a cross section about an axis, and no variations in any variable occur when going around the axis of revolution, an axisymmetric physics interface can be used. The spatial coordinates are called *r* and *z*, where *r* is the radius. The flow at the boundaries is given per unit length along the third dimension. Because this dimension is a revolution, you have to multiply all flows with  $\alpha r$ , where  $\alpha$  is the revolution angle (for example,  $2\pi$  for a full turn).

#### **3D PROBLEMS**



This section discusses issues that should be addressed before starting to implement a 3D model.

Although COMSOL Multiphysics fully supports arbitrary 3D geometries, it is important to simplify the problem. This is because 3D problems easily get large and require more computer power, memory, and time to solve. The extra time spent on simplifying a problem is probably well spent when solving it.

**Is it possible to solve the problem in 2D?** Given that the necessary approximations are small, the solution is more accurate in 2D because a much denser mesh can be used. See 2D Problems if this is applicable.

Are there symmetries in the geometry and model? Many problems have planes where the solution on either side of the plane looks the same. A good way to check this is to flip the geometry around the plane, for example, by turning it upside down around the horizontal plane. You can then remove the geometry below the plane if you do not see any differences between the two cases regarding geometry, materials, and sources. Boundaries created by the cross section between the geometry and this plane need a symmetry boundary condition, which is available in all 3D physics interfaces.

**Do you know the dependence in one direction so it can be replaced by an analytical function?** You can use this approach either to convert 3D to 2D or to convert a layer to a boundary condition (see Converting Geometry Objects).

## About Selecting the Space Dimension and Coordinate System

COMSOL Multiphysics uses a global Cartesian or cylindrical (axisymmetric) coordinate system. The geometry dimension and coordinate system is selected when starting a new model in the Model Wizard. Variable names for the spatial coordinates are x, y, and z for Cartesian coordinates and r,  $\varphi$ , and z for cylindrical coordinates.

These coordinate variables (together with the variable *t* for the time in time-dependent models) make up the *independent variables* in COMSOL Multiphysics models.

C See Also

**Coordinate Systems** 

#### THE COORDINATE SYSTEMS AND THE SPACE DIMENSION

The labels assigned to the coordinate system variables vary according to the space dimension:

- Models that are opened using the space dimensions 1D, 2D, and 3D use the Cartesian coordinate independent variable labels *x* (1D), *y* (1D and 2D), and *z* (3D).
- In 2D axisymmetric geometries, the *x*-axis represents the *r* label, which is the radial coordinate, while the *y*-axis represents the *z* label, the height coordinate.
- In 1D axisymmetric geometries, the default radial coordinate is labelled *r*, and represented by the *x*-axis.

The names of the fields for positions, displacements, and other coordinate data in the settings windows for geometry objects and transform operations adapt to the space dimension and coordinate system in the model: For example, for a Cartesian 2D geometry the position is specified using the **x** and **y** fields, whereas for a 2D axisymmetric geometry the positions are specified using the **r** and **z** fields. For 2D work plane geometries the positions are specified using the **xw** and **yw** fields.

For axisymmetric cases the geometry model must fall in the positive half plane (that is to say,  $r \ge 0$ ).

2 See Also

E

Note

- About Cylindrical Coordinate Systems
- Defining a Cylindrical System

## Selecting the Coordinate System and Space Dimension

In the Model Wizard, select **3D**, **2D** axisymmetric, **2D**, **ID** axisymmetric, or **ID** from the **Select Space Dimension** list. You can do this before starting a new model or by right-clicking the root node in the **Model Builder** and selecting **Add Model** for creating models with multiple geometries. The **Model** node's icon indicates the space dimension as in Table 5-7.

ICON	SPACE DIMENSION
Ø	3D
¢.	2D axisymmetric
Ø	2D
H	ID axisymmetric
	ID
•	0D (space-independent models for chemical reactions or other ODEs/DAEs)

TABLE 5-7: SPACE DIMENSION ICONS IN THE MODEL BUILDER



Not all physics interfaces are available for all coordinate systems and space dimensions.

The nodes under a physics interface in the Model Builder and Plot Groups and Plots use different icons and colors to help visualize a model.



Physics Nodes by Space Dimension

Color Coding for Plot Groups and Plot Types

# Creating Composite Geometry Objects

You can form a *composite geometry object* by combining objects with Boolean operations: **Union**, **Intersection**, **Difference**, or **Compose**. Also form complex geometries using Boolean formulas that include multiple objects and operations.

In the Model Builder, click the Geometry node (^A), select objects in the Graphics window. Then click the Union (^D), Intersection (^D), or Difference (^D) buttons.
 OR -

In the Model Builder, right-click Geometry and select Boolean Operations then select Union (, Intersection (, D), Difference (, or Compose (, ).

**2** For **Union**, **Intersection**, or **Compose**, in the **Input objects** section, add geometry from the **Graphics** window.

For Difference, click the Activate Selection button ( ) in the Objects to add or Objects to subtract sections. Then add or subtract geometry in the Graphics window. See Working with Geometry for information about how to do this.

- **3** Select the **Keep input objects** check box to keep the initial objects.
- **4** Select the **Keep interior boundaries** check box as required, depending on if you want to divide the interior or not. The default setting is to keep the interior boundaries.
- **5** Edit the **Relative repair tolerance** default if the geometry has larger defects, or if you need to resolve extremely small details.

During the creation of a composite object, COMSOL automatically repairs the generated geometry object by removing small edges and faces. Edit the default if required. The value is relative to the overall dimensions of the geometry. For example, if the dimensions are in meters, the default repair tolerance of  $10^{-6}$  makes the geometry repair heal gaps that are smaller than a micrometer ( $10^{-6}$  m).

- 6 For Compose only, enter a Set formula that defines the Boolean operation. Set formulas are only available for solid objects. The symbols +, -, and * represent set union, set difference, and set intersection, respectively. Use these set formulas to form a composite object by combining the selected solid objects according to the set formula. For example, entering (cyl1+sph1)*blk1 first forms the union of the cylinder, cyl1, and the sphere, sph1, and then forms the intersection of that union with the block, blk1.
- 7 Click the Build Selected button ( 👝 ).

## Adding Affine Transformations to Geometry Objects

Mirroring, moving, rotating, and scaling are *affine transformations* applied to geometry objects.

I Define an object.

- 2 In the Model Builder, right-click the Geometry node () and select an option from the Transforms menu:
  - O Mirror—Specify the reflection axis or reflection plane.
  - $\bigoplus$  Move—Specify displacements in all space directions.
  - 🔥 **Rotate**—Specify the rotation angle with a rotation axis or center of rotation.
  - **Scale**—Specify center of scaling and scaling factors in all space directions.
- 3 Under Input, select the Input objects in the Graphics window. The objects display in the Input objects list. Use the Add to Selection ( +), Remove from Selection ( ), and Clear Selection ( ) buttons as required.
- **4** Select the **Keep input objects** check box to use the selected geometry objects for further geometric operations.

#### Mirror

- 1 2D and 3D: Under Point on Line of Reflection, enter a point to be fixed during reflection by entering x, y, and z coordinates as required based on the model dimensions.
- 2 2D and 3D: Under Normal vector to Line of Reflection, enter a vector in the direction to reflect by entering x, y, and z coordinates as required based on the model dimensions.
- **3** ID: Under **Point of Reflection**, enter the coordinate of the point of reflection in the **x** field.

#### Move

Under **Displacement**, enter the **x**, **y**, and **z** coordinates as required by the model dimension. To create several copies, enter a comma-separated list of displacements in the fields.

#### Rotate

- I Under Rotation Angle, enter the rotational angle in the Rotation field.
- 2 2D: Under Center of Rotation, enter x and y coordinates.
  - 3D: Under Point on Axis of Rotation, enter the x, y, and z coordinates.
- 3 3D: Under Axis of Rotation, select an Axis type—Cartesian or Spherical.
- 4 If Cartesian is selected, enter a direction vector in the x, y, and z fields.

If Spherical is selected, enter the angles theta (polar, zenith) and phi (azimuth).

Scale

I Under Scale Factor, the Scaling default is Isotropic. Enter a Factor.

If **Anisotropic** is selected as the **Scaling**, enter the **x**, **y**, and **z** coordinates as required by the model dimension.

**2** Under **Center of Scaling**, enter the **x**, **y**, and **z** center point coordinates as required by the model dimension.

## Creating an Array of Identical Geometry Objects

Create a rectangular or linear array of duplicates of geometry objects.

- 2 Under Input, select the Input objects to duplicate in the Graphics window. The objects display in the Input objects list. Use the Add to Selection ( -), Remove from Selection ( -), and Clear Selection ( -) buttons as required.
- **3** Under Size, the Array type defaults to Rectangular (2D) or Three-dimensional (3D). Enter the number of duplicates in each coordinate direction in the x size, y size, and (3D only) z size fields.

If Linear is selected as the Array type, enter the number of duplicates in the Size field.

**4** Under **Displacement**, enter the **x**, **y**, and (3D only) **z** coordinates as required by the model dimension.

## Copying and Pasting Geometry Objects

There are two methods to copy and paste geometry objects.



**Duplicate** is a convenient way to copy and paste in one step. In other words, it combines the **Copy** and **Paste** functions.

#### METHOD I

When using the copy/paste functionality, the copied feature initially contains the same data as the copied node, but there is no future connection between the two nodes. For example, if the original node is changed, it has no effect on the second node that was copied. In this case, you would use **Transforms>Copy** to keep the nodes linked.

With this method, a copy of the geometry (a rectangle, circle, sphere, or ellipse, for example) is inserted into the same geometry sequence, or another geometry sequence in the same model, and is added after the current feature of the selected geometry sequence. The copy feature can also be used for **Work Plane** geometry sequences.



The copied object must be pasted into a model with the same space dimension. For example, a sphere can only be pasted into a 3D model.

- I In the Model Builder, under the Geometry node, right-click the geometry object to copy (for example Rectangle, Circle, Sphere, or Ellipse) and select Copy (
- 2 Right-click Geometry and select Paste (Rectangle, Circle, Sphere, or Ellipse, for example) (). A copy of the node is added to the end of the geometry sequence.
- **3** Click the **Build Selected** button (



It is also possible to copy/paste and duplicate nodes corresponding to operation features, such as the Union node.

#### METHOD 2

Make a displaced copy of a geometry objects. This method creates a node in the model tree that contains a reference to other objects in the geometry sequence that are copied and keeps the objects linked (unlike a simple copy and paste function). If a copied node is modified, any feature corresponding to the input object also includes the changes the next time the sequence is built.

- I In the Model Builder, right-click Geometry and select Transforms>Copy (
- 2 Under Input, select the Input objects to duplicate in the Graphics window. The objects display in the Input objects list. Use the Add to Selection ( -), Remove from Selection ( -), and Clear Selection ( -) buttons as required.
- 3 Keep input objects is selected by default. Click to clear the check box if required.

**4** Under **Displacement**, enter the **x**, **y**, and (3D only) **z** coordinates as required by the model dimension.

Contraction See Also

• Copying, Pasting, and Duplicating Nodes

• Copy in the COMSOL Multiphysics Reference Guide

# Converting Geometry Objects

Transform one or more geometry objects into a different type of object by *converting* it, for example, converting from a solid to a curve. The object is then called a composite object, which then becomes a solid, face, curve, or point object depending on the target type chosen.

Converting an object is useful for closed domains in 2D and 3D—create solid domains by converting the surrounding curve object or face object to a solid object. This is necessary to apply physics and material properties to the domain.

Available conversions are:

2D	<ul> <li>Convert a solid object into a curve or point object.</li> <li>Convert a curve object defining at least one closed domain into a solid object.</li> <li>Convert a curve object into a point object (2D and 3D).</li> </ul>
<b>SD</b>	<ul> <li>Convert a solid object into a surface, curve, or point object.</li> <li>Convert a surface object defining at least one closed domain into a solid object.</li> <li>Convert a surface object into a curve, or point object.</li> <li>Convert a curve object into a point object (2D and 3D).</li> </ul>

I In the Model Builder, click the Geometry node, select an object in the Graphics window. Then click the Convert to Solid (), Convert to Surface (3D) (), Convert to Curve (), or Convert to Point () buttons.

- OR -

•

See Also

In the Model Builder, right-click Geometry and select an option from the Conversions menu—Convert to Solid, Convert to Surface (3D only), Convert to Curve, or Convert to Point.

- 2 Under Input, select the Input objects to convert in the Graphics window. The objects display in the Input objects list. Use the Add to Selection ( +), Remove from Selection ( ), and Clear Selection ( ) buttons as required.
- **3** Select the **Keep input objects** check box to use the selected geometry objects for further geometric operations.
- **4** Edit the **Relative repair tolerance** default if you experience problems with the convert operation. The absolute repair tolerance is the relative repair tolerance times the maximum coordinate of the input objects. Geometric entities that have a distance less than the absolute repair tolerance are merged.
- **5** Click the **Build Selected** button (

# Editing 2D Geometry Objects

Use the **Edit Object** ( ) feature to adjust the edges and vertices for a 2D geometry object or to add or delete edges and vertices in the object.

## Edit Object in the COMSOL Multiphysics Reference Guide

- I In the Model Builder, right-click a 2D Geometry and select Edit Object (
- 2 Under Select Object, select the Input object to edit in the Graphics window. When selected, a copy is made of the input object, and subsequent changes operate on this copy. Changes made in the Input object after the copy has been made has no effect on the Edit Object feature. For this reason, it is not possible to change the Input object after it has been selected.

Use the Add to Selection ( $\rightarrow$ ), Remove from Selection ( $\rightarrow$ ), Clear Selection ( $\downarrow$ ), and Zoom Selected ( $\rightarrow$ ) buttons as required.

3 Under Edit Edges, click the Activate Edges button ( 👍 ). In the Graphics window, select and add the Edge number to edit (or use the View>Selection list method). The parameters for the current edge are displayed in the table for x (m), y (m), and Weights, and under the table for the Degree list and the Start vertex and End vertex fields.

When the **Edit Object** feature is the current feature node, you can visualize the edited object by observing the edge and vertex numbers displayed in the **Graphics** window next to the edges or vertices.

- If required, click **New** to create a new edge. The new edge is linear, not connected to any other edges or vertices and has both the start and the end coordinates set to 0.
- If required, click **Delete** to delete the current edge. Deleting an edge also deletes its adjacent vertices, if these vertices are not connected to other edges.
- 4 Click in the table cells to edit the x (m), y (m), and Weights and modify the control points of the edge. If the x or y value for the first or last control point is modified, any adjacent edges and vertices are automatically updated with the same value.



<mark>т</mark>р

The **m** in parentheses indicates the current geometry length unit; in this case the default unit: meter.

- 5 Select the Degree—Linear, Quadratic, or Cubic—to change the degree of the edge. When increasing the degree, the control points are automatically recalculated so that the shape of the edge does not change. When decreasing the degree, the control points are recalculated so as to approximate the old shape of the edge.
- 6 Under Start vertex, click the Activate Edges button ( ) to move the start point of the edge to a different vertex. In the Graphics window, select and add the Edge number. Under End vertex, click the Activate Vertices button ( ) to move the end point of the edge to a different vertex. In the Graphics window, select and add the Vertices number.
  - If required, click **Disconnect** to disconnect the start or end vertex of an edge from the rest of the object. A new vertex is created with coordinates matching the start

or end point of the edge. This vertex can be moved without affecting the other edges that were previously connected to this edge.

7 Under Edit Vertices, click the Activate Vertices button ( ). In the Graphics window, select and add the Vertex number (node number) to edit (or use the View>Selection list method). The parameters for the current vertex are displayed in the x and y fields under Coordinates, and the vertex is highlighted in the Graphics window.

When the **Edit Object** feature is the current feature node, you can visualize the edited object by observing the edge and vertex numbers displayed in the **Graphics** window next to the edges or vertices.

- If required, click **New** to create a new vertex. The coordinates for the new vertex are set to 0.
- If required, click **Delete** to delete the current vertex. Only isolated vertices can be deleted. For other vertices, the **Delete** button is disabled.
- Click **Snap to Closest** to delete the current vertex. Any edges connected to the deleted vertex are modified so that the start or end point is moved to the closest remaining vertex.
- 8 Under **Coordinates** edit the **x** and **y** fields as required. Any adjacent edges are automatically updated with the same values.
- **9** Under **Selections of Resulting Entities**, select the **Create selections** check box to create predefined selections for all geometric entities (all for some domains, boundaries, edges, and points) that the resulting geometric object consists of.



<mark>т</mark>р

These selections are available in all applicable **Selection** lists but do not appear as separate selection nodes in the **Model Builder**.

The Edit Object function can also be started using the Edit Object button (*()* in the Geometry toolbar, which is visible when the geometry node is selected in the Model Builder.

- I In the Model Builder click the Geometry node.
- 2 Select a single geometry object in the Graphics window.
- 3 Click the Edit Object button ( ). The Graphics window displays handles for vertices and edge control points in the selected object.

- **4** Use the mouse to drag vertices and control points to new locations. The image is updated in the **Graphics** window in real time to show the effect on the object being edited.
- 5 Right-click to exit the object editing mode and save the changes. A new Edit Object node is added in the Model Builder. Alternatively, if the object being edited is an Edit Object feature, the changes are incorporated in the existing feature and no new node is added in the Model Builder.
- **6** Click the left mouse button outside the object being edited to cancel the editing operation.

Another way to edit a geometry object is to hold down the Alt key and left-click on the object in the **Graphics** window. This is equivalent to selecting the object and then using the **Edit Object** toolbar button.

# Splitting Geometry Objects

The split operation splits an object into its entities:

- A solid splits into solids corresponding to its domains.
- A surface object splits into surface objects corresponding to its faces.
- A curve object splits into curve objects corresponding to its edges.
- A point object splits into point objects corresponding to its vertices.
- A general (mixed) object splits into solids (corresponding to the domains), surface objects (corresponding to faces not adjacent to a domain), curve objects (corresponding to edges not adjacent to a face or domain), and point objects (corresponding to vertices not adjacent to an edge, face, or domain).
- I In the Model Builder, click the Geometry node, select objects in the Graphics window. Then click the Split button ( 𝒴).

-OR-

In the Model Builder, right-click Geometry and select Split.

- 2 Under Input, select the Input objects to split in the Graphics window. The objects display in the Input objects list. Use the Add to Selection ( -), Remove from Selection ( -), and Clear Selection ( -) buttons as required.
- **3** Select the **Keep input objects** check box to use the selected geometry objects for further geometric operations.
- 4 Click the Build Selected button (

#### DELETING OBJECTS AND ENTITIES

To delete objects or entities, click the Geometry node in the **Model Builder**, select objects or entities in the **Graphics** window, and click the **Delete** button ( $\times$ ). Alternatively, use a **Delete Entities** feature according to the following.

- I In the Model Builder, right-click Geometry and select Delete Entities ( 🆓 ).
- 2 Under Input, select a Geometric entity level to delete—Object, Domain, Boundary, Edge, or Point. Select the geometry in the Graphics window. Use the Add to Selection ( -), Remove from Selection ( -), and Clear Selection ( ) buttons as required.
- **3** Click the **Build Selected** button (

If you use the **Delete** button ( $\bigotimes$ ) to delete objects, the software deletes the selected objects that correspond to primitive features by deleting their nodes from the sequence. If you delete objects that do not correspond to primitive features or if you delete geometric entities a **Delete Entities** node appears in the sequence.



If you want to delete all objects created by a feature, it is better to right-click the feature, and select **Delete** ( $\bigotimes$ ) or **Disable** ( $\bigotimes$ ).

#### DELETING A GEOMETRY SEQUENCE



**Undo** is not possible for nodes that are built directly, such as geometry objects, meshes, solutions, and plots.

To delete a geometry sequence, right-click the **Geometry** node in the **Model Builder** and select **Delete Sequence** ([]). Click **Yes** or **No** to confirm the deletion.

## Creating 3D Geometries From 2D Work Planes and 3D Faces

In addition to creating 3D geometries directly using 3D geometric primitives, it is also possible to form 3D geometries based on 2D sections (2D geometries) created in work planes or faces in the existing 3D geometry. A *work plane* is a 2D plane oriented

anywhere in the 3D space. Quick options make it easy to create a work plane that is parallel to any of the main Cartesian planes or to a face in an existing 3D geometry.

There are several methods that can be used to create 3D solid objects from the 2D sections or faces:

- Extrude
- Revolve
- Sweep (a general sweeping operation along a curve)

In addition, you can use a 2D section as an "embedded" surface in the 3D geometry.

See Creating a 3D Geometry Model for an example of how to create a 3D geometry using work planes.

Drawing on the 2D Work Plane in 3D

# C See Also

Work Plane in the COMSOL Multiphysics Reference Guide

When using the **Work Plane** () node to define 2D objects in 3D (for example, to extrude into a 3D object), one of the features available with the 3D projection settings enables you to draw on the work plane in 3D. These instructions are an example of this feature. When this check box is selected, two additional buttons are made available in the **Graphics** window—the **Align with Work Plane** button () and the **Work Plane Clipping** button (). The standard 2D model geometry draw toolbar (Figure 5-1) is also available for use.



Some computer graphic cards may not be able to run the work plane rendering. In these cases, the work plane is rendered as in previous versions of COMSOL (it displays as a blue plane). It is possible to go to the 3D work plane but it is not possible to draw on the plane.



If you prefer to draw on the work plane in 3D, you can change the default to always select the draw on work plane in 3D option by selecting the **Draw on work plane in 3D** check box in the **Geometry** section of the **Preferences** dialog box.

- I Create a model and add a geometry (for example, a **Sphere**).
- 2 Right-click to add a Work Plane node under the main Geometry node.
- 3 On the Work Plane settings window under Work Plane>3D projection, select the Draw on work plane in 3D check box. See Figure 5-2 and Figure 5-3 to see what happens when the check box is selected.
- 4 Under Work Plane, click the Plane Geometry node. The geometry displays in the Graphics window. See Figure 5-3 for an example.
  - Click the Align with Work Plane button ( .) to rotate and move the camera to see the work plane from the top down.
  - Click to toggle the **Work Plane Clipping** button (S) ON and OFF. When ON, use it to cut away all geometries above the work plane and make it easier to draw when objects are overlapping within the work plane. The clipping is not done when looking at the work plane from the side.



Drawing on the work plane works just as drawing in 2D. The 3D work plane adapts its size to the drawn geometry. It is also possible to select and transform objects.



Figure 5-2: The Graphics window displaying the Work Plane Geometry without the Draw on work plane in 3D check box selected.



Figure 5-3: The Graphics window displaying the Work Plane Geometry with the Draw on work plane in 3D check box selected.



Figure 5-4: Click the Align with Work Plane button to display the geometry from the top down.



Figure 5-5: Click to turn on the Work Plane Clipping button and cut away all geometries above the work plane.

## Finalizing the Geometry

To finalize the geometry, COMSOL Multiphysics evaluates the geometry sequence from the top down. The final node in the geometry sequence, the **Finalize** node, determines how to form the finalized geometry.



In 2D and 3D, it is possible to add virtual operation nodes after the **Finalize** node.

There are two finalization methods, which also determine the name of the node: **Form Union** or **Form Assembly** ( ). There are some differences and aspects to consider when choosing the finalization method:

- The default method is to form a *union*. The software then forms a union from all participating geometry objects that the geometry sequence contains or creates. The union is divided into domains separated by boundaries according to the participating geometry objects. You can mesh the entire geometry and model the physics by assigning material properties, boundary conditions, and other data for the model. It is also possible but often not necessary to specify boundary conditions (including "slit conditions") on interior boundaries between domains in the geometry. By default, COMSOL Multiphysics ensures continuity in the physics fields across interior boundaries.
- The alternative method is to form an *assembly*. The software then treats the finalized geometry as a collection of parts, where each geometry object represents a part. This means that you must use pairs to connect boundaries where a field is continuous, but it also makes is possible to use special pair conditions for applications such as contact modeling. By default, pairs are created automatically when forming an assembly. An assembly can also be useful for meshing each part independently in, for example, thin geometries with high aspect ratios. Another case where you need to use an assembly is when the geometry is too complex for forming a union, which might be the case when importing an assembly geometry from CAD data. Finally, using pairs gives you access to special boundary conditions that can model "slit conditions" such as resistive layers, but most of these are also available on interior boundaries in geometries formed as a union.

## **Removing Interior Boundaries**

Eî

Note

To remove interior boundaries, clear the **Keep interior boundaries** check box in the **Finalize** node or in a Boolean operations such as **Union** or **Compose**. Removing interior boundaries is good practice if the interior boundary is an effect of the geometry modeling and does not represent a border between different materials or between domains with different properties. When you remove the interior boundaries, the resulting geometry consists of fewer domains and puts fewer constraints on the mesh generation.

It is sometimes useful to keep interior boundaries for controlling the mesh. In such cases, use virtual operations such as Ignore Edges and Ignore Faces but keep the input boundaries for mesh control. The interior boundaries are then not part of the geometry for defining physics and materials, but they are still present during meshing to, for example, define areas where you want to use a finer mesh. See Mesh Control Entities for more information.

# Creating a ID Geometry Model

This section describes how to create a 1D geometry model, which is essentially a line that can consist of one or several segments.

I Double-click the COMSOL icon to launch COMSOL.

The Model Wizard opens.

- 2 On the Select Space Dimension page, click the ID button.
- 3 Click the Finish button ( 🔜 ).
- 4 In the Model Builder, right-click Geometry and select Interval ( */*).
- **5** Select a **Number of intervals—One** or **Many**. Select **Many** to get an object consisting of a sequence of connected intervals.
  - If Many is selected, in the Points field, enter a comma-separated list of coordinates.
  - If **One** is selected, enter the interval endpoint coordinates in the **Left endpoint** (default= 0) and **Right endpoint** (default= 1) fields.
- 6 Click the Build Selected button ( 🚑 ).

Add points to the geometry to divide the domain into two domains.

- 7 In the Model Builder, right-click Geometry and select Point ( ).
- 8 Under Point, enter the x coordinate.
- 9 Click the Build All button (

# Creating a 2D Geometry Model

This section describes how to build a 2D cross section of a heat sink and introduces 2D geometry operations in COMSOL. At this time, you do not model the physics that describe the operation of the heat sink.

Assume that you want to estimate the maximum amount of heat dissipated by a heat sink placed around a resistor for high-power applications. The heat sink consists of an extruded aluminum profile as in Figure 5-6. If the effects at the ends of the elongated heat sink are neglected, the model can be simplified and a decent estimate obtained of the heat dissipated by creating a 2D cross section.



Figure 5-6: Example of a 3D heat sink model with cross section.

## CREATING A BASIC 2D GEOMETRY MODEL

I Double-click the COMSOL icon to launch COMSOL.

The Model Wizard opens.

- 2 On the Select Space Dimension page, click the 2D button.
- 3 Click the Finish button ( 🔬 ).



This model geometry can be used in a future example in the Free Meshing and Structured Meshes sections of this guide. It is recommended you save the model for this purpose.

#### CREATING PARAMETERS FOR GEOMETRY PARAMETERIZATION

The following steps explain how to create two circles to form the core of the heat sink in Figure 5-6. To investigate different dimensions of the heat sink, parameterize the geometry. Start by defining the radius of the outer arc of the heat sink, the radius of the inner arc, and the thickness and the length of the heat sink flanges.

- I In the Model Builder, right-click Global Definitions ( = ) and select Parameters ( P_i ).
- In the Parameters table, enter, or copy and paste, the Name, Expression, and Description. The Value column automatically displays the Expression value.

Parameters				
				2
• Parame	eters			
Name	Expression	Value	Description	
R1	5[mm]	0.0050000 m	Radius circle 1	
R2	2.5[mm]	0.0025000 m	Radius circle 2	
d	1[mm]	0.0010000 m	Height	
L	5[mm]	0.0050000 m	Width	

#### ADDING TWO CIRCLES WITH PREDEFINED PARAMETERS

- I In the Model Builder, under Model I, right-click Geometry I and select Circle (____).
- 2 Under Size and Shape, enter R1 in the Radius field.
- **3** Click the **Build Selected** button (

A circle (c1) with radius R1 displays in the **Graphics** window.

- **4** Right-click **Geometry I** and select **Circle** (**(**)).
- 5 Under Size and Shape, enter R2 in the Radius field.
- 6 Click the Build Selected button ( 🚑 ).

A circle with radius R2 displays in the **Graphics** window. Click the **Zoom Extents** button () to see both circles.

#### SUBTRACTING THE SMALLER CIRCLE

- I In the Model Builder, right-click Geometry I and select Boolean Operations> Difference (
- 2 Under Difference, the Activate Selection button ( 👍 ) is selected by default. It activates the Objects to add list for choosing objects.

**3** In the **Graphics** window, select the object **cl** (the larger circle) by left- and then right-clicking it.

c1 is highlighted in red, then blue and added to the Objects to add list.

- 4 Click the Activate Selection button ( 😃 ) to the right of the Objects to subtract list. This activates this section.
- **5** Select the object c2 (the smaller circle) by left- and then right-clicking it.

c2 is highlighted in red, then blue and added to the Objects to subtract list.

6 Click the Build Selected button (

The object **difl** is created by subtracting the smaller circle from the larger circle.



## INTERSECTING WITH RECTANGLE

- I In the Model Builder, right-click Geometry I and select Rectangle (____).
- 2 Under Size:
  - **a** In the **Width** field enter 2*R1.
  - **b** In the **Height** field, enter R1.
- **3** Under **Position**, enter -R1 in the **x** field.
- 4 Click the **Build Selected** button (

The interaction operation creates the object r1 (not related to the circle radius), which coincides with the intersecting area of the two input objects.



- 5 In the Model Builder, right-click Geometry I and select Boolean Operations> Intersection ().
- 6 Select both objects, dif1 (the combined circle) and r1 (the rectangle), by left-clicking and then right-clicking them.

Each object is highlighted in red, then blue and added to the Input Objects list.

7 Click the **Build Selected** button ( ) to create the object int1.



## ADDING A RECTANGLE TO CREATE A FLANGE

I In the Model Builder, right-click Geometry I and select Rectangle (____).

- 2 Under Size:
  - **a** In the **Width** field, enter L.
  - **b** In the **Height** field, enter d.
- **3** Under **Position**:
  - **a** In the **x** field enter (2/3*R1+L).
  - **b** In the **y** field enter -d/2.
- 4 Click the Build Selected button ( 🔚 ).

The object r2 (not related to the circle radius) is created. Next, round the sharp edges of the flange by using fillets. Click the **Zoom Extents** button ( $\textcircled{}{}$ ).



#### ADDING A FILLET TO ROUND THE FLANGE EDGES

- I In the Model Builder, right-click Geometry I and select Fillet (
- 2 Select Vertices I and 4 (the left-hand corners, as highlighted in the previous figure) on object r2 (the small rectangle).
- 3 Click the Add to Selection button ( + ) to add these points to the Vertices to fillet section.
- 4 On the Fillet page, under Radius, enter d/3 in the Radius field.
- 5 Click the Build Selected button ( 🚑 ) to create object fil1.



## ADDING ROTATE OPERATIONS TO CREATE FIVE FLANGES

Rotate the flange 45 degrees and keep the original input object to create five flanges on top of the heat sink.

Adding Rotate 1 to Create Object Rot1

- I In the Model Builder, right-click Geometry I and select Transforms>Rotate ( 🙆 ).
- 2 Select object fil1 (the filleted rectangle) and add it to the Input Objects list.
- 3 On the Rotate page, under Input, select the Keep input objects check box.
- 4 Under Rotation Angle, enter -45 in the Rotation field.
- 5 Click the Build Selected button ( ) to create object rot1. Click the Zoom Extents button ( ).



## Adding Three More Rotations to the Model

- I In the Model Builder, right-click Geometry I and select Transforms>Rotate ( 🙆 ).
- 2 Select the object rot1 (the resulting rotated filleted rectangle) to add it to the **Input Objects** list.
- 3 On the Rotate page, under Input, select the Keep input objects check box.
- 4 Under the Rotation Angle section, enter -45 in the Rotation field.
- 5 Click the **Build Selected** button ( ) to create object rot2.
- 6 Repeat the above steps to create object rot3 and rot4. Use object rot2 to create rot3 and object rot3 to create rot4.
- 7 When done, click the **Zoom Extents** button ( ) to view the completed object.



## REMOVING INTERIOR BOUNDARIES IN UNION OPERATIONS

- I In the Model Builder, right-click Geometry I and select Boolean Operations> Union ().
- 2 Select the objects int1, fil1, rot1, rot2, rot3, and rot4.
- **3** Under **Union**, click to clear the **Keep interior boundaries** check box to remove the interior boundaries in the union operation. This is good practice if these boundaries do not defined separate parts using different materials, for example.
- 4 Click the **Build All** button (). Click the **Zoom Extents** button (). The final geometry is shown in Figure 5-7.



Figure 5-7: Final 2D object created in the Model Builder.

## VIEWING THE GEOMETRY SEQUENCE

Figure 5-8 shows the geometry sequence used to create Figure 5-7. All primitive objects and the fillet operation are parameterized through the radius of the inner and outer heat sink arcs, the length and thickness of the flanges, and the radius of the fillets. You can change the parameter values in the **Parameters** table or for any object to create alternative heat sink geometries. The sequence still remains and when you click the **Build All** button (

🖌 Geometry 1
Circle 1 (c1)
💭 Circle 2 ( <i>c2</i> )
Difference 1 (dif1)
🥅 Rectangle 1 (r1)
Intersection 1 (int1)
🥅 Rectangle 2 (r2)
Fillet 1 (fil1)
ዕ Rotate 1 (rot1)
ዕ Rotate 2 ( <i>rot2</i> )
ዕ Rotate 3 (rot3)
ዕ Rotate 4 (rot4)
🔁 Union 1 (uni1)
Form Union (fin)

.

Figure 5-8: An example of a 2D geometry sequence.

## **RE-RUNNING THE GEOMETRY SEQUENCE WITH DIFFERENT PARAMETERS**

I In the Model Builder, under Global Definitions, click Parameters ( Pi ).

NAME	EXPRESSION	VALUE	DESCRIPTION
R1	4e-3[m]	0.0040 m	Radius Circle I
R2	2.5e-3[m]	0.0025 m	Radius Circle 2
d	1e-3[m]	0.0010 m	Height
L	7e-3[m]	0.0070 m	Width

**2** Under **Parameters**, enter the following settings in the table. Replace the previous data:.

**3** In the Model Builder, click Geometry I.

4 Click the **Build All** button ( ). Click the **Zoom Extents** button ( ) to view the geometry as defined by the new parameters.



## Creating a 3D Geometry Model

Figure 5-9 shows the geometry of a heat sink used for cooling microprocessors. Creating 3D Geometries Using the Model Builder describes the steps to create this geometry and introduces 3D drawing tools and techniques.



Figure 5-9: Example of a 3D heat sink model.

Creating 3D Geometries Using the Model Builder

## CREATING A BASIC 3D GEOMETRY MODEL

I Double-click the COMSOL icon to launch COMSOL.

The Model Wizard opens.

- 2 On the Select Space Dimension page, click the 3D button.
- 3 Click the Finish button ( 🔬 ).



This model geometry can be used in a future exercise in the Free Meshing and Structured Meshes sections of this guide. It is recommended you save the model for this purpose.

#### CREATING PARAMETERS FOR GEOMETRY PARAMETERIZATION

I In the Model Builder, right-click Global Definitions and select Parameters ( Pi ).

2 In the **Parameters** table, enter these settings:

NAME	EXPRESSION	VALUE	DESCRIPTION
L1	1.5e-2	0.015	Pillar thickness (in the heat sink)
L2	3e-3	0.0030	Pillar Length (in the heat sink)

#### USING WORK PLANES TO CREATE A BÉZIER POLYGON

Use work planes to create 2D geometries, which you then extrude or revolve to create 3D objects.

Creating a Bézier Polygon

- I In the Model Builder, under Model I, right-click Geometry I and select Work Plane (1).
- 2 Under Work Plane, select xz-plane from the Plane list.
- 3 Under the Work Plane I node, right-click Plane Geometry and select Bézier Polygon ( ↓ ).
- 4 On the Bézier Polygon settings window, under Polygon Segments, click Add Linear.

Segment I (linear) displays in the Added segments list.

- 5 Under Control points:
  - a In row I, enter -2e-3 in the xw field.
  - **b** In row **2**, enter 4e 3 in the **xw** field.
- 6 Click Add Linear to add Segment 2 (linear) to the Added segments list. Some of the Control points are automatically filled in with values; the control points from the previous line are already filled in as the starting points for the next line.
- 7 Under Control points, in row 2, enter 2e-3 in the yw field.
- 8 Click Add Linear to add Segment 3 (linear) to the Added segments list.
  - a In row 2, enter -2e-3 in the xw field.
  - **b** In row **2**, enter 4e-3 in the **yw** field.
- 9 Click Add Linear to add Segment 4 (linear) to the Added segments list.
- 10 Under Control points, in row 2, enter 0 in the yw field.



II Click Close Curve then click the Build Selected button ( 📻 ) and the Zoom Extents button ( 🚯 ).

#### **REVOLVING A 2D OBJECT TO CREATE A 3D OBJECT**

I In the Model Builder, right-click Work Plane I and select Revolve (

The **Revolve** page opens in the settings window and the 2D Bézier Polygon displays in the **Graphics** window.

2 On the Revolve page, under Revolution Angles, enter 90 in the End angle field.



The **Revolution Axis** corresponds to the position of the *y*-axis in the work plane's 2D coordinate system.

- **3** Under **General**, clear the **Unite with input objects** check box. **Work Plane I** is required for the next steps.
- 4 Click the **Build Selected** button ( and the **Zoom Extents** button ( ) to view the object rev1.

#### ADDING AN EXTRUSION AND UNION

- I In the Model Builder, right-click Work Plane I and select Extrude ( 🕵 ).
- 2 Under Distances from Plane, enter -2e-2 in the Distances row.
- 3 Click the Build Selected button ( ) and the Zoom Extents button ( ) to view the object extl.



- 4 In the Model Builder, under Model I, right-click Geometry I and select Boolean Operations>Union (
- 5 Select the objects rev1 and ext1 and add them to the Input objects section.
- 6 On the Union page, under Union, click to clear the Keep interior boundaries check box to remove the interior boundary between the corner section and the edge section of the heat sink.
- 7 Click the Build Selected button ( ). Objects rev1 and ext1 are combined to create object uni1.

#### ADDING A ROTATION TO THE 3D OBJECT

- I In the Model Builder, right-click Geometry I and select Transforms>Rotate ( 🙆 ).
- 2 Select the object unil and add it to the Input objects section under Input.
- **3** Select the **Keep input objects** check box to leave the input object intact as a rotation of the object is created.
- 4 Under Rotation Angle, enter -90 in the Rotation field.
- 5 Under Point on Axis of Rotation:
  - a In the x field, enter 1e-2.
  - **b** In the **y** field, enter 1e-2.
- 6 Click the Build Selected button ( and the Zoom Extents button ( ) to view the object rot I.



## CREATING UNION 2

- I In the Model Builder, right-click Geometry I and select Boolean Operations> Union (
- 2 Select the objects unil and rot1 and add them to the Input objects section on the Union page.
- **3** Under **Union**, click to clear the **Keep interior boundaries** check box.
- 4 Click the Build Selected button ( 🚑 ) to create object uni2.

## ADDING A SECOND ROTATION

- I In the Model Builder, right-click Geometry I and select Transforms>Rotate (
- 2 Select the object uni2 and add it to the Input objects section under Input.
- **3** Select the **Keep input objects** check box.
- 4 Under Rotation Angle, enter 180 in the Rotation field.
- 5 Under Point on Axis of Rotation:
  - a In the x field, enter 1e-2.
  - **b** In the **y** field, enter 1e-2.

6 Click the Build Selected button ( 🚑 ).



## CREATING UNION 3

I Right-click Geometry I and select Boolean Operations>Union.

The Union page opens in the settings window.

- 2 Select the objects uni2 and rot2 and add them to the Input objects section under Union.
- 3 Click to clear the Keep interior boundaries check box.
- 4 Click the Build Selected button ( 📇 ) to create object uni3.

## CREATING WORK PLANE 2 AND ADDING A SQUARE

I In the Model Builder, right-click Geometry I and select Work Plane.

The Work Plane page opens in the settings window and a Work Plane 2 node is added in the Model Builder.

- 2 Click the Build Selected button ( 📇 ).
- **3** To the right of the settings window, click the **Show Work Plane** button (*Areflet in the projection of the 3D geometry on the xy-plane as a guide for creating the middle section of the heat sink base.*
- 4 In the Model Builder, under Work Plane 2, right-click Plane Geometry and select Square ( ).

The Square page opens in the settings window.

5 Under Size, enter 2.4e-2 in the Side length field.

- **6** Under **Position**:
  - a Select Center from the Base list.
  - **b** In the **xw** field, enter 1e-2.
  - c In the yw field, enter 1e-2.
- 7 Click the Build Selected button ( 🔄 ) and the Zoom Extents button ( 👰 ).



## TRIMMING THE SQUARE TO FIT USING THE FILLET OPERATION

- I In the Model Builder, under Work Plane 2, right-click Plane Geometry and select Fillet (
- **2** Add points 1, 2, 3, and 4 on the object **sql** to the **Vertices to fillet** section under **Points**.
- 3 Under Radius, enter 2e-3 in the Radius field.
- 4 Click the Build Selected button.



## ADDING EXTRUDE 2 AND COMBINING OBJECTS TO COMPLETE THE BASE

- I In the Model Builder, right-click Geometry I and select Extrude ( 💫 ).
- 2 Under Distances from Plane, enter 4e-3 in the Distances row.
- **3** Click the **Build Selected** button (
- 4 In the Model Builder, right-click Geometry I and select Boolean Operations> Union ().
- 5 Select the objects uni3 and ext2 to add to the Input objects section under Union.
- 6 Click the **Build Selected** button ( ) to create object **uni4**. This completes the base of the heat sink.



#### DRAWING THE UPPER PART OF THE HEAT SINK

Creating a Work Plane and a Square

I In the Model Builder, right-click Geometry I and select Work Plane (

The Work Plane page opens in the settings window and a Work Plane 3 node is added in the Model Builder.

- 2 Under Work Plane, enter 4e-3 in the z-coordinate field.
- **3** From the **3D projection** list, **Entire 3D geometry** is selected by default, and this visualizes the projected edges of the heat sink's base in the work plane.
- 4 Click the **Build Selected** button (
- 5 To the right of the settings window, click the Show Work Plane button ( 🔄 ).
- 6 In the Model Builder, under Work Plane 3, right-click Plane Geometry and select Square (
- 7 Under Size, enter L2 in the Side length field.
- 8 Click the Build Selected button ( 🚑 ) to create square sql with side length L2.



#### ADDING ARRAYS

- 2 Add the object sql to the Input objects section under Input.

- 3 Under Size:
  - a In the xw size field, enter 3.
  - **b** In the **yw size** field, enter **3**.
- 4 Under Displacement:
  - **a** In the xw field, enter 1e-2-L2/2.
  - **b** In the **yw** field, enter 1e-2-L2/2.
- **5** Click the **Build Selected** button (



## Adding Extrude 3 and Combining Objects (Union)

- I In the Model Builder, right-click Geometry I and select Extrude ( 💊 ).
- 2 Under Distances from Plane, enter L1 in the Distances row.
- 3 Click the Build Selected button ( 🔄 ) and the Zoom Extents button ( 🔂 ).
- 4 Right-click Geometry I again and select Boolean Operations>Union (
- 5 Add all the objects (uni4 and all the ext3 just built) to the Input objects list under Union.



## 6 Click the **Build All** button (

## THE GEOMETRY SEQUENCE

Figure 5-10 shows the list of the geometry in the **Model Builder** used to create Figure 5-9. You can edit any node for each of the drawing operations.

In this case, the upper part of the heat sink is parameterized through the thickness and height of the heat sink pillars. You can edit the parameter values defined previously to change the heat sink geometry.

🖄 Geometry 1
Work Plane 1 (wp1)
🔺 📉 Plane Geometry
🥅 Rectangle 1 (r1)
🥅 Rectangle 2 ( <i>r2</i> )
Difference 1 (dif1)
Fillet 1 (fil1)
Fillet 2 ( <i>fil2</i> )
View 2
💫 Extrude 1 (ext1)
a 🚭 Work Plane 2 ( <i>wp2</i> )
a 🖄 Plane Geometry
Circle 1 ( <i>c1</i> )
View 3
💫 Extrude 2 <i>(ext2)</i>
a 🗟 Work Plane 3 ( <i>wp3</i> )
a 🖄 Plane Geometry
💭 Circle 1 ( <i>c1</i> )
la (copy 1 (copy 1)
View 4
Ktrude 3 (ext3)
Form Union (fin)

⊿

Figure 5-10: Sample 3D Model Builder Geometry Sequence. From the Busbar model in the COMSOL Multiphysics Model Library.

## **RE-RUNNING THE GEOMETRY SEQUENCE WITH DIFFERENT PARAMETERS**

- I In the Model Builder, under Global Definitions, click Parameters ( $P_i$ ).
- **2** Under **Parameters** enter the following settings in the table. Replace the previous data:

NAME	EXPRESSION	VALUE	DESCRIPTION
L1	1.2e-2	0.012	Pillar thickness (in the heat sink)
L2	2e-3	0.0020	Pillar Length (in the heat sink)

**3** In the **Model Builder**, click **Geometry I**.

4 Click the **Build All** button ()) and the **Zoom Extents** button ()) to view the geometry as defined by the new parameters.

## Using Virtual Geometry Operations

This section contains two examples that demonstrate the use of the virtual operations that are available for 2D and 3D geometries. The first example shows how to use the Ignore Vertices operation (or the Form Composite Edges operation) to remove a very short edge and how to use the Ignore Edges operation (or the Form Composite Faces operation) to prepare the geometry for swept meshing. The second example illustrates how you can use the Collapse Edges operation (or the Merge Vertices operation) to prepare the geometry for efficient meshing.

In this section:

- Virtual Geometry Operations
- Importing a Virtual Geometry
- Example 1: Forming Composite Edge and Face by Ignoring Vertex and Edges
- Example 2: Merging Vertices by Collapsing Edge

## Virtual Geometry Operations

For a 2D or a 3D geometry you can add *virtual geometry operations* after the **Finalize** node to, for example, remove small details from the geometry and to prepare it for efficient meshing and analysis. The geometry sequence before the **Finalize** node defines the "real" (original) geometry. The geometry resulting from a virtual operation is referred to as a *virtual geometry*. These virtual operations are available from the **Geometry-Virtual Operations** menu:

- Ignore Edges 🙀
- Ignore Faces 🍋 (3D only)
- Form Composite Edges 11
- Form Composite Faces 📑 (3D only)
- Form Composite Domains 📢

- Collapse Edges 🛶
- Merge Vertices 🛶



For details about these operations, see Features for Virtual Operations in the *COMSOL Multiphysics Reference Guide*. For examples on how to use the virtual operations, see Using Virtual Geometry Operations.

Another set of virtual operations is available for mesh control; that is for controlling the position and distribution of mesh elements without being part of the geometry used for analysis. You can use the following mesh control features:

- Mesh Control Vertices 🚷
- Mesh Control Edges 🏹
- Mesh Control Faces X (3D only)
- Mesh Control Domains Main



For details about the mesh control features, see Features for Mesh Control in the *COMSOL Multiphysics Reference Guide*. For examples on how to use the mesh control features, see Mesh Control Entities.

## Importing a Virtual Geometry

It is possible to import a virtual geometry to a sequence using the Import node. The source can be either a COMSOL Multiphysics file or a sequence. If you import from a file or a sequence containing a virtual geometry the Import node imports the "real" (original) geometry that was used to define the virtual geometry.

Example 1: Forming Composite Edge and Face by Ignoring Vertex and Edges

## MODEL WIZARD

- I Go to the Model Wizard.
- 2 Click Finish ( 🐋 ).

## GEOMETRY I

### Import I

- I In the Model Builder, right-click Model I>Geometry I and choose Import ( []].
- 2 Go to the settings window for Import. Under the Import section, click Browse.
- 3 In the COMSOL installation directory navigate to the folder models/ COMSOL_Multiphysics/Tutorial_Models and double-click the file virtualgeom_demo_1.mphbin.
- 4 Click Import.

The imported geometry displays in the Graphics window.



## MESH I

In the Model Builder, right-click Model I>Mesh I and choose Build All (

The resulting mesh displays in the Graphics window.



Note

A Warning node is added under Mesh I indicating that there is a very short edge in the geometry. Use the Zoom Selected button ( () and the Zoom Out button () on the Graphics toolbar to locate this edge in the Graphics window.



Eliminate the short edge by ignoring the vertex between this edge and its adjacent longer edge.

## GEOMETRY I

Ignore Vertices I

- I In the Model Builder, right-click Model I>Geometry I and choose Virtual Operations>Ignore Vertices (
- **2** Select Point **3**.
- **3** Click the **Build Selected** button (

### MESH I

In the Model Builder, right-click Model I>Mesh I and choose Build All (

The mesh displays in the Graphics window.



The geometry's domain is well suited for swept meshing.

Swept I

- I Right-click Model I>Mesh I and choose Swept (mail).
- 2 Go to the settings window for Swept. In the upper-right corner of the Source Faces section, click Activate Selection (也).
- 3 Select Boundary 3.
- 4 In the upper-right corner of the Destination Faces section, click Activate Selection ( ()).
- 5 Select Boundary 4.

Size

- I In the Model Builder, click the Size node (  $\triangle$ ]).
- 2 Go to the settings window for Size. Locate the **Element Size** section. From the **Predefined** list, choose **Finer**.
- **3** Click the **Build All** button (
- **4** Click **OK** to close the close the **COMSOL Error** window. COMSOL fails to create a swept mesh for this geometry due to the circular imprint on one of the linking faces of the sweep.



Use the Ignore Edges operation to remove this imprint.

### GEOMETRY I

Ignore Edges 1

- I In the Model Builder, right-click Model I>Geometry I and choose Virtual Operations>Ignore Edges ( ).
- 2 Select Edges 14 and 15.

Make sure to select the **Ignore adjacent vertices** check box such that the vertices of the imprint disappear as well.

**3** Click the **Build Selected** button (

## MESH I

In the Model Builder, right-click Model I>Mesh I and choose Build All (

The swept mesh displays in the Graphics window.



₩ Tip

The same virtual geometry can be achieved by using the **Form Composite Edges** and the **Form Composite Faces** operations.

#### GEOMETRY I

#### Disable

- I In the Model Builder, right-click Model I>Geometry I>Ignore Edges I and choose Disable ( <a>limits)</a>).
- 2 Right-click Ignore Vertices I and choose Disable ( 🙆 ).

Form Composite Edges 1

- I Right-click Geometry I and choose Virtual Operations>Form Composite Edges (
- 2 Select Edges 2 and 6.
- **3** Click the **Build Selected** button (

Form Composite Faces I

- I In the Model Builder, right-click Geometry I and choose Virtual Operations>Form Composite Faces ( ]).
- 2 Select Boundaries 2 and 8.
- **3** Click the **Build Selected** button (

#### MESH I

In the Model Builder, right-click Model I>Mesh I and choose Build All (

Example 2: Merging Vertices by Collapsing Edge

## MODEL WIZARD

- I Go to the Model Wizard.
- 2 Click Finish ( 🔬 ).

## GEOMETRY I

Import I

- I In the Model Builder, right-click Model I>Geometry I and choose Import (
- 2 Go to the settings window for Import. Locate the Import section. Click Browse.
- 3 In the COMSOL installation directory navigate to the folder models/ COMSOL_Multiphysics/Tutorial_Models and double-click the file virtualgeom_demo_2.mphbin.
- 4 Click Import.

The imported geometry displays in the Graphics window.





In the Model Builder, right-click Model I>Mesh I and choose Build All (

The resulting mesh displays in the Graphics window.



The figure shows that the mesh is very fine in the region marked by the red box. If you select **Model I>Geometry I** in the **Model Builder** and zoom into this region you can find the reason for the fine mesh. There is a very short edge in the conjunction of the four curved faces of the geometry.



Remove this short edge by collapsing it into a vertex.

## Collapse Edges 1

- I In the Model Builder, right-click Model I>Geometry I and choose Virtual Operations>Collapse Edges (
- 2 Select Edge 4.
- **3** Click the **Build Selected** button (

<mark>т</mark>р

It is also possible to remove this short edge by an **Ignore Edges** operation forming a composite face of the two adjacent faces. However, then the small distance between the vertices of the ignored edge would still be present.

## MESH I

In the Model Builder, right-click Model I>Mesh I and choose Build All (

The mesh displays in the Graphics window.



Tip

The same virtual geometry can be achieved by using the **Merge Vertices** operation.

## GEOMETRY I

Right-click Collapse Edges I and choose Disable ( 🙆 ).

## Merge Vertices 1

- I In the Model Builder, right-click Model I>Geometry I and choose Virtual Operations>Merge Vertices (
- **2** Select Point 2.
- **3** Go to the settings window for Merge Vertices. Locate the **Vertex to Remove** section. Click **Activate Selection** ( ()).
- **4** Select Point **3**.
- **5** Click the **Build Selected** button (

## MESH I

In the Model Builder, right-click Model I>Mesh I and choose Build All (

## Materials

6

This chapter describes the material databases included with COMSOL Multiphysics and the add-on modules.

In this chapter:

- Materials Overview
- About the Material Browser
- Adding Predefined Materials
- User-Defined Materials and Libraries
- Material Properties Reference
- Using Functions

## Materials Overview

In this section:

- About the Material Databases
- About Using Materials in COMSOL
- Opening the Material Browser
- Using Material Properties

## About the Material Databases



All COMSOL modules have predefined material data available to build models. The most extensive material data is contained in the separately purchased Material Library, but all modules contain commonly used or module-specific materials. For example, the *Built-In* database is available to all users but the *MEMS* database is included with the MEMS Module and Structural Mechanics Module. Also create custom materials and material libraries by researching and entering material properties.

All the material databases (including the Material Library) are accessed from the **Material Browser**. These databases are briefly described below.

### RECENT MATERIALS

From the **Recent Materials** folder ( 2), select from a list of recently used materials, with the most recent at the top. This folder is available after the first time a material is added to a model.

#### MATERIAL LIBRARY

An optional add-on database, the **Material Library** (**M**), contains data for over 2500 materials and 20,000 property functions.

## BUILT-IN

Included with COMSOL Multiphysics, the **Built-In** database ( **()** ) contains common solid materials with electrical, structural, and thermal properties.



Predefined Built-In Materials for all COMSOL Modules

#### AC/DC

Included in the AC/DC Module, the **AC/DC** database ( **1**) has electric properties for some magnetic and conductive materials.

### **BATTERIES AND FUEL CELLS**

Included in the Batteries & Fuel Cells Module, the **Batteries and Fuel Cells** database ( ) includes properties for electrolytes and electrode reactions for certain battery chemistries.

## LIQUIDS AND GASES

Included in the Acoustics Module, CFD Module, Chemical Reaction Engineering Module, Heat Transfer Module, MEMS Module, Pipe Flow Module, and Subsurface Flow Module, the **Liquids and Gases** database ( ) includes transport properties and surface tension data for liquid/gas and liquid/liquid interfaces.

## MEMS

Included in the MEMS Module and Structural Mechanics Module, the **MEMS** database (  $\mu$  ) has properties for MEMS materials—metals, semiconductors, insulators, and polymers.

#### PIEZOELECTRIC

Included in the Acoustics Module, MEMS Module, and Structural Mechanics Module, the **Piezoelectric** database (**N**) has properties for piezoelectric materials.

## PIEZORESISTIVITY

Included in the MEMS Module, the **Piezoresistivity** database ( ) has properties for piezoresistive materials, including p-Silicon and n-Silicon materials.

#### USER-DEFINED LIBRARY

The **User-Defined Library** folder (**m**) is where user-defined materials databases (libraries) are created. When any new database is created, this also displays in the **Material Browser**.



The materials databases shipped with COMSOL Multiphysics are read-only. This includes the Material Library and any materials shipped with the optional modules.



Creating Your Own User-Defined Libraries

## About Using Materials in COMSOL

#### USING THE MATERIALS IN THE PHYSICS SETTINGS

The physics set-up in a model is determined by a combination of settings in the **Materials** and physics interface nodes. When the first material is added to a model, COMSOL automatically assigns that material to all domains in the geometry. Different geometric entities can have different materials. The following example uses the



*heat_sink.mph* model file contained in the Heat Transfer Module and CFD Module Model Libraries.

Figure 6-1: Assigning materials to a heat sink model. Air is assigned as the material to the box surrounding the heat sink, and aluminum to the heat sink itself.

If a geometry consists of a heat sink in a container, **Air** can be assigned as the material in the container surrounding the heat sink and **Aluminum** as the heat sink material itself (see Figure 6-1). The **Conjugate Heat Transfer** interface, selected during model set-up, uses a **Fluid** model to simulate nonisothermal flow, with heat transfer by convection and conduction, in the box surrounding the heat sink, and a **Heat Transfer in Solids** model to simulate heat conduction in the heat sink. The **Heat Transfer in Solids I** settings use the material properties associated to the **Aluminum 3003-H18** materials node, and the **Fluid I** settings define the flow using the **Air** material properties. The other nodes under **Conjugate Heat Transfer** define the initial and boundary conditions.

All physics interface properties automatically use the correct **Materials'** properties when the default **From material** setting is used. This means that one node can be used to define the physics across several domains with different materials; COMSOL then uses the material properties from the different materials to define the physics in each domain. If material properties are missing, the **Material Contents** section on the **Materials** page displays a stop icon ( o ) to warn about the missing properties and a warning icon (h) if the property exists but its value is undefined.

C See Also

The Material Page

There are also some physics interface features where you can explicitly select a material from which material properties will be retrieved. The default setting is then always to use the **Domain material** on each domain (that is, the materials defined on the same domains as the physics interface). In addition to the **Domain Material**, you can select any other material that is present in the model, regardless of its selection. The selected material's properties will then be applied to all domains in the feature's selection.

## EVALUATING AND PLOTTING MATERIAL PROPERTIES

You can access the material properties for evaluation and plotting like other variables in a model using the variable naming conventions and scoping mechanisms:

 To access a material property throughout the model (across several materials) and not just in a specific material, use the special material container root.material. For example, root.material.rho is the density ρ as defined by the materials in each domain in the geometry. For plotting, you can type the expression material.rho to create a plot that shows the density of all materials.



If you use a temperature-dependent material, each material contribution asks for a special model input. For example, rho(T) in a material mat1 asks for root.mat1.def.T, and you need to define this variable (T) manually—if the temperature is not available as a dependent variable—to make the density variable work.

• To access a material property from a specific material, you need to know the tags for the material and the property group. Typically, for the first material (Material 1) the tag is mat1 and most properties reside in the default **Basic** property group with the tag def. The variable names appear in the **Variable** column in the table under **Output properties** in the settings window for the property group; for example, Cp for the heat capacity at constant pressure. The syntax for referencing the heat capacity at constant pressure in Material 1 is then mat1.def.Cp. Some properties are anisotropic tensors, and each of the components can be accessed, such as mat1.def.k11, mat1.def.k12, and so on, for the thermal conductivity. For material properties that are functions, call these with input arguments such as mat1.def.rho(pA,T) where pA and T are numerical values or variables representing the absolute pressure and the temperature, respectively. The functions can be plotted directly from the function nodes' settings window by first specifying suitable ranges for the input arguments.

• Many physics interfaces also define variables for the material properties that they use. For example, solid.rho is the density in the Solid Mechanics interface and is equal to the density in a material when it is used in the domains where the Solid Mechanics interface is active. If you define the density in the Solid Mechanics interface using another value, solid.rho represents that value and not the density of the material. If you use the density from the material everywhere in the model, solid.rho and material.rho are identical.

## Opening the Material Browser

- I Open or create a model file.
- 2 From the View menu choose Material Browser or right-click the Materials node and choose Open Material Browser.
- 3 Under Material Selection, search or browse for materials.
  - Enter a **Search** term to find a specific material by name, UNS number (Material Library materials only), or DIN number (Material Library materials only). If the search is successful, a list of filtered databases containing that material displays under **Material Selection**.

## <mark>т</mark>р

To clear the search field and browse, delete the search term and click **Search** to reload all the databases.

- Click to open each database and browse for a specific material by class (for example, in the Material Library) or physics module (for example, MEMS Materials).



Always review the material properties to confirm they are applicable for the model. For example, **Air** provides temperature-dependent properties that are valid at pressures around 1 atm. **4** When the material is located, right-click to **Add Material to Model**.

A node with the material name is added to the **Model Builder** and the **Material** page opens.

Using Material Properties



For detailed instructions, see Adding Predefined Materials and Material Properties Reference.

## About the Material Browser

Use the nodes under **Materials** to add predefined or user-defined materials, specify specific properties, model inputs, functions, values and expressions, or create a custom material library.

## MATERIAL OVERVIEW

This section provides an overview of the materials in the model and where they are used.

The **Material** column lists the current materials in the model with their names and, within curly braces, their tags.

The **Selection** column lists the geometric entities selected for the material (the domains, boundaries, or edges where the material is defined).

In this section:

- The Material Browser Window
- The Material Page
- Errors Relating to the Material Nodes
- Property Groups

	• Materials
2	About Selecting Geometric Entities
See Also	Global and Local Functions

# Note

When using the **Material Browser**, the words *window* and *page* are interchangeable. For simplicity, the instructions refer only to the **Material Browser**.

The *Material Browser* window ( ) contains a number of databases with a broad collection of physical, elastic, electromagnetic, fluid, piezoelectric, and thermal properties of materials (Figure 6-2). Use the Material Browser to find predefined materials and add them to the Model Builder, or create a custom material library.



Figure 6-2: Opening the Material Browser page in the Material Browser window.

## MATERIALS

Browse all the available material databases or search in the **Materials** section. **Search** a specific material by name, UNS number, or DIN number. Also browse for a specific material by class (for example, in the Material Library) or physics module (for example, MEMS). When the material is located, right-click to **Add Material to Model**.

## INFORMATION

When browsing the material databases, in particular the **Model Library**, some materials include additional information—UNS number, DIN number, and/or Composition.

#### PROPERTIES

While browsing the databases, predefined **Properties** are listed in a table together with their **Expression**, **Unit**, and **Property groups** to which the material property belongs. If **Property groups** is empty, the material property is a **Basic** property.

#### FUNCTIONS

While browsing some materials, predefined **Functions** are listed in a table together with their Type, Expression, and Property groups where the function is used. If Property groups is empty, the function is defined in the Basic property group.

## INPUT

7

While browsing some materials, predefined **Input** are listed in a table together with their **Unit** and **Property groups** which require the input to evaluate its properties.

• Materials When you have the Material Library: Material Library Quick Start See Also

· About the Material Library Folders and Properties

# The Material Page

The Material page ( 🌸 ) summarizes the predefined or user-defined material properties. This is where you can add or change material properties to fit your model and assign the material to geometric entities (domains, boundaries, edges or points).

After adding a material, click the material node (for example, **Air**) in the **Model Builder**. The **Material** page opens in the settings window (Figure 6-3).



Figure 6-3: Click the Copper node to open the Material settings window for the node.

## GEOMETRIC ENTITY SELECTION

Assign the material to a specific **Geometric entity level—Domain**, **Boundary**, **Edge** (3D only), or **Point**—on the geometry in the **Graphics** window (the geometry in the model).



If the model contains physics on different geometric entity levels, such as solid mechanics in domains coupled to beams on edges, and the physics use the same material, you need to add two Material nodes with the same material, one defined in the domains, and the other defined on the edges.

## MATERIAL PROPERTIES

Add additional material properties to the model if they are not already included in the default settings.

# A Note about Adding Basic Material Properties

Material properties can be added to the **Basic** group or to any **User-Defined Property Group** from two locations—the **Material** and **Property Group** pages.

- When material properties are added from the **Basic** node's or a user user-defined group node's **Property Group** page, they are listed under **Quantities>Output Properties**.
- When basic material properties are added from the **Material** page, they are listed under **Material Properties>Basic Properties** and will always be added to the **Basic** group.

#### MATERIAL CONTENTS

This section lists all the material properties that are defined for the material or required by the physics interfaces in the model. The table lists the **Property**, **Name**, **Value**, **Unit**, and the **Property group** that the material property belongs to. The **Property group** corresponds to the nodes in the **Model Builder** with the same name (see Figure 6-4). If required, edit the values or expression for the property's **Value**. A stop sign displays in the left column to indicate when a required property is missing a **Value**.

The left column provides visual cues about the status of each property:

- A stop sign ( ) indicates that an entry in the Value column is required. It means that the material property is required by a physics interface but undefined. When you enter a value in the Value column, the material property is added to the correct property group.
- A warning sign (1) indicates that the material property has been added to the material but is still undefined. An entry is only required if the material property will be used in the model.

- Properties with no indication in the left column are defined but not currently used by any physics interface in the model.



Figure 6-4: An example of Property Groups on the Material page.

# APPEARANCE

Control or change the default appearance of a material in the Graphics window when working in the Materials or Physics interface sections.

For 2D models, only a change of color is possible.

2D

# **1** 3D

For 3D models, the material appearance is with both color and texture.

The default **Family** appearance is taken from the material selected, which has a suitable color (2D and 3D models), and texture (3D models) applied. Select another option from the **Family** list if required—**Air**, **Aluminum**, **Brick**, **Concrete**, **Copper**, **Gold**, **Iron**, **Lead**, **Magnesium**, **Plastic**, **Steel**, **Titanium**, or **Water**. Select **Custom** to make further adjustments. The default custom settings are inherited from the material selected last from the **Family** list.



The appearance includes texture and reflectance only when the preference settings for the visualization are optimized for quality. When optimized for performance, the appearance includes color only. Control this using the **Optimize for** list in the **Graphics** section in the **Preferences** dialog box.

	Errors Relating to the Material Nodes
2	• Materials
See Also	• Customizing the Appearance of a Material in the Graphics Window

# Errors Relating to the Material Nodes

The Material nodes in the **Model Builder** also indicate when there is a material error. For example, if one or more **Output properties** are deleted, but assigned to a part of the geometry, then, depending on the location in the Model Tree, the icon indicates where the error is located and lists the details on the **Materials** page. See Figure 6-5.



Figure 6-5: An example of a Material node error. When the Materials node is expanded, the icon shows which node is missing information. When the Materials node is collapsed, the error indication also displays at the top level. Details about the missing information also display on the Materials page.

## Property Groups

The **Property Group** page is where output properties and model inputs are added, local parameters defined, and expressions for material properties entered in a specific property group such as **Basic** (Figure 6-6). The property groups are subnodes to a material node.

The **Property Group** page is in the settings window and opens when the node is clicked (for example, **Basic**) under the material name in the **Model Builder**.



Figure 6-6: An example of a Basic Property Group page.

#### OUTPUT PROPERTIES AND MODEL INPUTS

View predefined material properties in the **Output properties** table. Under **Quantities** add additional material properties to the **Output properties** list or add model inputs to the **Model inputs** list. The model inputs are physical quantities such as temperature that are used as inputs in the expressions that define the output properties. For example, adding **Temperature** as a model input with the variable name T makes it possible to use an expression such as 300[J/(kg*K)]*T[1/K] that works regardless of the name of the actual dependent variable for temperature in the model that uses the temperature-dependent material. Without the model input, the expression above only works with a temperature variable called T.

If required, edit the expressions in the **Output properties** subsection's **Expression** column; edit directly in the table or by clicking the **Edit** button (), which opens the **Edit** dialog box. For an anisotropic material property (tensor), select **Isotropic**, **Diagonal**, **Symmetric**, or **Anisotropic** when entering the data in the **Edit** dialog box. In the

Expression column, use a syntax with curly braces such as

{k11, k21, k31, k12, k22, k32, k13, k23, k33} to enter anisotropic material properties.

### A Note about Adding Basic Material Properties

Material properties can be added to models from two pages—Material and Property Group. In both cases, the properties belong to the Basic property group.

- When this information is accessed from the **Basic Property Group** page, it is listed under **Quantities>Output Properties** and the **Variable** is listed in the table.
- When this information is accessed from the Material page, it is listed under Material Properties>Basic Properties and the Name is listed in the tables.

## LOCAL PARAMETERS

Enter a user defined **Parameter** and its corresponding **Expression** and organize the table as required.

#### About Automatic Adding of Property Groups to a Material

Material property groups are automatically added to the material node in the **Model Builder**. Also add additional predefined property groups or create a **User defined property group**. The available properties are grouped together differently according to the physical context. For example, the node in Figure 6-4 has five default property groups.

Each of the property groups has a **Property Group** page. When a **Model Builder** node is clicked (for example, **Basic**), the **Property Group** page displays specific information about that property group. The property groups are summarized in a **Material Contents** table on the **Material** page.

# Adding Predefined Materials

In this section:

- Working in the Material Browser
- Working on the Material Page
- Customizing the Appearance of a Material in the Graphics Window
- Working on the Property Group Page
- Adding a User-Defined Property Group



The first material added to a model is assigned to the entire geometry.

Working in the Material Browser



When using the Material Browser, the words *window* and *page* are interchangeable. For simplicity, the instructions refer only to the Material Browser.

## OPENING THE MATERIAL BROWSER

- I Open or create a model file.
- 2 From the **Options** menu select **Material Browser** or right-click the **Materials** node and select **Open Material Browser**.

The Material Browser opens by default to the right of the settings window.

## ADDING A PREDEFINED MATERIAL TO A MODEL

- I Open the Material Browser.
- 2 Under Materials, search or browse for materials.
  - Enter a **Search** term to find a specific material by name, UNS number (Material Library materials only), or DIN number (Material Library materials only). If the

search is successful, a list of filtered databases containing that material displays under **Materials**.

- Click to open each database and browse for a specific material by class (for example, in the Material Library) or physics module (for example, MEMS).
- **3** When the material is located, right-click to **Add Material to Model**.

A node with the material name is added to the **Model Builder** and the **Material** page opens.

To clear the search field and browse, delete the search term and click **Search** to reload all the databases.



g

ТīЪ

Always review the material properties to confirm they are applicable for the model. For example, **Air** provides temperature-dependent properties that are valid at pressures around 1 atm.

Working on the Material Page

## VIEWING A SUMMARY OF THE MATERIAL PROPERTIES

- I Add a material and geometry to the model.
- **2** In the **Model Builder**, click the material node to open the **Material** page in the settings window.

The Material page summarizes all the predefined data and has these sections:

- Geometric Scope: select the object Domain, Boundary, Edge (3D only), or Point to assign material to the geometry domain, boundary, edge or point.
- **Material Properties**: select and define specific material parameters to add to a model.
- Material Contents: lists all the default material property data. The table contains the **Property, Name, Value, Unit**, and the **Property group**. The **Property group** corresponds to the nodes in the **Model Builder** with the same name. If required, edit a default property **Value**.

#### ASSIGNING GEOMETRIC SCOPE TO A MATERIAL

C See Also

Working with Geometry

- I Add a material and geometry to the model.
- 2 On the Material page, from the Geometric entity level list, select Domain, Boundary, Edge (3D only), or Point. Selection from this list activates the button with the same name in the Graphics window.
- **3** Select Manual or All Domains, All Boundaries, All Edges, or All Points from the Selection list.

#### ADDING PREDEFINED MATERIAL PROPERTIES

- I Add a material to the model.
- 2 In the Model Builder, click the material node to open the Material page.



Review the default properties listed in the **Material Contents** table before adding new material properties.

See Figure 6-7. In this example, a **Viscous model** node is added to the **Model Builder**, and its associated properties are added to the **Material Contents** table. Any properties requiring **Values** are highlighted by warning signs ( $\triangle$ ) or stop signs ( $\bigcirc$ ) in the left-hand column.

4 Scroll through the Material Contents table to locate properties with a warning sign (1) in the column that indicates that it is missing data. Enter a Value into the

table next to the applicable property. In the example, the **Bulk viscosity** property requires data. The left column provides visual cues about the status of each property:

- A stop sign ( ) indicates that an entry in the **Value** column is required. It means that the material property is required by a physics interface but undefined.
- A warning sign (A) indicates that the material parameter is undefined. An entry is only required if the material property is used in the model.
- A green check mark (  $\checkmark$  ) indicates that the property has a **Value** and is currently being used in the physics of the model.
- Properties with no indication in the left column are defined but not currently used by any physics interface in the model.



Figure 6-7: Adding a material property to a model. Some properties may require data.

# n Tip

Ø

2D

3D

To delete a property group, right-click the property group node (in the **Model Builder**) and select **Delete** ( ). The **Basic** property group cannot be deleted.

Customizing the Appearance of a Material in the Graphics Window

Control or change the default appearance of a material in the Graphics window when working in the Materials or Physics interface sections.

For 2D models, only a change of color is possible.

For 3D models, the material appearance is with color and using the lighting model.

To display both color and texture for a customized 3D model material appearance, a Graphics Quality setting is required. From the main menu, select **Options>Preferences>Graphics** and then select **Quality** from the **Optimize for** list. Click **OK** and restart COMSOL Multiphysics for the changes to take effect.

Q See Also

Editing Preferences Settings

The default **Family** appearance is taken from the material selected, which has a suitable color (2D and 3D models), and texture (3D models) applied. Select another option from the **Family** list if required—**Air**, **Aluminum**, **Brick**, **Concrete**, **Copper**, **Gold**, **Iron**, **Lead**, **Magnesium**, **Plastic**, **Steel**, **Titanium**, or **Water**. Select **Custom** to make further

adjustments. The default custom settings are inherited from the material selected last from the **Family** list.



See About the Output Materials Properties, Table 6-7 for the defaults.

Specular Color, Diffuse Color, and Ambient Color

For each of these properties, click the **Color** button to assign a **Custom** specular color or select a standard color from the list—**Black**, **Blue**, **Cyan**, **Gray**, **Green**, **Magenta**, **Red**, **White**, or **Yellow**.

The combination of **Specular color**, **Diffuse color**, and **Ambient color** give a 3D object its overall color.

- **Specular color** is the color of the light of a specular reflection (specular reflection is the type of reflection that is characteristic of light reflected from a shiny surface).
- **Diffuse color** represents the true color of an object; it is perceived as the color of the object itself rather than a reflection of the light. Gets darker as the surface points away from the light (shading). As with Ambient color, if there is a texture, this is multiplied by the colors in the texture, otherwise it is as if it has a white texture.
- Ambient color is the color of all the light that surrounds an object; it is the color seen when an object is in low light. This color is what the object reflects when illuminated by ambient light rather than direct light. Creates the effect of having light hit the object equally from all directions. As with Diffuse color, if there is a texture, this is multiplied by the colors in the texture, otherwise it is as if it has a white texture.



For examples of specular, diffuse, and ambient light, which are related to these definitions, see About the 3D View Light Sources and Attributes.

#### Noise

The Noise check box is selected by default, with the default Normal vector noise scale and Normal vector noise frequency taken from the material. Enter other values as required, or click to clear the Noise check box.

• Noise is a texture which disturbs the normals when calculating lighting on the surface. This causes the surface to look rough and textured.

- Normal vector noise scale is the power of the noise texture, a high value creates a stronger texture of the surface. A value from 0-1.0 is suitable.
- Normal vector noise frequency is the size of the noise disturbances, a small value creates smaller features on the texture. A value between 0-10 is suitable.

#### Diffuse and Ambient Color Opacity

The default **Diffuse and ambient color opacity** is 1. Enter a different number as required.

#### Lighting Model

The default Lighting model—Blinn-Phong or Cook-Torrance—is based on the material. Select Simple instead as required.

The different lighting models provide a set of techniques used to calculate the reflection of light from surfaces to create the appropriate shading. For example, a specular highlight is the bright spot of light that appears on shiny objects when illuminated. Specular highlights are important in 3D computer graphics, as they provide a strong visual cue for the shape of an object and its location with respect to light sources in the scene.

If **Blinn-Phong** is selected, the default **Specular exponent** is 64. Enter another value as required. The Specular Exponent is the size of the specular highlight spot depends on the value of the patch and surface object's Specular Exponent property. Typical values for this property range from 1 to 500, with normal objects having values in the range 5 to 20. This model is particularly useful for representing shiny materials.

If **Cook-Torrance** is selected, the default **Reflectance at normal incidence** and **Surface roughness** are taken from the material. Enter other values as required. The Cook-Torrance lighting model accounts for wavelength and color shifting and is a general model for rough surfaces. It is targeted at metals and plastics, although can still be used to represent many other materials.

- Reflectance at normal incidence is the amount of incoming light (0-1) from the normal direction (of the surface) which is reflected.
- Surface roughness is a value which describes microreflectance on the surface. Higher values create a rougher look of the surface, with fewer highlights. A value from 0-1 is suitable.

#### ADDING OUTPUT PROPERTIES TO PREDEFINED MATERIALS



**Output Properties** is only accessible from the **Basic** material properties and with user defined property groups.

- I Add a material to the model.
- 2 In the Model Builder, click Basic to open the Property Group page. See Figure 6-4.

The **Property Group** tables are linked to other pages related to the selected material. Use the **Move Up** (  $\uparrow$  ), **Move Down** (  $\clubsuit$  ), and **Delete** ( $\clubsuit$  ) buttons to organize the tables as required.

- 3 Under Output Properties and Model Inputs, in the Quantities section:
  - **a** Browse the **Output Properties** list to locate the property to add.



About the Output Materials Properties

- b Right-click the property to Add items to the Output properties table or click theAdd button ( 4).
- **c** In the **Output properties** table, edit the **Expression** field directly in the table or by clicking the **Edit** button (**P**).

Use the Move Up (  $\uparrow$  ), Move Down (  $\downarrow$  ), and Delete ( $\blacksquare$  ) buttons to organize the table as required.

#### ADDING MODEL INPUTS TO PREDEFINED MATERIALS

- I Add a material to the model.
- 2 In the Model Builder, click the property group node (for example, Basic) to open the **Property Group** page.

The **Property Group** page tables display on other pages pertaining to the selected material.

**3** Browse the **Model Inputs** list. Right-click the property to **Add** items to the **Model inputs** table. Or click the **Add** button ( **4**).

C See Also Model Input Properties

#### ADDING LOCAL PARAMETERS TO PREDEFINED MATERIALS

- I Add a material to the model.
- 2 In the Model Builder, click the property group node (for example, Basic) to open the **Property Group** page.
- 3 Under Local Parameters, enter Parameters and Expressions as required.

Use the Move Up (  $\uparrow$  ), Move Down (  $\downarrow$  ), and Delete ( $\clubsuit$  ) buttons to organize the table as required.

Callso See Also Adding a User-Defined Property Group

# Adding a User-Defined Property Group

- I Open or create a model file and add a material (predefined or user defined) to the model.
- 2 In the Model Builder, right-click any material node (for example, Copper) and select User defined property group.

A User defined property group node is added to the Model Builder, and a Property Group page opens in the settings window.

**3** Follow the instructions to define the property group.



Working on the Property Group Page

# User-Defined Materials and Libraries

User-defined materials provide the flexibility needed to design your model and experiments using a combination of existing material properties and properties you define yourself. You can also create your own material database (library) to include materials you use often.

In this section:

- · Adding User-Defined Materials to a Model
- Adding an External Material Library
- Creating Your Own User-Defined Libraries
- · Restoring a Deleted User-Defined Library

# Adding User-Defined Materials to a Model

- I Open or create a model file.
- 2 In the Model Builder, right-click Materials and select Material.

A **Material** node is added to the **Model Builder**, and an empty **Material** page opens in the settings window.

- **3** Follow the instructions as required to define your material:
  - **a** Working on the Material Page
  - **b** Working on the Property Group Page
  - c Adding a User-Defined Property Group
  - **d** Adding a Function to the Material

## RENAMING MODEL BUILDER NODES OR EDITING NODE PROPERTIES

If required, edit or add comments to the Node Properties.

- I In the Model Builder, right-click any node and select Properties (
- **2** On the Node Properties page, enter the Name, Author, Version, or Comments about the node. The Tag and Date created fields cannot be changed.

The node's **Name** can be edited by right-clicking directly on the node and selecting **Rename** ( $\bigotimes$ ).

I In the Material Browser window's toolbar, click the Add Material Library ( ) button. You can also right-click any database under Materials and select Add Material Library ( ).

The **Choose Material Library** window opens. From the **Save as type list**, typically choose **XML File (.xml)**, to find material libraries stored as XML files, which is the standard format.

2 Navigate to a material library file and click **Save**. For example, MatWeb provides a service where you can export technical datasheets from MatWeb's collection in the format for a COMSOL material library. For more information about this service, visit www.matweb.com.

# Creating Your Own User-Defined Libraries

When you first open the **Material Browser**, an empty **User-Defined Library** is available for you to start creating your own library of materials.



I In the Material Browser, click the Add Material Library button ( iii) ) on the toolbar (or right-click User Defined Library and select the same option).



Figure 6-8: Creating and adding multiple user-defined libraries to the Material Browser.

**2** In the **Choose Material Library** dialog box, navigate to the folder on the computer where the empty **User Defined Library** database is located. The location of the file varies based on your installation. For example, if the installation is on your hard drive, the file path might be similar to

C:\Users\Your_Name\.comsol\v43\materials. You can also search for the file name User_Defined_Library.mph.

- **3** Right-click the User_Defined_Library.mph and select **Copy**. Rename the copied file.
- 4 Click Save. The empty database, with a new name, is added to the Material Browser.

## RENAMING THE DEFAULT USER-DEFINED LIBRARY

In the **Material Browser**, right-click the **User-Defined Library** node and in the **Enter New Name** window, define a **Name** meaningful to the contents of the library. This does not change the library file name, only the name that displays on the screen.

#### CREATING AND RENAMING ADDITIONAL USER-DEFINED LIBRARIES

Navigate to the folder where the empty database called User_Defined_Library.mph is located. Copy the file at its root location and give it a new name, for example, My_Metals.mph. Then follow the instructions above to add the library to the Material Browser. See Figure 6-8.

#### ADDING A PREDEFINED MATERIAL TO THE USER-DEFINED LIBRARY

- I Open the Material Browser and add any predefined material to a model in the Model Builder.
- 2 Right-click the material node and select Add Material to Library.
- **3** Right-click to **Rename Selected** material that has been added to your library. See Figure 6-9.



Figure 6-9: Adding a predefined material to a new user-defined library.

#### REMOVING A MATERIAL FROM A USER-DEFINED LIBRARY

Open the Material Browser. Locate the material to remove. Right-click the material and select **Remove Selected** (**ix**).

# Restoring a Deleted User-Defined Library

If the **User-Defined Library** node is deleted in error from the **Material Browser**, you can restore it by following the steps in Creating Your Own User-Defined Libraries.

# Material Properties Reference

The material properties for the predefined materials are accessible from most physics interfaces. Using this information, either create a material property group or define a completely new material.

On the **Basic>Property Group** page, add **Output properties** from the **Quantities** subsection. For all **Property Group** pages, **Model inputs** can be added.

In this section:

- About the Output Materials Properties
- Model Input Properties
- Predefined Built-In Materials for all COMSOL Modules
- Material Property Groups Descriptions

About the Output Materials Properties



Some of these properties are only applicable to physics interfaces available with the add-on modules.

## BASIC MATERIAL PROPERTIES

These material properties can be added to models from two pages— Material and Property Group. In both cases the properties belong to the Basic property group.

- When this information is accessed from the **Basic>Property Group** page, it is listed under **Quantities>Output Properties** and **Variable** is listed in the table.
- When this information is accessed from the Material page, it is listed under Material Properties>Basic Properties and Name is listed in the tables.

TABLE 6-I: BASIC MATERIAL PROPERTIES

PROPERTY	NAME/VARIABLE	SI UNIT
Absorption Coefficient	kappaR	l/m
Characteristic Acoustic Impedance	Z	Pa·s/m
Coefficient of Thermal Expansion	alpha	I/K

#### TABLE 6-1: BASIC MATERIAL PROPERTIES

PROPERTY	NAME/VARIABLE	SI UNIT
Compressibility of Fluid	chif	I/Pa
Density	rho	kg/m ³
Diffusion Coefficient	D	m ² /s
Dynamic Viscosity	mu	Pa·s
Electrical Conductivity	sigma	S/m
Electron Mobility	mue	m ² /(Vs)
Heat Capacity at Constant Pressure	Ср	J/(kg·K)
Isotropic Structural Loss Factor	eta s	I
Mass Flux	Mf	kg/(m ² ·s)
Mean Molar Mass	Mn	kg/mol
Permeability	kappa	m ²
Poisson's Ratio	nu	I
Porosity	epsilon	I
Ratio of Specific Heats	gamma	I
Relative Permeability	mur	1
Relative Permittivity	epsilonr	1
Resistivity	res	$\Omega$ m
Scattering Coefficient	sigmaS	I/m
Speed of Sound	ср	m/s
Storage	S	I/Pa
Surface Emissivity	epsilon rad	I
Thermal Conductivity	k	W/(m⋅K)
Young's Modulus	E	Pa

The coefficient of thermal expansion (CTE) and the resistivity temperature coefficient have the SI unit 1/K. COMSOL Multiphysics translates this into the Fahrenheit temperature unit using an offset. This means that you do not get the expected results.



Use caution when a model uses the coefficient of thermal expansion or the resistivity temperature coefficient and the unit system's temperature is not Kelvin.

# GAS MODELS

This material property group (including all associated properties) can be added to models from the **Material** page.

TABLE 6-2: GAS MODELS MATERIALS

PROPERTY GROUP AND PROPERTY	NAME/VARIABLE	SI UNIT		
IDEAL GAS				
Heat capacity at constant pressure	Cp	J/(kg·K)		
Ratio of specific heats	gamma	I		
Mean molar mass	Mn	kg/mol		
Specific gas constant	Rs	J/(kg·K)		

## SOLID MECHANICS

These material property groups (including all associated properties) can be added to models from the **Material** page.

TABLE 6-3: SOLID MECHANICS MATERIALS

PROPERTY GROUP AND PROPERTY	NAME/VARIABLE	SI UNIT	
LINEAR ELASTIC MATERIAL			
YOUNG'S MODULUS AND POISSON'S RATIO			
Young's modulus	E	Pa	
Poisson's ratio	nu	I	
LAMÉ CONSTANTS			
Lamé constant $\lambda$	lambLame	Pa	
Lamé constant µ	muLame	Pa	
BULK MODULUS AND SHEAR MODULUS			
Bulk modulus	К	Pa	
Shear modulus	G	Pa	
PRESSURE-WAVE AND SHEAR-WAVE SPEEDS			
Pressure-wave speed	cl	m/s	
Shear-wave speed	ct	m/s	
ORTHOTROPIC			
Young's modulus	Evector	Pa	
Poisson's ratio	nuvector	I	
Shear modulus	Gvector	Pa	
Loss factor for orthotropic Young's modulus	eta_Evector	Pa	
Loss factor for orthotropic shear modulus	eta_Gvector	Pa	

TABLE 6-3: SOLID MECHANICS MATERIALS

PROPERTY GROUP AND PROPERTY	NAME/VARIABLE	SI UNIT
ANISOTROPIC		
Elasticity matrix	D	Pa
Loss factor for elasticity matrix D	eta_D	Pa
ELASTOPLASTIC MATERIAL MODEL		
Yield stress level	sigmags	Pa
lsotropic tangent modulus	Et	Pa
Kinematic tangent modulus	Ek	Pa
LINEAR VISCOELASTIC MATERIAL		
Long-term shear modulus	Gv	Pa
Bulk modulus	К	Pa
HYPERELASTIC MATERIAL		
NEO-HOOKEAN		
Lamé constant $\lambda$	lambda	Pa
Lamé constant µ	mu	Pa
MOONEY-RIVLIN		
Model parameters	C10	Pa
Model parameters	C01	Pa
MURNAGHAN		
Murnaghan third-order elastic moduli	I	Pa
Murnaghan third-order elastic moduli	m	Pa
Murnaghan third-order elastic moduli	n	Pa
Lamé constant $\lambda$	lambLame	Pa
Lamé constant µ	muLame	Pa
POROELASTIC MATERIAL		
Biot-Willis coefficient	alphaB	I
Porosity	epsilon	I
Permeability	kappa	m ²



The *Geomechanics Module User's Guide* has a list of **Geomechanics Material Model** properties.



The **Hyperelastic Material** and **Elastoplastic Material** features are available with the Nonlinear Structural Materials Module.

# ELECTROMAGNETIC MODELS

These material property groups (including all associated properties) can be added to models from the **Material** page.

TABLE 6-4: ELECTROMAGNETIC MODELS MATERIALS

PROPERTY GROUP AND PROPERTY	NAME/VARIABLE	SI UNIT
LINEARIZED RESISTIVITY		
Reference resistivity	rho0	$\Omega$ m
Resistivity temperature coefficient	alpha	I/K
Reference temperature	Tref	К
LOSS TANGENT		
Loss tangent	delta	-
Relative permittivity (real part)	epsilonPrim	I
DIELECTRIC LOSSES		
Relative permittivity (imaginary part)	epsilonBis	1
Relative permittivity (real part)	epsilonPrim	1
Dielectric loss factor	eta_epsilon	
REFRACTIVE INDEX		
Refractive index	n	I
Refractive index, imaginary part	ki	-
MAGNETIC LOSSES		
Relative permeability (real part)	murPrim	-
Relative permeability (imaginary part)	murBis	-
HB CURVE		
Local Parameters	normB	-
Magnetic field norm	normH	A/m
BH CURVE		
Local Parameters	normH	-
Magnetic flux density norm	normB	Т

# PIEZOELECTRIC MODELS

These material property groups (including all associated properties) can be added to models from the **Material** page.

TABLE 6-5: PIEZOELECTRIC MATERIALS

PROPERTY GROUP AND PROPERTY	NAME/VARIABLE	SI UNIT
STRESS-CHARGE FORM		
Elasticity matrix cE	cE	Pa
Coupling matrix	eES	C/m ²
Relative permittivity	epsilonrS	I
Loss factor for elasticity matrix	cE	I
Loss factor for coupling matrix	e	I
Loss factor for electrical permittivity	εS	I
STRAIN-CHARGE FORM		
Compliance matrix sE	sE	I/Pa
Coupling matrix	dET	C/N
elative permittivity	epsilonrT	I
oss factor for compliance natrix	sE	I
oss factor for coupling matrix	d	I
oss factor for electrical	εТ	I

# Model Input Properties

The following model input properties can be added to models from the **Property Group** page (vector fields have three components).

TABLE 6-6: MODEL INPUT PROPERTIES

PROPERTY	NAME/VARIABLE		
Temperature	Т		
Absolute Pressure	pА		
Electric Field	{EI, E2, E3}		
Magnetic Field	{HI, H2, H3}		
Magnetic Flux Density	{BI, B2, B3}		
Velocity Field	{ul, u2, u3}		

TABLE 6-6: MODEL INPUT PROPERTIES

PROPERTY	NAME/VARIABLE
Frequency	freq
Stress Tensor	{F1, F2, F3}
Strain Reference Temperature	Tempref
Concentration	с

Predefined Built-In Materials for all COMSOL Modules

The **Built-In** database contains material data for some common materials of different types. This database is available for all users and has data for these materials.



The material properties for the materials in the Built-in material database are typical for the type of material but do not represent exact values for a specific grade or quality of the material.



A default appearance for 3D models is applied to each material as indicated.



See Working on the Material Page for more information about customizing the material's appearance in the Graphics window.

TABLE 6-7	BUILT-IN MATERIALS	AND 3D MODEL	DEFAULT APPEARANCE SETTINGS	
IN COLL O / .	BOILT 114 1 10 (1 E1(1) (E0			

MATERIAL	DEFAULT DEFAULT FAMILY LIGHTING MODEL		CUSTC	CUSTOM DEFAULT SETTINGS				
			NORMAL VECTOR NOISE SCALE	NORMAL VECTOR NOISE FREQUENCY	DIFFUSE AND AMBIENT COLOR OPACITY	SPECULAR EXPONENT	REFLECTANCE AT NORMAL INCIDENCE	SURFACE ROUGHNESS
Air	Air	Simple	0.08	3	0.1	-	-	-
Acrylic plastic	Custom	Blinn- Phong	0	I	I	1000	-	-
Alumina	Aluminum	Cook-	0	I	I	-	0.9	0.1
Aluminum 3003-H18		Torrance						
Aluminum 6063-T83								
Aluminum								
American red oak	Custom	Cook- Torrance	0.5	0.3	I	-	0.3	0.6
Beryllium copper UNS C17200	Custom	Cook- Torrance	0	I	1	-	0.9	0.1
Brick	Brick	Cook- Torrance	0.4	10	I	-	0.3	0.6
Cast iron	Custom	Cook- Torrance	0.14	2.1	I	-	0.1	0.1
Concrete	Concrete	Cook- Torrance	0.45	10	I	-	0.3	0.6
Copper	Copper	Cook- Torrance	0	I	I	-	0.9	0.17
FR4 (Circuit Board)	Custom	Cook- Torrance	0.05	2.1	I	-	0.3	0.6
Glass (quartz)	Custom	Cook- Torrance	0	I	0.1	-	0.99	0.02
Granite	Custom	Cook- Torrance	0.6	1.7	I	-	0.3	0.6

TABLE 6-7:	BUILT-IN MATERIALS AND	D 3D MODEL DEFAULT	APPEARANCE SETTINGS

MATERIAL	DEFAULT FAMILY	DEFAULT LIGHTING MODEL	сизто	CUSTOM DEFAULT SETTINGS				
			NORMAL VECTOR NOISE SCALE	NORMAL VECTOR NOISE FREQUENCY	DIFFUSE AND AMBIENT COLOR OPACITY	SPECULAR EXPONENT	REFLECTANCE AT NORMAL INCIDENCE	SURFACE ROUGHNESS
High-strength alloy steel	Custom	Cook- Torrance	0	I	I	-	0.99	0.12
Iron	Iron	Cook- Torrance	0	I	I	-	0.99	0.14
Magnesium AZ31B	Magnesium	Cook- Torrance	0	I	I	-	0.3	0.1
Mica	Custom	Blinn- Phong	0	I	0.3	20	-	-
Molybdenum	Custom	Cook- Torrance	0	I	I	-	0.3	0.1
Nimonic alloy 90	Custom	Cook- Torrance	0	I	I	-	0.3	0.1
Nylon	Custom	Blinn- Phong	0	I	I	500	-	-
Lead Zirconate Titanate (PZT-5H)	Lead	Cook- Torrance	0	I	I	-	0.3	0.1
Silica glass	Custom	Cook- Torrance	0	I	0.1	-	0.99	0.02
Silicon	Custom	Cook- Torrance	0	I	I	-	0.7	0.5
Polysilicon	Custom	Cook- Torrance	0	I	I	-	0.7	0.5
Solder, 60Sn-40Pb	Custom	Cook- Torrance	0	I	I	-	0.9	0.1
Steel AISI 4340	Steel	Cook- Torrance	0	I	I	-	0.9	0.1
Structural steel	Custom	Cook- Torrance	0	I	I	-	0.9	0.3

MATERIAL	DEFAULT FAMILY	DEFAULT LIGHTING MODEL	CUSTOM DEFAULT SETTINGS				1	
			NORMAL VECTOR NOISE SCALE	NORMAL VECTOR NOISE FREQUENCY	DIFFUSE AND AMBIENT COLOR OPACITY	SPECULAR EXPONENT	REFLECTANCE AT NORMAL INCIDENCE	SURFACE ROUGHNESS
Titanium beta-21S	Titanium	Cook- Torrance	0	I	I	-	0.9	0.1
Tungsten	Custom	Cook- Torrance	0	I	I	-	0.9	0.15
Water, liquid	Water	Cook- Torrance	0.2	0.2	0.2	-	0.7	0.05

TABLE 6-7: BUILT-IN MATERIALS AND 3D MODEL DEFAULT APPEARANCE SETTINGS

# Material Property Groups Descriptions

The following material property groups are available for the entire COMSOL Multiphysics product line (some groups are only applicable to physics interfaces in some of the add-on modules):

Basic: Contains over 25 basic material properties for use with all materials.



See About the Output Materials Properties for a complete list.

## Gas Models

**Ideal Gas:** In gas models, this property group adds the heat capacity at constant pressure, ratio of specific heats, mean molar mass, and specific gas constant equations.

Electromagnetic Models

**Linearized Resistivity:** To define the electric resistivity (and conductivity) as a linear function of temperature.

**Loss Tangent:** Allows the specification of a loss tangent for dielectric losses or takes it from the material. Assumes zero conductivity.

**Dielectric Losses:** Allows the specification of the real and imaginary parts of the relative permittivity or takes it from the material.

**Refractive Index:** Allows the specification of the real and imaginary parts of the refractive index or takes it from the material. This assumes a relative permeability of unity and zero conductivity.

**Magnetic Losses:** Allows the specification of the real and imaginary parts of the relative permeability or takes it from the material.

**HB Curve:** Allows the use of a curve that relates magnetic flux density B and the magnetic field H.

**BH Curve:** Allows the use of a curve that relates magnetic flux density B and the magnetic field H.

Solid Mechanics Models

**Young's Modulus and Poisson's Ratio:** In linear elastic materials, Young's modulus defines the modulus of elasticity and is the spring stiffness in Hooke's law. Poisson's ratio defines the normal strain in the perpendicular direction, generated from a normal strain in the other direction.

**Lamé Constants:** In linear elastic materials, the first and second Lamé constants  $\lambda$  and  $\mu$  are linear elastic material property constants.

**Bulk Modulus and Shear Modulus:** A linear elastic material property where the bulk modulus is a measure of the solid's resistance to volume changes. The shear modulus is a measure of the solid's resistance to shear deformations.

**Pressure-Wave and Shear-Wave Speeds:** A linear elastic material property where the pressure-wave speed (longitudal wave speed) and the shear-wave speed (transverse wave speed) are specified.

**Orthotropic:** A linear elastic material property that has different properties in orthogonal directions; its stiffness depends on those properties.

**Anisotropic:** A linear elastic material property that has different material properties in different directions; the stiffness comes from the symmetric elasticity matrix.

**Elastoplastic Material Model:** An elastoplastic property group adds these equations: yield stress level, kinematic tangent modulus, and isotropic tangent modulus.

**Geomechanics Material Model:** See the *Geomechanics Module User's Guide* for details.

**Linear Viscoelastic Material:** Viscoelastic materials are those that exhibit both elastic and viscous behavior when they deform. This property group adds the long-term shear modulus and bulk modulus equations.

**Hyperelastic Material:** In hyperelastic materials the stresses are computed from a strain energy density function. They are often used to model rubber, but also used in acoustoelasticity.

**Neo-Hookean:** A hyperelastic material property with two model parameters. The model is based on modified strain invariants.

**Mooney-Rivlin:** A hyperelastic material property with three model parameters. The model is based on modified strain invariants.

**Murnaghan:** A hyperelastic material property with five model parameters. The model is based on modified strain invariants and is typically used in acoustoelasticity.

**Poroelastic Material:** Has three model parameters, Biot-Willis coefficient, porosity, and permeability for porous material.

Piezoelectric Models

**Stress-Charge Form:** Used to express the constitutive relations using the elasticity matrix, coupling matrix, and relative permittivity equations.

**Strain-Charge Form:** Used to express the constitutive relations using the compliance matrix, coupling matrix, and relative permittivity equations.

Electrochemistry

Electrode Potential: See the Batteries & Fuel Cells Module User's Guide for details.

**Electrolyte Conductivity:** See the *Batteries & Fuel Cells Module User's Guide* for details.

Linearized Resistivity: See the Batteries & Fuel Cells Module User's Guide for details.

Species Properties: See the Batteries & Fuel Cells Module User's Guide for details.

# Using Functions

In this section:

- Adding a Function to the Material
- Example of Defining an Analytic Function

# Adding a Function to the Material

Material functions are either automatically added to the **Model Builder** sequence (usually with materials from the **Model Library**) or functions can be added based on individual requirements:

- I Add a material to the model.
- 2 In the Model Builder, right-click a property group node, for example, Basic.
- **3** Select one of the following from the **Functions** list:
  - Select **Analytic** to extend properties with the ability to bind parameters during function calls.
  - Select **Interpolation** to interpolate from data that can be both structured (defined on a grid) or unstructured (defined on a generic point cloud).
  - Select **Piecewise** if there is one material property that has different definitions on different intervals. The intervals must not overlap, and there cannot be any holes between intervals.
    - Example of Defining an Analytic Function In the COMSOL Multiphysics Reference Guide:



- Analytic Functions
- Interpolation Functions
- Piecewise Functions

# 冒 Tip

Once a function is created, it can be used for any property in the same property group.

Assume that you want to define Young's modulus for a material as a function of pressure and temperature. You can name the function young(p,T) and use the expression 2e10+1e6*p-1e8*T to define the function.

- I Open the Material Browser.
- **2** Search or browse for a material to add to the model.
  - a In the Material Library, open the Cast Irons folder.
  - b From the list, right-click A297 HI (UNS J94003) to Add Material to Model.

The material is added to the **Model Builder** with a **Basic** property group containing Piecewise functions. Observe that Young's Modulus is not automatically added.

- 3 Add a Young's Modulus property to the material.
  - a In the Model Builder, click the material node (in this example, A297 HI (UNS J94003)).
  - **b** On the Material page, click to expand the Material Properties section. Under Basic Properties, right-click Young's Modulus and Add to Material.

A **Young's modulus** property is added to the undefined properties table in the **Basic** property group.

4 In the Model Builder, under the A297 HI (UNS J94003) node, right-click Basic and select Functions>Analytic.

5 On the Analytic settings window, enter young in Function Name.

X ² main Analytic	- 8
💅 Plot 🛛 🧕 Create	Plot 🚨
▼ Function Name	2
Function name:	young
▼ Parameters	
Expression:	2e10+1e6*p-1e8*T
Arguments:	р, Т
Derivatives:	Manual 👻
Argument	Partial derivative
p,T	1e6,-1e8
û 🕂 🐱	
Argument:	p,T
Partial derivative:	1e6,-1e8

- 6 Under Parameters:
  - a In the Expression field enter 2e10+1e6*p-1e8*T.
  - **b** In the **Arguments** field enter **p**, **T**.
  - c Select Manual from the Derivatives list.
  - d In the table, in the Argument column, enter p, T.
  - e In the Partial derivative column, enter 1e6, -1e8.

The function young can now be used to define the Young's modulus in your material.

COMSOL Multiphysics must know the derivative of a function if a variable is being used that depends on the solution in a function argument. This is why in this example a **Manual** derivative is used. The d operator can be used to compute derivatives of a function.

If **Auto** is used while defining the **Derivatives** parameter, COMSOL Multiphysics uses the d operator on the expression to get the derivatives. In this case, under **Advanced**, select the **May produce complex output for real arguments** check box if the defined function works similarly to sqrt, that is, if it sometimes returns complex values for real-valued input.

7 Click the material node (in this example, A297 HI (UNS J94003)). On the Material settings window, under Material Contents, enter young(p[1/Pa],T[1/K])[Pa] in the Value column (in the Young's modulus row).

Ма	terial Contents				
	Property	Name	Value	Unit	Property group
Δ	Young's modulus	E	[	Pa	Basic
	dL	dL	dL(T[1		Basic
	CTE	CTE	CTE(T[	1/K	Basic
	Thermal conductivity	k	k(T[1/	W/(	Basic
	Coefficient of therma	alpha	alpha(	1/K	Basic
	Density	rho	rho(T[	kg/	Basic

Click the **Basic** node to observe that the **Young's modulus** analytic function is defined on the **Property Group** settings window under **Output properties**. See Figure 6-10.

output i toperties and w	lodel Inputs	i			
Quantities					
Model Inputs					
Output Properties					
•					
Output properties	Variable	Supression	Ilait	Cize	*
Output properties Property	Variable	Expression	Unit	Size	*
- Output properties Property Coefficient of thermal	alpha ;	alpha(T[1/K])[1/K]+(	1/K	3x3	
Output properties Property					* 

Figure 6-10: A Young's Modulus property is defined for an Analytic function.

# Building a COMSOL Model

This chapter explains a range of methods and topics used when building models in COMSOL Multiphysics: From working with the Model Wizard and fundamental concepts for the Model Builder to the use of units.

In this chapter:

- The Model Wizard and Model Builder
- Model Administration
- Showing and Expanding Advanced Physics Sections
- The Physics Feature Nodes
- Specifying Model Equation Settings
- Periodic Boundary Conditions
- Calculating Accurate Fluxes
- Using Load Cases
- Using Units

# The Model Wizard and Model Builder

When COMSOL is opened to create a model, the **Model Wizard** opens by default to guide you through selecting the space dimension, physics interfaces, and study type.



The physics interfaces contain predefined physics descriptions and equations for a variety of engineering and scientific disciplines, from acoustics to structural mechanics. You can also define your own equations using the options under **Mathematics**. The last step of the **Model Wizard** is to select a **Study Type—Stationary, Time Dependent**, **Eigenfrequency**, or some other study type, depending on the analysis and the physics.

At any time you can create a new model or add physics. Right-click the **Root** (top) node and select **Add Model** to open the **Model Wizard**, or right-click a **Model** node and select **Add Physics**.

After clicking the Finish button ( **See** ) in the Model Wizard, the Model Builder window displays a model tree with a set of default nodes—Definitions, Geometry, Materials, Mesh, and nodes based on the physics interfaces selected (see Figure 7-1). The Model nodes and branches form the sequence of operations that define the model.

In this section:

• The Model Nodes in the Model Builder

- Adding Nodes to the Model Builder
- Deleting, Disabling, and Enabling Nodes

# The Model Nodes in the Model Builder

The **Model** nodes define the scope for all parts of a model, and all these nodes together form the input for a model. The position of the nodes in the vertical direction represent the order of execution of operations. Model files can have several **Model** nodes. For example, if you are setting up a system model using a 2D simplification for certain components and full 3D description for other components, these can both be added to the **Model Builder** to represent the different model requirements.



Figure 7-1: An example of the Model Builder default nodes.

These default nodes are normally added under a Model node:

- Definitions: Contains variables, selections, views, pairs, functions, probes, model couplings, and coordinate systems, which are defined locally for the model. See for information about using these local Definitions ( ≡ ) and Global Definitions ( ≡ ). Use Global Definitions to define Parameters, Variables, Functions, and Groups with a global scope—that is, not specific to one Model node.
- Geometry (A): Contains the sequence of geometric objects and operations (or imported CAD data) that defines the model geometry. You can also draw your own geometry in the Graphics window.

- Materials ( ): Contains the materials and material properties used as sources for material data in the model. See Materials for detailed information.
- Physics ( ): Any added physics or mathematical interface displays as a node under Model (Heat Transfer in Figure 7-1 for example).
- Mesh (SSS): Contains the sequences of mesh operations that defines the computational meshes for the model. When there is only one mesh in the model, its Mesh node appears directly under the Model node.

The Model settings windows contain the following sections:

#### MODEL IDENTIFIER

The model identifier is a string used to identify variables in the model. The default identifier for models is mod1, mod2, and so on, but you can change it in the **Identifier** field.

#### MODEL SETTINGS

This section contains general settings for the model, which you normally do not need to change:

#### Unit System

The default setting in the **Unit system** list, **Same as global system**, is to use the global unit system, which you specify in the root node's settings window. If you want to use another unit system in a model, select it from this list.

#### Spatial Coordinates

The default names for the spatial coordinates are x, y, and z for 3D as well as planar 1D and 2D geometries. For axisymmetric geometries, the default names for the spatial coordinates are r,  $\varphi$  (**phi**), and z. If you use the geometry to represent something else than space, or if you for some other reason want to use other names for the spatial coordinates, you can change the names in the fields for the **First**, **Second**, and **Third** coordinate under **Spatial coordinates**. The field labels include the default spatial coordinate names in parentheses.

Note

You cannot use the variable for the time, t, as a spatial coordinate name.

## Geometry Shape Order

The setting in the **Geometry shape order** list determines the order of the curved mesh elements that determine the geometry shape. The default setting is **Automatic**, but it is also possible to select an order such as **Linear**, **Quadratic**, or **Cubic**. The default setting allows for automatic reduction of the order in some cases.

	• Editing Node Properties, Names, and Identifiers
0	Setting the Unit System for Individual Models
See Also	• Curved Mesh Elements in the COMSOL Multiphysics Reference Guide

# Adding Nodes to the Model Builder

In the **Model Builder**, right-click any node to open its context menu. Once a node is highlighted, right-click anywhere in the **Model Builder** to open the context menu, which lists all the features available to that particular node on that branch of the tree.



Figure 7-2: A context menu opens when you right-click any node in the Model Builder.

#### ABOUT THE SEQUENCE OF OPERATIONS

COMSOL Multiphysics evaluates most of the branch nodes in the **Model Builder** from the top-down as a *sequence of operations*. This makes it possible to, for example, to parameterize a model and rerun the simulation. COMSOL then re-evaluates each sequence, updating the geometry, mesh, and solution. Some nodes under a physics branch can override other nodes higher up in the sequence. How COMSOL Multiphysics treats those nodes depends if they are contributing or exclusive nodes.

**Q** See Also

Physics Exclusive and Contributing Feature Node Types

# Deleting, Disabling, and Enabling Nodes

You can change the contents, and actions, of the sequences by disabling and deleting nodes. A disabled node does not take part in the evaluation of a sequence. See Figure 7-2. Some nodes, such as container nodes and default nodes in the physics interfaces (see Physics Default Feature Nodes), cannot be disabled and deleted. When this is the case, the context menu does not have these options available.

- To disable selected nodes, right-click it and select **Disable** ( <a>2</a>) or press F3. The nodes are grayed out in the model tree to indicate that they are disabled.
- To enable disabled nodes, right-click and select **Enable** (⁽) or press F4.

To delete selected nodes, right-click the nodes and select **Delete** ( $\bigotimes$ ) or press Del (the Delete key). Confirm the deletion of nodes for it to take effect.

Instead of deleting and enabling variables and physics features to simulate various analysis cases (using different boundary conditions or sources, for example), use the selection of variable and physics features in the study steps' **Physics and Variables Selection** sections, or use *load cases* for solving cases with varying loads or constraints in a model.

	Using Load Cases
ত্	• Load Group
See Also	Constraint Group

Tip

# Model Administration

A variety of tasks can be done to organize and simplify the model building process. In this section:

- About the COMSOL Model File Formats
- Saving COMSOL Multiphysics Model Files
- Reverting to the Last Saved Model File
- Saving a Model Thumbnail Image
- Resetting the Model History
- Saving Recovery Files
- Working with Remote Servers
- Editing Node Properties, Names, and Identifiers
- Opening and Searching the Model Library
- Changing the Model Library Root Folder
- Updating the Model Library Using Model Library Update
- Adding a User Model Library
- Editing Preferences Settings
- Checking and Controlling Products and Licenses Used
- Borrowing Licenses
- Information About Memory Use
- Viewing Node Names, Identifiers, Types, and Tags

	Showing and Expanding Advanced Physics Sections
2	Changing the COMSOL Desktop Layout
See Also	<ul> <li>Introduction to the COMSOL Windows</li> </ul>

About the COMSOL Model File Formats

There are three COMSOL Multiphysics model file formats: MPH-files, Model Java-files, and Model M-files.

#### COMSOL MPH-FILES

The default standard file with the extension .mph. The file contains both binary and text data. The mesh and solution data are stored as binary data, while all other information is stored as plain text.

You can quickly save and load MPH-files. All the models in the COMSOL Multiphysics Model Library and the model libraries in the add-on modules are MPHfiles.

The MPH-files in the COMSOL model libraries can have two formats:

- Full MPH-files, including all meshes and solutions. In the Model Library these
  models appear with the o icon. If the MPH-file's size exceeds 25MB, a tooltip
  with the text "Large file" and the file size appears when you position the cursor at
  the model's node in the Model Library tree.
- Compact MPH-files with all settings for the model but without built meshes and solution data to save space on the DVD (a few MPH-files have no solutions for other reasons). You can open these models to study the settings and to mesh and resolve the models. It is also possible to download the full versions—with meshes and solutions—of most of these models through Model Library Update (see Updating the Model Library Using Model Library Update). In the Model Library these models appear with the library window, a No solutions stored message appears. If a full MPH-file is available for download, the corresponding node's context menu includes a Model Library Update item.

#### MODEL JAVA-FILES

Editable script files that contain sequences of COMSOL Multiphysics commands as Java code (see the *COMSOL Java API Reference Guide* for more information about these commands). You can compile these Java files and run them as separate applications. Edit the files in a text editor to add additional commands.

#### MODEL M-FILES

Model M-files are editable script files, similar to the Model Java-files, for use with MATLAB. Model M-files contain a sequence of COMSOL Multiphysics commands as a MATLAB M-file. Run the Model M-files in MATLAB like any other M-file scripts.

Also edit the files in a text editor to include additional COMSOL Multiphysics commands or general MATLAB commands.



Running files in the Model M-file format requires the COMSOL LiveLink[™] for MATLAB®.

	Saving COMSOL Multiphysics Model Files
Callso See Also	• Reverting to the Last Saved Model File
	Saving a Model Thumbnail Image
	Saving Recovery Files

# Saving COMSOL Multiphysics Model Files

	About the COMSOL Model File Formats
	Reverting to the Last Saved Model File
0	Saving a Model Thumbnail Image
See Also	• To learn how to build your own model library, see Changing the
	Model Library Root Folder.

#### SAVING AS A COMSOL MPH-FILE

If this is the first time saving a model or you want to update the file and keep the current name and format:

- I Click the Save button ( ]), press Ctrl+S, or from the File menu, select Save.
- 2 Navigate to a the location where you want to save the model and enter a File name.
- 3 Click Save.

If the model has been saved before and you want to save it in a different format or create a copy:

- I From the File menu, select Save As.
- 2 In the Save as type list, select the file type that you want to use.
- 3 Navigate to a the location where you want to save the model and enter a File name.

4 Click Save.

## SAVING AS A MODEL JAVA-FILE

- I From the File menu, select Save As Model Java-File.
- 2 Navigate to a the location where you want to save the model and enter a File name.
- 3 Click Save.

#### SAVING AS A MODEL M-FILE

- I From the File menu, select Save As Model M-File.
- 2 Navigate to a the location where you want to save the model and enter a File name.
- 3 Click Save.

# Reverting to the Last Saved Model File

To open the last saved version of the file and reinitialize the GUI, from the main menu, select **File>Revert to Saved**. Select **Yes** to continue, and **No** to cancel.

# Saving a Model Thumbnail Image

To illustrate the model you can save a model thumbnail image that displays in the **Root Node Properties** and when opening a model in the **Model Library**. To save the current COMSOL Multiphysics plot as a model thumbnail image, from the main menu, select **File>Save Model Thumbnail**. The model thumbnail is a copy of the current plot.

# Resetting the Model History

The Model Java-files and Model M-files contain the entire history of the model, including settings that are no longer part of the model. To reset the model history so that the files only include the settings that are part of the current model, from the main menu, select **File>Reset History**.

## Saving Recovery Files

COMSOL Multiphysics can store recovery files each time you start a solver. This is a preference setting that is initially active by default. To deactivate or activate the preference setting for automatic save of recovery files, open the **Preferences** dialog box from the **Options** menu and select **General**. Then, under **Recovery**, clear or select the

**Save recovery file** check box. This change takes effect the next time that you start COMSOL Multiphysics.

The update of the recover file occurs at the following events:

- After completing the solution for each time step specified as the output times in the **Times** field for a time dependent simulation.
- After completing each parameter step in a parametric simulation.
- After completing each successful Newton iteration for a nonlinear stationary simulation.

The recovery files are COMSOL Multiphysics MPH-files that represent the state at the time that they were saved. They make it possible to recover from a solver error, which can be especially useful for long time dependent or parametric runs. To open a recovery file, choose **Open Recovery File** from the **File** menu. The **Open Recovery File** dialog box lists all recovery files found in chronological order. The files are listed with the date and time when they were saved. When a recovery file is selected, click **OK** to open it in the COMSOL Desktop. Click **Delete** to remove the selected recovery file. Click the **Delete All** button to delete all recovery files.

Editing Preferences Settings See Also

# Working with Remote Servers

From the main **File** menu, you can connect and disconnect from a server, and import and export models.

# CONNECTING AND DISCONNECTING A SERVER

Select File>Client Server>Connect to Server or Disconnect from Server.

#### EXPORTING MODELS TO A SERVER

When running a COMSOL Multiphysics server on a remote computer you can export a Model MPH-file to that server.

- I From the File menu, select Client Server>Export Model to Server.
- 2 Enter the Server and Port details.
- **3** Enter the **Username** and **Password** details. The **Remember password** check box is selected by default. Click to clear as required.
- 4 Enter a Model name.
- 5 Click OK.

## IMPORTING MODELS FROM A SERVER

Import a Model MPH-file from a remote computer.

- I From the File menu, select Client Server>Import Model from Server.
- 2 Enter the Server and Port details.
- **3** Enter the **Username** and **Password** details. The **Remember password** check box is selected by default. Click to clear as required.
- 4 Enter the Model name to import.
- 5 Click OK.

# Editing Node Properties, Names, and Identifiers

All nodes, except container nodes, have a common set of node properties, some of which can be changed and some system generated properties that cannot be edited. The root node has additional information that provides an overview of the complete model file.

• To learn about how some of these properties can be viewed, see Viewing Node Names, Identifiers, Types, and Tags.

C See Also

• Variable Naming Convention and Scope

#### EDITING A MODEL IDENTIFIER FOR USE WITH VARIABLES

Use a *model identifier* to access variables throughout the model. The identifier is part of the full reference to variables (for example, when referring to variables in another model).



To edit the model Name, see Editing Node Properties.

To edit a model identifier, in the **Model Builder**, click a **Model** node. The **Model** page opens in the settings window. Edit the default identifiers (**mod I**, **mod 2**, and so on) as required in the **Identifier** field. See Figure 7-4 for an example.

#### RENAMING A NODE

To rename a node, in the **Model Builder**, click a node and select **Rename** ( $\langle \mathbf{X} \rangle$ ) or press F2. Enter a **New name** and click **OK**. The **Name** is both updated in the **Model Builder** and in the **Node Properties** section.

### EDITING NODE PROPERTIES

#### Opening the Properties Window

In the **Model Builder**, right-click a node and select **Properties** from the context menu (see Figure 7-2). The **Properties** window for that specific node replaces the settings window. The **Root** node includes only a settings window where you find a **Node Properties** section with properties that represent the entire model.

#### Node Properties

This section contains these fields:

- The **Name** field defaults to a system name for the node. Edit as required as a description for the node.
- The Tag is a unique system-defined tag for the node, which cannot be changed.
- The **Author** field contains the name of the author (creator) of the node. In addition to editing the author name manually, you can make a change for all nodes that you add later on by selecting **Options>Preferences** from the main menu and then select **User** and edit the username.

- The **Date created** field shows the node creation date and time.
- The Version and Comments fields are empty by default. Enter version numbers or comments to track model changes or changes to specific node contents.

#### **Used Products**

Under **Used Products**, any COMSOL module that is used by that node is listed. This makes it possible to identify which nodes that make use of the license for a certain module.

## Returning to the Settings Window

When you are finished editing the properties, right-click the node again and select **Settings** to return to the settings window.

#### ROOT NODE PROPERTIES

The settings window for the root node includes a **Node Properties** section with additional information about the model file. It also incudes the **Used Products** section and an additional section, **Model Thumbnail**, which contains a thumbnail image of the model.

#### Opening the Root Node Properties Window

To open the root node's settings window with the **Node Properties** section, click the top **Root** node in the **Model Builder**.

The following information displays in the settings window:

# Node Properties

- The **Name** field displays the file name as defined by the user. This field cannot be edited, but if the file name is changed, the new name displays here.
- The **Path** field displays the full path to the current MPH-file. When a new project is started, the field is empty until the MPH-file is saved for the first time. This field cannot be edited, but if the file path changes, the new path displays here.
- The **Program** field displays the name and build number for the version of COMSOL Multiphysics used. This field cannot be edited.
- The **Tag** field has a unique system-defined tag for the node. This field cannot be edited.
- The **Author** field contains the name of the author (creator) of the model (see above). Click the **Reset Author in Model** button to reset the author name for all nodes in the model to the name in the **Author** field for the root node.

- The **Date created** field contains the node creation date and time. This field cannot be edited.
- The **Date modified** field contains the date and time for the last time when the MPH-file was saved. This field cannot be edited.
- The Modified by field contains the name of the user who most recently saved the MPH-file. Changing the author name in the Author field and then clicking the Reset Author in Model button also resets the name in the Modified by field.
- The Version and Comments fields are empty by default. Enter version numbers or comments to track model changes or changes to specific file contents.

## Used Products

Under Used Products, any COMSOL module that is used by the file is listed.

## Model Thumbnail

Under **Model Thumbnail**, and only after some results are plotted, a thumbnail image displays representing the model.

#### Unit System

Select a Unit System. The default is SI. Other options are British engineering units, CGSA, MPa, EMU, ESU, FPS, IPS, Gravitational IPS, and None.

#### Font

Under Font, select a font Family and font Size from the lists.

Editing Preferences Settings



- Saving a Model Thumbnail Image
- Using Units

# Opening and Searching the Model Library

The Model Library contains sets of models that can be used for a variety of purposes. Each add-on module includes its own model library with models showing how to use the module within its application area. Each model includes full model documentation and a brief model description, including the solution times and information about the computer used for solving the model. These model descriptions appear at the bottom of the **Model Library** window when you select a model.

This section explains how to open the Model Library, search for a model, and open a model and its associated documentation.

- I From the main menu, select View>Model Library ( III).
- 2 Browse the available libraries or enter all or part of the model name or any other phrase or words or and click Search. By defaults, COMSOL searches for all words in the Search field; to search for a phrase, enclose it in quotation marks (for example, "plane stress"). The words can be part of the model's name or its documentation..

COMSOL models are named using an underscore between words (for example, *effective_diffusivity*) because the model name is also the name of the corresponding Model MPH-file. The underscore is required to form a valid filename so it is recommended that you, if you are not sure of the full name, enter only the first word in the **Search** field when searching for a model name.

To find models that use particular physics interfaces, you can use the physics interface tags. In the **Search** field, type one or more space-separated physics interface tags. For example, search for jh to find models that use the Joule Heating interface, or search for spf chds to find models that use the Single-Phase Flow and Transport of Diluted Species interfaces. Note that you might, for some searches, also find other models where a tag appears for other reasons somewhere in the model file or documentation.

- If you used a search and the search is successful, or if you just browse the model library folders, double-click a model file name, right-click the name and choose **Open Model**, or click the **Open Model** button to open the model file for the selected model. Click the **Open Model and PDF** button (or choose the corresponding option on the model's context menu) to open the model and its documentation as a PDF file. Click the **Open PDF** button to open the model documentation as a PDF file

E

Note

<mark>е</mark> Тір only. For a selected model you can also access the documentation in the **Help** window.

- If the search does not return any results, the Model Library window contains the message No Matching Model Found. Click the Refresh button ( C ) to return to the root Model Library folder list.
  - Changing the Model Library Root Folder
  - Updating the Model Library Using Model Library Update
  - The Model Library Window

See Also • The Help Window

2

• Adding a User Model Library

# Changing the Model Library Root Folder

After developing and saving your own models, it may be useful to change the **Model Library** root folder. This redirects COMSOL to a different folder where customized models can be stored. To add a user model library while keeping the installed model library, us the ability to add a user model library instead (see Adding a User Model Library).

- I From the main menu, select View>Model Library ( IIII ).
- 2 Click the Set Model Library Root button ( 📥 ).
- **3** In the **Model Library Root** box, navigate to the new root folder location or click **Make New Folder**.
- 4 Click **OK** to save the changes, or **Cancel** to exit without saving.

<ul> <li>Updating the Model Library Using Model Library Update</li> <li>The Model Library Window</li> </ul>		Opening and Searching the Model Library
• The Model Library Window	Q See Also	• Updating the Model Library Using Model Library Update
		The Model Library Window
Adding a User Model Library		Adding a User Model Library



Using the **Model Library Update** service requires Internet access. For a default installation, you also need to run COMSOL as administrator. See the section **Updates** for instructions on how you can modify your installation to avoid this restriction.



# COMSOL MPH-Files

The Model Library Update is a service that provides new and updated models for the model libraries. To update the model libraries, use the **Model Library Update** window, which contains new and updated models for the model libraries of the COMSOL products that your license includes:

I From the main menu, select View>Model Library Update ( ). Alternatively, click the Model Library Update toolbar button ( ) in the Model Library window or rightclick the node for a model with compact MPH-file; see the section COMSOL MPH-Files for an explanation of the concept of "full" and "compact" MPH-files.



If the Model Library Update window displays the message Your Model Library is up-to-date, no updated or new models are available.

- 2 In the **Model Library Update** window, a message displays confirming if your Model Library is up-to-date. If it is not, browse the list of new and updated models that appear with a description and image.
- **3** Choose which models to download by selecting or clearing the check boxes next to the model thumbnail images. By default all check boxes are selected. The latest documentation file as well as any supplementary files are included in the download for each model.
- **4** At the bottom of the **Model Library Update** window, click the **Download Selected** button to download the selected models, or click the **Download All** button to download all available models. The download time depends on the size of the files, which is listed for each model, and the bandwidth of the Internet connection.

After downloading new and updated models, click the **Refresh** button ( **C**^{*}) in the **Model Library** window to update the lists of models in the model libraries.

- Opening and Searching the Model Library
- Changing the Model Library Root Folder



- The Model Library Window
- Adding a User Model Library

# Adding a User Model Library

Add customized Model Library folders to the Model Library using the **Add Model** Library button (

- I From the main menu, select View>Model Library ( III).
- 2 Click the Add Model Library button (
- **3** In the **User Model Library** box, navigate to a location on your computer where you want to create a custom model library folder. Or click **Make New Folder**.



It is not possible to add a library identical to, containing, or being contained in, any already used library.

4 Click **OK** to save the changes, or **Cancel** to exit without saving.

To remove a user model library from the **Model Library** window, select it and click the **Remove Selected** button ( $i \times i$ ).

# Editing Preferences Settings

To make changes to how items are displayed throughout COMSOL Multiphysics, from the main menu select **Options>Preferences** and then edit the following settings in

the **Preferences** dialog box as required. Click the **Restore Defaults** button to restore the default values for all preference settings.

() Important For some setting changes, a message window displays to tell you that COMSOL Multiphysics needs to be restarted for the changes to take effect.

- General
- User Interface
- Show
- Expand Sections
- Model Builder
- Cluster Computing
- Geometry
- Graphics
- Results
- Builder Tools
- Temporary Files
- Memory and Processors
- Updates
- LiveLink Products

#### GENERAL

Select **Options>Preferences>General** from the main menu and then:

- Under Precision, edit the Input display precision or Table display precision levels. The defaults are 5 for both fields. If the check box is selected next to the Input display precision field, inputs in most fields that take a floating-point value as input always appear with full numerical precision when the field is active. The value in the Table display precision field control the display precision for data values in the result tables.
- Select a GUI Language—Chinese (Simplified), Chinese (Traditional), English (the default), French, German, Italian, Japanese, Korean, or Spanish. Click OK to exit and re-open COMSOL in order to display the GUI in the selected language.
- Under Help, when the Sticky help check box is not selected, it means the Help window always updates its contents to shows the relevant context help information

when clicking a window tab or on a model tree node in the **Model Builder**, regardless of which part of the help system is displayed in the **Help** window. When the **Preload help files** check box is selected, it means that the help files are preloaded when launching COMSOL Multiphysics. By preloading the help files the context help opens faster when it is used for the first time. From the **Help mode** list, select **Integrated** (the default) to show the help contents in a **Help** window that is integrated in the COMSOL Desktop environment or select **Web browser** to display the help contents in a separate web browser. See also The Help Window.

- Under Log it is possible to change the buffer size (in number of characters) of the Log window in the Log window size (characters) field. The default size is 300,000 characters. This buffer size also applies to the Log stored in the solvers for the last run.
- Under **Recovery**, the **Save recovery file** check box is selected by default to save recovery files during the solution process for time-dependent, parametric, and nonlinear solvers. Click to clear as required. See Saving Recovery Files for details.
- Under Username, edit the Name field to change the username.
- Under **History export**, select the **Include author** check box to add the author to the header of Model Java-files and Model M-files that you save.

# **USER INTERFACE**

In the Look and feel area, you can specify the Toolbar style:

- Select **COMSOL** (the default) to use a toolbar where the main tools appear as leftaligned icons in the blue area below the window's name. The settings window for a node has the same name as the node (**Block**, for example).
- Select **Classic** to use the toolbar look and feel from earlier versions of COMSOL, where the main tools appear as right-aligned icons in a grey area below the window's name. The name of all settings windows is **Settings**.



If you change the toolbar style, you must restart COMSOL for the change to take effect.



Any change to these settings are applied to new models or when a model has been created in a previous version of COMSOL (prior to version 4.3). These preferences can also be set by clicking the **Show** button ( $\blacktriangleright_{\overline{w}}$ ) in the **Model Builder** as detailed in Showing and Expanding Advanced Physics Sections, although those settings are only saved with the current model.

Use this section to control whether to show some more advanced nodes and sections. Select **Options>Preferences>Show** from the Main menu. Click **Select All**, **Deselect All**, **Reset to Default**, or **Copy to Model** as required. If you click **Copy to Model**, the software uses the specified preference settings immediately. The default is to show **Equation sections** and **Override and contribution**.

#### EXPAND SECTIONS



These settings are applied to new models or when a model has been created in a previous version of COMSOL (prior to version 4.3). These preferences can also be set by clicking the **Show** button (**T**) in the **Model Builder** as detailed in Showing and Expanding Advanced Physics Sections, although those settings are only saved with the current model.

Use this section to control if some sections in the settings windows for the physics interface nodes appear initially collapsed or expanded. Select

**Options>Preferences>Expand sections** from the Main menu. Click **Select All**, **Deselect All**, **Reset to Default**, or **Copy to Model** as required, or select the individual check boxes for the sections in the physics interface nodes' settings windows that you want to see expanded by default. If you click **Copy to Model**, the software uses the specified preference settings immediately.

The default setting is to not expand any of these sections.

#### MODEL BUILDER

Under Sorting, from one or both of the Definitions node sorting or Physics node sorting lists, select one of the following—Disabled in new models (the default), Enabled in new models, Always enabled, or Always disabled.

#### Enabled in New Models

When making a new model and **Enabled in new models** is selected:

- The physics interface nodes are organized by default based on the *space dimension* (domains, boundaries, edges, and points).
- The Global Definitions and Definitions nodes are organized by *type* (for example, Functions, Selections, and Coordinate Systems).

When an existing model is opened, and **Enabled in new models** is selected then:

- Right-click the physics interface node and select **Sort by Space Dimension** to organize the nodes by space dimension.
- Right-click the **Global Definitions** or **Definitions** node and select **Sort by Type** to organize the nodes by type.

For any model and when **Enabled in new models** is selected, right-click the physics interface, **Global Definition**, or **Definitions** node and select **No Sorting**.

#### Disabled in New Models

When making a new model and **Disabled in new models** is selected, the nodes are not sorted by default. When an existing model is opened, and **Disabled in new models** is selected then:

- Right-click the physics interface node and select **Sort by Space Dimension** to organize the nodes by space dimension.
- Right-click the **Global Definitions** or **Definitions** node and select **Sort by Type** to organize the nodes by type.

## Always Enabled

When **Always enabled** is selected, the nodes are always sorted. No options to change the sorting display in the context menu.

## Always Disabled

When **Always disabled** is selected, the nodes are never sorted. No options to change the sorting display in the context menu.



# Sorting Nodes by Space Dimension and Type

#### CLUSTER COMPUTING



See also Show Advanced Study Options where you can control the options for running COMSOL on a cluster from the **Study** node in the **Model Builder**. When **Save as default** is selected from the Study nodes, the **Preferences** window described in this section is where the current settings are saved.



Details for the cluster type settings are described in Cluster Computing in the COMSOL Multiphysics Reference Guide.

The following preference settings for cluster computing are available under Settings:

- Select a Cluster type—General (the default), HPCS 2008 (Windows HPC Server), WCCS 2003 (Windows Computer Cluster Server), OGS/GE (Open Grid Scheduler/ Grid Engine), or Not distributed.
- Select the MPD is running check box if required on Linux.
- Enter details about how to start on Linux in the Host file and Rsh fields.
- The default Scheduler is localhost.
- Enter a username in the User field.
- If you are using OGS/GE enter a **Queue name** for the cluster queue.
- Enter file paths (or use the defaults) for the following:
  - The defaults for the **Batch directory** and **External COMSOL batch directory path** are home on Linux and Mac and Documents on Windows.
  - The default for the **External COMSOL installation directory path** is the original installation file path.

Click the **Browse** button for the file path that you want to specify to browse the file system instead of typing the file path.

- Enter a **Prepend command** and **Postpend command** as required for adding commands before and after the main job commands, respectively.
- Enter the **Number of job restarts** if you want the process to restart if failing. The default value is 0 (that is, no job restarts).
- Enter a value for the **Alive time**, the interval time that the running process has before signalling that it is alive. The default is 300 seconds.

#### GEOMETRY

Select **Options>Preferences>Geometry** from the Main menu and then, in the **Geometry representation area**:

- Select the Default geometry representation—COMSOL kernel or CAD Import Module kernel (the Parasolid kernel).
- Select the **Switch kernel automatically** check box to make the software switch geometry kernel automatically when needed.

Under **Automatic rebuild** you can control if COMSOL automatically rebuilds the geometry sequence when you click a node outside of the **Geometry** branch. Select **On** from the **Default in new geometries** to make an automatic rebuild of the geometry the default behavior, or select **Off** to make no rebuilding the default behavior.

In the **Visualization** area, select the **Draw on work plane in 3D** check box to activate interactive drawing of 2D geometries directly on work planes in the 3D geometry.

Note

The CAD Import Module kernel requires the CAD Import Module.



The Geometry Node and Its Settings in the COMSOL Multiphysics Reference Guide

## GRAPHICS

Select **Options>Preferences>Graphics** from the Main menu and then:

#### Visualization

Under Visualization:

• Select a **Rendering** type—**OpenGL** (the default), **DirectX 9**, or **Software**. The software might change the rendering to use software rendering if the graphics hardware do not support the chosen rendering type.



If you change the renderer, you must restart COMSOL for the change to take effect.

• From the **Optimize for** list, **Performance** is the default. Select **Quality** if you are using the material appearance to display the details and "texture" that make water look like a liquid, for example. If **Performance** is selected, only the color appearance is displayed. Click **OK** to exit and re-open COMSOL in order to apply the changes.



Customizing the Appearance of a Material in the Graphics Window

• Select a **Multisampling—Off**, **Medium** (the default), or **High**. Multisampling uses multiple samples per pixel to improve the graphics by providing better antialiasing of edges. The exact number of samples for a setting depends on the graphics card and driver. Select **Off** to use the lowest number of samples, select **Medium** to use a value in-between the lowest and the highest, and select **High** to use the maximum supported samples per pixel.



Multisampling is only available with hardware rendering using graphics cards that support multiple samples per pixel.

- Select a **Detail—Normal** (the default), **Wireframe**, **Coarse**, or **Fine**. This controls the level of graphics rendering detail. Select **Wireframe** to speed up rendering of complex models or to improve visual appearance.
- The Show logo on canvas check box is selected by default and displays the COMSOL logo on the Graphics window. Click to clear the check box as required.

- The **Show materials** check box is selected by default and displays the material texture and color as defined in Customizing the Appearance of a Material in the Graphics Window.
- Select the **Show physics symbols** check box to display boundary condition symbols that are available with structural mechanics features. The check box is not selected by default.

# Q See Also

## Physics Symbols for Boundary Conditions

#### Precision

Under **Precision** you can specify the precision of the numerical values that appear as axis labels and color legend values:

- In the **Graph** field enter an integer between 1 and 15 for the precision (number of digits) for the values on the axes in 1D plots and graphs. The default setting is 5 digits.
- In the **2D axis** field, enter an integer between 1 and 15 for the precision (number of digits) for the values on the axes in 2D plots. The default setting is 4 digits.
- In the **3D** grid field, enter an integer between 1 and 15 for the precision (number of digits) for the values on the axes of the grid in 3D plots. The default setting is 3 digits.
- In the **Color legend** field, enter an integer between 1 and 15 for the precision (number of digits) for the values displayed on the color legend. The default setting is 5 digits.

## Animation

Under Animation, select a Codec—MJPEG Compressor or DV Video Encoder. The default is the first codec that the program finds on the computer.

# Font

Under Font:

- Select the Load system fonts check box to always load system fonts.
- Select a font **Family** and font **Size** (the default is 9).



The **Font** option is for the text that displays for plots in the **Graphics** window. The change is applied when creating a new model. You can also change the setting used for a model from the root node's settings window: in the **Model Builder** click the root node and edit as above.

## RESULTS

Select **Options>Preferences** from the Main menu and then click **Results**:

## Automatic Update of Plots

Under **Automatic update of plots** you can set the preferences for the updating result plots:

- Select the **Disable for new models** check box to always disable automatic update of plots for new models that you create.
- Select the **Disable for models loaded from file (override saved)** check box to always disable automatic update of plots for models that you open from file, such as models in the model libraries. The automatic update of plots is then disabled initially, regardless of the setting in the model.

If you want to activate automatic updates of plots for the current model, select the **Automatic update of plots** check box in the **Result** node's settings window.

## Convergence Plot

Under **Convergence plot**, you can specify preferences for the convergence plots that you can use to monitor the solver convergence:

- The **Generate convergence plots** check box is selected by default. Clear that check box if you do not want the software to generate convergence plots while computing the solution.
- For the convergence plots, enter a buffer size (in number of steps) in the **Convergence plot buffer size (steps)** field (default value: 10,000 steps).

#### Table

Under **Table**, the **Buffer size (rows)** controls the size of the buffer for storing table data. The default value is 10,000 rows.

#### Report

These preference settings control some properties for the report generator. In the **Default report style-sheet file** field type the full path and filename to a style sheet (.css-file) that you want to use as the default style sheet for reports of HTML format. Click **Browse** to browse to a file that contains the style sheet.

In the **Logotype file** field, type the full path and filename for an image file (on PNG or JPEG format) to use as the logotype. Click **Browse** to browse to the logotype file. If left empty, the COMSOL Multiphysics logotype appears in the report.

In the **Company** field, type the name of a company associated with the report if desired.

From the **Default image size** list you can select the default size for report images; choose between **Extra small**, **Small**, **Medium**, and **Large**. Similarly, use the **Default image type** list to specify the default type for the report images: **PNG**, **JPEG**, or **BMP**.

Select the **Prompt for update of table of contents in Microsoft Word** check box to make Microsoft® Word ask whether you want to update the table of contents when you first launch a report of this format. Such an update is necessary to generate page numbers in the table of contents, but you can choose to do the update after you have opened the document in Microsoft Word. By default this check box is not selected.

#### **BUILDER TOOLS**

These preference settings control some properties for the Physics Builder and its tools.

In the **Settings** area, select the **Enable Physics Builder** check box to make the Physics Builder available from the **File** menu.

In the **Editor** area you can specify some properties for the code editor:

- Select the **Auto indent** check box to activate automatic indentation (this is active by default)
- Select the **Spaces for tabs** check box to use spaces for the tabs, replacing tab characters with empty spaces (this is the default setting).
- Select the **Auto-close quotes** check box to automatically add a closing quotation mark when needed (this is the default setting).
- Specify the tab width in number of characters in the **Tab width** field. The default is 2 characters.

In the **Comments and documentation** area you can control whether to show the nodes for adding comments and documentation to the physics interfaces and applications that you create:

- From the **Show comments** list, choose one of the following options:
  - All to display all **Comments** nodes for adding comments about the functionality in the specific feature or functionality that the node implements (the default setting).
  - **Changed** to display only **Comments** nodes where the contents has changed (that is, empty **Comments** nodes are not displayed).
  - None to not display any Comments nodes.
- From the Show documentation list, choose one of the following options:
  - All to display all **Documentation** nodes and their subnodes for adding documentation about the functionality (the default setting).
  - **Changed** to display only **Documentation** nodes where the contents has changed (that is, empty **Documentation** nodes are not displayed).
  - None to not display any Documentation nodes.
- From the **Enumerate sections to level** list, choose which section levels, if any, in the documentation should be numbered. The options are
  - None for unnumbered sections.
  - Level I(default), Level 2, ..., Level 6 to enumerate sections up to a specific level, where level 1 indicates the top level in a hierarchical documentation structure.
  - All to enumerate sections at all levels.
- In the Section levels in table of contents list you can choose how many section levels, between 1 and 5 (2_levels is the default), to include in the table of contents if you have included one in the documentation.
- The setting in the **Generate separate files at section level** list determines the highest section level that starts a new HTML file in the generated documentation. For example, if you specify **Level 2** (the default), a new file is generated when sections at level 1 and level 2 begin, while sections at level 3 or higher are placed in the same HTML files as their ancestor of level 2.
- The **Documentation plug-in prefix** field lets you specify a default namespace for documentation in a plug-in format that is applicable to your organization (for

example, COMSOL uses the plug-in prefix com.comsol). This setting can be overridden by the **Plug-in prefix** field in the **Documentation** settings window.

• Specify your organization's name in the **Vendor** field. This name appears in the manifest file inside the generated help plug-in file.

#### **TEMPORARY FILES**

#### Recovery

Select the **Save recovery file** check box to save recovery files to disk (this is the default setting). In the **Folder for recovery files** field you can specify another folder than the default to, for example, use a folder where there is more disk space for storing large recovery files. Click **Browse** to browse to a recovery file folder.

#### Temporary files

In the **Folder for temporary files** field you can specify another folder than the default to, for example, use a folder where there is more disk space for storing large temporary files. Click **Browse** to browse to a folder for temporary files.

If you run COMSOL in a client-server configuration, you can specify a Folder for recovery files on server, Folder for temporary files on client, and Folder for temporary files on server.

#### MEMORY AND PROCESSORS

#### Parametric Sweep

To reduce the size of MPH-files for models using parametric sweeps, you have the option of storing only the last solution in the sweep in the file. If you want to use this setting as the default, choose **Only last** from the **Keep solutions in memory** list. You then have the further option of saving each solution as a model file. To do this, select the **Save each solution as model file** check box. The default option in the **Keep solutions in memory** list, **All**, stores all solutions in the file.

#### Processors

By default, COMSOL uses all available processors (cores) on a multicore platform and displays that number of processors. If you want to control how many processors that COMSOL can use, select the **Number of processors** check box and enter the number of processors in the associated field. This corresponds to using the -np option for the COMSOL commands from the command line.

### UPDATES

#### Product Updates

Select the **Check for updates at launch** check box to make the program check for updates each time COMSOL Multiphysics is launched.

# Proxy Server Settings for Communication with COMSOL's Model Library Update Server

If you connect to the Internet through a web proxy, you can use the controls in this section to specify which proxy server settings COMSOL Multiphysics should use when communicating with COMSOL's website for performing a Model Library Update.

The **Configuration** list provides the following alternatives:

- No proxy server: Connect to the Model Library Update server directly, bypassing any proxies. This is the default setting.
- **Use system settings**: Use the system-wide proxy server settings defined on your computer.
- **Manual**: Choose this alternative if you want to specify a proxy server by entering the name (or IP address) in the **Server** field and the port number in the **Port number** field. The default port number is 443, which is the default for HTTP secure (HTTPS). If the proxy server requires authentication, you will be asked to provide username and password the first time you call Model Library Update in each COMSOL modeling session.

#### Place Model Library Update Files In

The **Destinations** list provides two options for specifying which model and documentation directories are synchronized with COMSOL's server when you launch a Model Library Update request:

- Current model and documentation directories (default): Synchronize with MPH-files under the Model Library root set in the **Model Library** window and with model documentation files under the directory specified in the **Documentation root directory** field on the **Preferences** dialog's **General** page (see the General section in this chapter).
- **Specify custom directories**: Choosing this option lets you specify model and documentation root directories separate from those of your current COMSOL Desktop environment.

By default, both the Model Library and documentation root directories lie directly under the COMSOL installation root directory, in models/ and doc/ respectively.

This typically implies that special permissions are required for saving downloaded files, and it can therefore be beneficial to move or copy the directories to a different location. The settings referred to in this section are provided to let you customize Model Library Update to the IT environment of your organization.

### LIVELINK PRODUCTS

These settings makes it possible to specify the installation and common file folders for some of the COMSOL LiveLink products:

#### LiveLink for MATLAB

If needed, specify the **MATLAB installation folder** in the text field, or click **Browse** to locate the folder. By default, the MATLAB installation folder is the one you specified when installing COMSOL, but you may need to change the location of that folder (for example, after installing another MATLAB version).

On Windows only, if you change the MATLAB installation folder, also click the **Register MATLAB As COM Server** button to update the path of the MATLAB version that is connected to COMSOL that was defined during the initial COMSOL installation.

#### LiveLink for Pro/ENGINEER®

If needed, specify the **Pro/ENGINEER®** installation folder in the text field, or click **Browse** to locate the folder. By default, the Pro/ENGINEER® installation folder is the one you specified when installing COMSOL.

#### LiveLink for Creo Parametric[™]

If needed, specify the **Creo Parametric[™] custom file folder** in the text field, or click **Browse** to locate the folder. By default, the Creo Parametric[™] installation folder is the one you specified when installing COMSOL.

If you have a license for both these CAD LiveLink packages, select **Pro/ENGINEER**[®] or **Creo Parametric™** from the **Use** list.

# Checking and Controlling Products and Licenses Used

Open the **Licenses** window to list or block the products your license includes. Blocking a license can be useful for consultants who want to duplicate a client's environment while building a model or when collaborating with other users who do not have access to the same set of COMSOL products. You can also use these settings to prevent the use of a module when sharing a floating-network license, for example. To view a list of licenses or block the use of a product, from the main menu, select
 Options>Licenses. The Licenses window opens.

By default the use of all products is active and the check boxes for all products are selected. The licenses currently in use are unavailable (you cannot block the use of products with functionality already in use).

2 Click to clear the check box next to a product to hide or block it from use. Click the Select All button to activate all products. Click the Deselect All button to block all products (except that ones that are already in use).



The settings are local for each COMSOL Multiphysics session. The program does not store these settings for future modeling sessions.

3 Click OK to save the changes or Cancel do discard any changes and close the window.



Under **Other products** is a list of COMSOL products the license does not include. Click the **Product Information** button to go to the product information pages on the COMSOL website, where you find information about all COMSOL products.

You can also get information about the licensed products from the **About COMSOL Multiphysics** box on the **Help** menu. Select **Licensed products** from the list and click the **Show Information** button to display a list of used licenses and the total number of licenses for each product.

# Borrowing Licenses

If you have a floating network license (FNL) or a class kit license (CKL) and your license file has been enabled for borrowing you can use the **Borrow License** dialog box to borrow licenses from your license server. Select **Options>Licenses** from the main

menu and then click **Borrow**. Select the licenses you want to borrow from the list and specify the number of days you want to keep them. Click **OK**.



Remember that other users cannot use the licenses that you have checked out. If you try to borrow a license that has already been borrowed, you receive an error message that shows for which products the license has been borrowed.

# Information About Memory Use

In the bottom-right corner of the COMSOL Desktop is information about how much memory COMSOL Multiphysics currently uses. The two numbers, display as, for example, **405 MB | 453 MB**, represent the physical memory (working set) and the virtual memory, respectively. If you position the cursor above these numbers, the tooltip that appears includes the numbers with the type of memory explicitly stated:

- The **Physical memory** or **Working set** (on Windows) number is the amount of physical memory (RAM) or the amount of virtual memory in "active" use (the amount of physical memory that is required so that all used virtual memory is in RAM).
- The **Virtual memory** number is the is the current size of the virtual address space that COMSOL Multiphysics uses.



Figure 7-3: An example of memory use displayed in COMSOL Multiphysics.

Viewing Node Names, Identifiers, Types, and Tags

Select the node labels to display in the **Model Builder**. You can view combinations of the following label types:

- Names are only used in the Model Builder for names (descriptions) of the nodes.
- *Tags* are unique for each node and are assigned automatically. They are used when working with a model through the COMSOL Java API or the optional LiveLink for MATLAB.

- *Identifiers* are primarily used as names for functions and operators when called in models and as identifiers for the **Model** nodes and physics interfaces that you use for variable scoping.
- Types are the unique descriptions for each type of node.

Names and some identifiers can be changed by the user. You can change the name of a node for all levels (except the root node, which get its name from the model filename), but the identifier can only be changed for the top **Model** and physics interface nodes and as a name for functions and operators. The unique tag and type are automatically assigned by the software and cannot be changed.

You can specify the name of a node in its **Properties** section or by right-clicking the node and choosing **Rename** or pressing F2, which opens a window where a **New name** is entered. The identifier serves as the name of functions and operators, which you can define in the settings windows' **Function Name** or **Operator Name** section for those nodes. You can also specify it in the **Model Identifier** and **Interface Identifier** sections for the main **Model** nodes and physics interface nodes, respectively.

#### SELECTING THE LABELS TO VIEW IN THE MODEL BUILDER

- I In the **Model Builder**, click the top node level where you want to display specific labels. Each node level can display different labels.
- 2 Select View>Model Builder Node Label to select from the list: Show Name Only, Show Name and Identifier, Show Name and Tag, Show Type and Identifier, or Show Type and Tag. See Figure 7-4 for examples of the different label types.

The options in the list modify the view and options in the **Model Builder** in the following way:

- Select Show Name Only to only display the name.
- Select Show Name and Identifier to display the name with the identifier in parentheses
  using an italic font. The identifier appears only where it is defined, that is, as for
  model nodes, physics interface nodes, mathematical interface nodes, functions,
  model couplings, and geometry features. This is the default setting.
- Select **Show Name and Tag** to display each node's feature name with the predefined tag in curly braces using an italic font.
- Select **Show Type and Identifier** to display each node's feature type (predefined name) with the identifier in parentheses using an italic font.

• Select **Show Type and Tag** to display each node's feature type (predefined name) with the predefined tag in curly braces using an italic font.

The previous selections are mutually exclusive: only one of them can be active. The following two settings can be activated or turned off individually:



Figure 7-4: Examples of the available label combinations on the View menu.



# Showing and Expanding Advanced Physics Sections

To display the features described in this section, click the **Show** button (*****, ) on the **Model Builder** and then select the applicable option. You can also click the **Expand Sections** button (*****, ) to always show some sections (see Expanding Sections). From either menu, select **Reset to Default** to reset the sections to display only the **Equation Sections** and **Override and Contribution**.



Figure 7-5: The location of the Expand Sections and Show buttons in the Model Builder.

These options are also accessed (and activated) by selecting the check boxes from the **Options>Preferences>Show** and **Options>Preferences>Expand sections** windows. See Editing Preferences Settings.

• Resetting to Default

<mark>т</mark>р

- Resetting from Preferences
- Setting as Preferences
- Expanding Sections
- Expanding the Equation Sections
- Show Equation Sections
- Show Equation View
- Show Override and Contribution
- Show Discretization
- Show Stabilization
- Show Advanced Physics Options

- Show Advanced Physics Options—Context Menu Equation-Based Feature Nodes
- Show Advanced Study Options
- Show Advanced Results Options

## Resetting to Default

From the Model Builder, click the Show button ( $rac{1}{20}$ ) and select Reset to Default to reset the sections to display only the Equation Sections and Override and Contribution.

From the Model Builder, click the Expand Sections button (*) and select Reset to Default to reset it so all sections are collapsed (not expanded).

# Resetting from Preferences

From the Model Builder, click the Show button ( $\phantom{1}$ ) and select Reset from Preferences to reset the sections to display the system preferences defined from the **Options>Preferences>Show** window.

From the Model Builder, click the Expand Sections button (T) and select Reset from Preferences to reset the sections to the system preferences defined from the Options>Preferences>Show window.

# Setting as Preferences

From the Model Builder, click the Show button ( $\searrow$ ) and select Set as Preferences to make these selections the default system preference (also defined from the **Options>Preferences>Show** window).

From the Model Builder, click the Expand Sections button (*) and select Set as **Preferences** to make these selections the default system preference (also defined from the **Options>Preferences>Show** window).

# Expanding Sections

To always display sections on a physics interface from the **Model Builder**, click the **Expand Sections** button (**TE**) and choose as many of these options as required— **Equation**, **Override and Contribution**, **Discretization**, **Stabilization**, and **Advanced Physics Options**. See Expanding the Equation Sections, Show Equation Sections, Show Override and Contribution, Show Discretization, Show Stabilization, and Show Advanced Physics Options for details about these features.

These options are also accessed (and activated) by selecting the check boxes from the **Options>Preferences>Expand sections** window. See Editing Preferences Settings.

# Expanding the Equation Sections

To always display this section in its expanded view, click the **Expand Sections** button (*****) and select **Equations**. Selecting this option expands all the Equation sections on physics interface settings windows.



<mark>г</mark> Тір

Physics Nodes—Equation Section

Show Equation Sections

To enable this feature, click the **Show** button ( $rac{1}{2}$ ) and select **Equation Sections**. This displays the **Equation** section on all physics feature nodes settings windows.



Physics Nodes-Equation Section

## Show Equation View

To display the **Equation View** node under all physics interface nodes in the **Model Builder**, click the **Show** button ( $\flat_{\overline{w}}$ ) and select **Equation View**.

• The Equation View Node

Physics Nodes—Equation Section

# Show Override and Contribution

To enable this feature, click the **Show** button ( $rac{bas}$ ) and select **Override and Contribution**. The **Override and Contribution** section is then included in all physics interface feature nodes (for material modes, sources, boundary conditions, and so on). For a specific node, the **Override and Contribution** section in its settings window contains lists of other nodes that the node is overridden by, other nodes that the node overrides, and other nodes that contributes with the node.



0

See Also

• Listing Overrides and Contributions

• Overridden Selections

Show Discretization



There are two categories of discretization—a section on the physics interface settings window (described here) and adding The Discretization Node for global equation based features.

To enable this feature, click the **Show** button ( $rac{1}{20}$ ) and select **Discretization**. The options available for each feature node are described individually throughout the documentation.

#### DISCRETIZATION

#### Element Order and Shape Function Type

The **Element order** (or, more precisely, the order of the shape function) directly affects the number of degrees of freedom in the solution and the accuracy of the solution. Increasing the order of the elements roughly corresponds to a uniform mesh refinement. Most physics interfaces uses Lagrange elements, which can be of order 1 to 4 (in 3D) or 5 (in 1D and 2D), with 2 being the default order. You can change the order using the **Element order** list. The software adapts the order of the numerical integration to the element orders for the physics interfaces in the model. Some physics interfaces use special element types or a reduced element order for some of the field variables.



Some additional information is included in Element Types and Discretization and Finite Elements in the COMSOL Multiphysics Reference Guide.

#### Discretization of Fluids

The following is an example of the choices of element order for the **Laminar Flow** interface:

 PI+PI means linear elements for both the velocity components and the pressure field. Linear elements are computationally cheaper than higher-order elements and are also less prone to introducing spurious oscillations, thereby improving the numerical robustness.

- **P2+P1** means second-order elements for the velocity components and linear elements for the pressure field. Second-order elements work well for low flow velocities.
- **P3+P2** means third-order elements for the velocity components and second-order elements for the pressure field. This can add additional accuracy but it also adds additional degrees of freedom compared to P2+P1 elements.

The abbreviation  $P_m P_n$  is often used to indicate the polynomial order of, in this case, the shape functions (elements) for the velocity components (m) and the pressure (n) when using tetrahedral or triangular elements. Here a corresponding nomenclature is used for all element shapes.



The theory about this is in P.M. Gresho and R.L. Sani, *Incompressible Flow and the Finite Element Method*, *Volume 2: Isothermal Laminar Flow*, John Wiley & Sons, 2000.

#### Complex Variables

Under Value types when using splitting of complex variables, you can specify the Value type (Real or Complex) of dependent variables when Split complex variables in real and imaginary parts setting is activated in the Compile Equations node of any solver sequence used. The default is the complex value type, but you can specify that the value of a dependent variable is real to make sure that it does not get affected by small imaginary contributions, which can occur, for example, when combining a time-dependent or stationary study with a frequency-domain study. If split complex variables setting is not active the value type is ignored.



For information about how to specify the splitting of complex variables, see Compile Equations in the COMSOL Multiphysics Reference Guide.

## Show Stabilization

To enable this feature, click the **Show** button (**)** and select **Stabilization**. Selecting this option displays the **Consistent Stabilization** and **Inconsistent Stabilization** sections on the settings windows. If you have access to the **Level Set** and **Mixture Model** interfaces, it displays a **Stabilization** section instead.

Numerical stabilization is available for physics interfaces that model transport such as fluid flow or convective heat transfer, where the fundamental governing equations are less stable than, for example, conduction-dominated models, solid mechanics models, and wave propagation in the frequency domain.

Several physics interfaces have these settings available, and below you find the common information about the stabilization settings. Differences not described below are noted for the individual interface documentation.

• Stabilization Techniques and Numerical Stabilization in the COMSOL Multiphysics Reference Guide.



• Additional information is also described for the Heat Transfer interfaces (see Consistent and Inconsistent Stabilization Methods for the Heat Transfer Interfaces) and Fluid Flow branches (see Numerical Stability—Stabilization Techniques for the Fluid Flow Interfaces).

#### CONSISTENT STABILIZATION

There are two consistent stabilization methods— **Streamline diffusion** and **Crosswind diffusion**. Usually, both check boxes are selected by default and should remain selected for optimal performance. These consistent stabilization methods do not perturb the original transport equation.

The crosswind diffusion method specifies the smallest allowable concentration change across an element. As the concentration gradient appears in the denominator in the equations describing crosswind diffusion, the gradient ensures that unreasonable values do not occur in regions with small to negligible concentration changes.

#### Crosswind Diffusion and Tuning Parameter

On most interfaces, when the **Crosswind diffusion** check box is selected, enter a **Tuning parameter**  $C_k$ . The default is most often 0.5. The **Tuning parameter** controls the amount of crosswind diffusion introduced. It recommended that it is kept in the order of 1 in order to not introduce excessive amounts of diffusion. The value used must also neither be space dependent nor time dependent.

#### Crosswind Diffusion and Lower Gradient Limit

In some interfaces, if the **Crosswind diffusion** check box is selected, the **Lower gradient limit**  $g_{\text{lim}}$  (SI unit: K/m) field is available. This variable corresponds to the smallest concentration change across an element considered by the stabilization, and is used to

make sure that the crosswind diffusion expressions are valid also in regions with small to negligible concentration changes.

#### Residual

For some interfaces, and for both consistent stabilization methods, select a **Residual** (or **Equation Residual**). **Approximate residual** is the default setting and it means that derivatives of the diffusion tensor components are neglected. This setting is usually accurate enough and is faster to compute. If required, select **Full residual** instead.

#### INCONSISTENT STABILIZATION

There is usually just one inconsistent stabilization method— **Isotropic diffusion**. This method is equivalent to adding a term to the diffusion coefficient in order to dampen the effect of oscillations. If possible, minimize the use of the inconsistent stabilization method because by using it, the original problem is no longer solved.

By default there is no isotropic diffusion selected. If required, select the **Isotropic** diffusion check box and enter a **Tuning parameter**  $\delta_{id}$ . The default is 0.25. Increase or decrease this number to increase or decrease the amount of isotropic stabilization, and thus oscillation damping.

## Show Advanced Physics Options

To enable this feature, click the **Show** button (**>** ) and select **Advanced Physics Options**. This displays the **Advanced** section on physics interface settings windows. This selection also activates the Show Advanced Physics Options—Context Menu Equation-Based Feature Nodes, which are described separately.

#### ADVANCED SETTINGS

To display this section, click the **Show** button ( $rac{1}{20}$ ) and select **Advanced Physics Options**. This section does not normally show unless the physics interface contains some advanced options.

# Show Advanced Physics Options—Context Menu Equation-Based Feature Nodes

In the **Model Builder**, when you right-click any physics interface node and open the context menu, there are additional feature nodes that can be added to your model. To enable this feature and add the following nodes, click the **Show** button ( $\blacktriangleright_{\overline{o}}$ ) and select **Advanced Physics Options** and then:

From the More menu add these nodes:

- Weak Contribution. See The Weak Contribution Node and The Weak Contribution (ODEs and DAEs) Node.
- Weak Constraint. See The Weak Constraint Node.
- **Pointwise Constraint**. See The Pointwise Constraint Node and Using Weak Constraints.
- Weak Contribution on Mesh Boundaries. This feature is similar to Weak Contribution but is active on mesh boundaries. See The Weak Contribution Node and The Weak Contribution (ODEs and DAEs) Node.

From the **Global** menu add these nodes:

- Global Equations. See The Global Equations Node and Adding ODEs, DAEs, and Other Global Equations.
- Global Constraint. See The Global Constraint Node, Using Weak Constraints, Bidirectional and Unidirectional Constraints, and Constraint.
- Weak Contribution. See The Weak Contribution Node and The Weak Contribution (ODEs and DAEs) Node.
- Discretization. See The Discretization Node and Element Types and Discretization.



g

Tiþ

Clicking the **Show** button (***** ) and selecting **Advanced Physics Options** also displays the **Advanced** section on physics interface settings windows, which is described in Show Advanced Physics Options.

These same settings are also activated from the **Preferences** dialog box. See Editing Preferences Settings.



# Show Advanced Study Options

Under the **Study** node, click the **Show** button ( $\flat_{\overline{w}}$ ) and select **Advanced Study Options** to enable this feature and add these nodes to the **Model Builder**:

- Job Configurations. See Generating Solver Configurations and Job Configurations in this guide and Job Configurations in the COMSOL Multiphysics Reference Guide.
- Solver Configurations. See Generating Solver Configurations and Job Configurations in this guide and Solver Configurations in the COMSOL Multiphysics Reference Guide.



Both the **Job Configurations** and **Solver Configurations** nodes also display if they have content.

Click the Show button ( $\flat_{\overline{\infty}}$ ), select Advanced Study Options and then right-click the Study node to enable these options from the context menu:

- **Cluster Computing**. See Cluster Computing in the COMSOL Multiphysics Reference Guide.
- Cluster Sweep. See Cluster Computing in the COMSOL Multiphysics Reference Guide.
- Batch Sweep. See Cluster Computing in the COMSOL Multiphysics Reference Guide.
- Batch. See Batch in the COMSOL Multiphysics Reference Guide.

Click the Show button ( $\flat_{\overline{\infty}}$ ), select Advanced Study Options and then right-click the Solver Configurations node to enable this option from the context menu:

• Create Custom Solver. See The Solver Configurations Node in the COMSOL Multiphysics Reference Guide.

Click the Show button ( $\flat_{\overline{\infty}}$ ), select Advanced Study Options and then right-click any of the Study Step nodes to enable this option from the context menu:

• Multigrid Level. See Multigrid Level in the COMSOL Multiphysics Reference Guide.

# Show Advanced Results Options

To display the Views node under Results, click the Show button ( $\flat_{\overline{\infty}}$ ) and select Advanced Results Options.



• User-Defined Views

• Processing and Analyzing Results

# The Physics Feature Nodes

An important part of building a model is where you add **Physics** branches. These contain the nodes that define the material properties, equations, loads, initial values, boundary conditions, and other part of the physics that the model describes. This section describes some common behavior for these nodes and includes these topics:

- Specifying Physics Settings
- Physics Node Context Menu Layout
- Physics Nodes by Space Dimension
- Physics Exclusive and Contributing Feature Node Types
- Physics Default Feature Nodes
- Physics Node Status
- Physics Boundary Types
- Continuity on Interior Boundaries
- Physics Axial Symmetry Node
- Specifying Boundary Conditions for Identity Pairs
- The Equation View Node

# Specifying Physics Settings

Each physics interface provide features for specifying all input data for a specific physics in a model:

- Material properties. See also Materials.
- · Boundary and interface conditions
- Equations (for equation-based modeling)
- Initial conditions

In addition, specify weak form contributions and element types for additional flexibility.

Specifically, the settings are available on the following parts of the geometry:

- Domains
- Boundaries

- Edges
- Points
- · Additional properties that are independent of the geometry

Not all of these options are available for all geometry types and physics interfaces.

All settings windows for the specification of the physics and equations accept parameters and variables as input data (see ).

## Physics Node Context Menu Layout

The context menu opens when you right-click a physics interface node. This menu is divided into four sections for most physics interfaces: the first section contains domain settings, the second boundary settings, the third edge settings, and the fourth has point settings.



It is important to remember this division as sometimes there are menu items with the same name but applied at different geometric entity levels.

As shown in Figure 7-6, the context menu layout is also based on whether the nodes are not sorted (the default) or if **Sort by Space Dimension** is selected.



Sorting Nodes by Space Dimension and Type



Figure 7-6: The physics context menu layout for a 3D model with unsorted nodes.

# Physics Nodes by Space Dimension

The physics nodes indicate the geometric entity level (domains, boundaries, edges, points, or pairs) based on the space dimension of the model. See Table 7-1 and Figure 7-7. The nodes also correspond to The Graphics Toolbar Buttons, some of which are also based on space dimension. See Physics Exclusive and Contributing Feature Node Types and Physics Node Status for examples of other differences to how the nodes display in the **Model Builder**.

NODE	NAME	
ID and ID Axisymmetric Models		
	Domain Level	
<u>D</u>	Domain Level, default node	
	Boundary Level	
D	Boundary Level, default node	
M	Boundary Level, Pairs	

TABLE 7-1: PHYSICS NODES BY SPACE DIMENSION

NODE	NAME	
2D and 2D Axisymmetric Models		
$\bigcirc$	Domain Level	
<b>P</b>	Domain Level, default node	
Ð	Boundary Level	
<b>B</b>	Boundary Level, default node	
æ	Boundary Level, Pairs	
æ	Point Level	
3D Models		
	Domain Level	
<b>C</b>	Domain Level, default node	
Ð	Edge Level	
(iii)	Boundary Level	
D	Boundary Level, default node	
<b>A</b>	Boundary Level, Pairs	
đ	Point Level	

TABLE 7-1: PHYSICS NODES BY SPACE DIMENSION



Figure 7-7: An example of the physics nodes listed in Table 7-1 and as displayed in the Model Builder based on model space dimension.

Physics Exclusive and Contributing Feature Node Types

The nodes for the physics interfaces are in a sequence, which acts like a macro that the software runs in a top-down order. Depending on the selection for each node, a node can totally or partially override, or shadow, a node earlier in the sequence. How the software treats these nodes depends on their relationship. There are two different types of nodes: exclusive and contributing.

#### a 💦 Joule Heating

- 🙄 Joule Heating Model 1
- Electromagnetic Heat Source 1
- 😼 Boundary Electromagnetic Heat Sor
- Electric Insulation 1
- 🚰 Thermal Insulation 1
- Initial Values 1
- Ground 1
- ② Electric Potential 1
- Heat Flux 1
- Heat Flux 2
- 🔭 Temperature 1

Figure 7-8: An example of exclusive and contributing nodes in a 3D model physics operating sequence and when Ungroup Nodes is selected.

The exclusive and contributing nodes maintain the described behavior only in relation to similar types of nodes within the same physics (for example, you can have a temperature constraint and a pressure constraint for the same boundary in the same model).



Note

What the node looks like in the **Model Builder** is based on the space dimension. See Physics Nodes by Space Dimension.

#### **EXCLUSIVE NODES**

The use of an *exclusive node* means that only one can be active for a given selection. That is, if you add another exclusive node (for example, an identical feature node) with the same selection, the first exclusive node is overridden and thus has no effect.

Typical exclusive nodes include model equations, initial values, and boundary conditions that are constraints, such as prescribed values for displacements, temperatures, pressures, and so on, including special variants of these such as ground conditions in electromagnetics and fixed constraints in structural mechanics. Also some boundary conditions that are not constraints but have a definitive meaning are exclusive nodes—for example, electric insulation, thermal insulation, and no-flow conditions. Depending on the selections for each node, an exclusive node can override another node partially. Nodes are exclusive only within their specific physics. When a node is selected in the Model Builder tree, nodes that are overridden by the selected

node are indicated using a red arrow in the lower-left corner of the icon ( $\square$ ), and nodes that override the selected node are indicated using red arrow in the upper-left corner of the icon ( $\square$ ).

#### CONTRIBUTING NODES

A *contributing node* means you can have several of these nodes with the same selection—the software adds these together when evaluating the model. Typical contribution nodes are loads, fluxes, and source terms, where you can have more than one of each type that is active on the same domain or boundary, for example. When a node is selected in the Model Builder tree, COMSOL Multiphysics shows the nodes the current nodes contributes with indicated using a yellow circle to the left of the icon, for example, in this boundary level icon 🐖 . See also Figure 7-8 for an example.

#### LISTING OVERRIDES AND CONTRIBUTIONS

If your preferences include showing the **Override and Contribution** section in the settings windows for physics interface feature nodes, you can find the following information about how exclusive and contribution nodes interact in the model. click the **Show** button (*****) and select **Override and Contribution** from the **Model Builder** to display the section. To expand this section on all nodes, click **Expand Sections** (*****) and select **Override and Contribution** from the **Model Builder** to display the information from the **Model Builder** and click the physics nodes to display the information as in Figure 7-9 and described below.

- The **Overridden by** list contains the names of the nodes that the selected node are overridden by. The selected node is then overridden by these nodes at least partially, and the **Selection** list contains (overridden) for the geometric entities (boundaries, for example) where it is overridden. The nodes that the selected node is overridden by are indicated using a red arrow in the lower-left corner of the icon, for example, in this boundary level icon *G*.
- The Overrides list contains the names of the nodes that the selected node overrides (where the current node is active). The nodes that the selected node overrides are indicated using a red arrow in the upper-left corner of the icon, for example, in this boundary level icon a.
- The **Contributes with** list contains the names of the nodes that the selected node contributes with for at least some shared selection. The nodes that the selected node

contributes with are indicated using a yellow circle to the left of the icon, for example, in this boundary level icon 🚮.

If you disable physics features locally in a study step using the **Physics and Variables Selection** section in the study step's settings window, the indications of overrides and contributions in the Model Builder are unchanged (but disabled physics nodes get an asterisk to indicate that their state has been changed in at least one study step). The local variables and physics tree in the study step's settings window, on the other hand, does display the overrides and contributions taking the disabled nodes into account.

	Physics Node Status
ত্	• Key to the Nodes and Toolbar Buttons
See Also	Physics Default Feature Nodes

E

Note



Figure 7-9: The Override and Contribution section lists other physics nodes that the selected node is overridden by, overrides, or contributes with. This is an example for a 3D model and with Ungroup Nodes selected.

### Physics Node Status

The status of a physics interface depends on if it is a default feature node, the selection that it applies to, and other nodes in the same branch that can override nodes earlier in the sequence. You can change the order of nodes other than the default feature nodes by moving them up or down.

### OVERRIDDEN SELECTIONS

A node can be partially or completely *overridden* by another node further down in the same branch of the model tree that is of a similar, exclusive type. For example, if you specify a temperature boundary condition on boundary 1 and boundary 3, and then

add another temperature boundary condition for boundary 3, the first temperature boundary condition is overridden on boundary 3. In the settings window for the **Temperature** nodes that define the temperature boundary condition, the **Selection** list then shows **3 (overridden)** to indicate that the temperature boundary condition defined on this selection is overridden for boundary 3 but is still active on boundary 1. Deleting or disabling the other temperature boundary condition on boundary 3 reactivates the original temperature boundary condition, and then shows **3** (without the **(overridden)** indication).

#### SELECTIONS THAT ARE NOT APPLICABLE

For selections that are not applicable for a feature node (interior boundaries for an boundary condition that is only applicable for exterior boundaries, for example), the **Selection** list then shows **(not applicable)** next to the entries in the list that are, in this case, interior boundaries.

#### ENABLING AND DISABLING NODES

By enabling or disabling physics nodes, you can activate and inactivate (shadow) other physics interface nodes that appear higher up in the physics inter face branches.

- Physics Default Feature Nodes
- Physics Exclusive and Contributing Feature Node Types



- Physics Nodes by Space Dimension
- Key to the Nodes and Toolbar Buttons
- Deleting, Disabling, and Enabling Nodes

## Physics Default Feature Nodes

When a physics interface is added, it automatically adds a main physics branch, which typically includes a number of default feature nodes, including but not limited to:

- A model equation or material model node, typically on the domain level. This node defines the domain equations (except optional sources, loads, reactions, and similar contributing domain quantities) and the related material properties or coefficients.
- A boundary condition node. For multiphysics interfaces there is one boundary condition for each physics.

- For axisymmetric models, the symmetry axis has an **Axial Symmetry** boundary condition (see Physics Axial Symmetry Node).
- An **Initial Values** node for specifying initial values for a time dependent simulation or an initial guess for the solution to a nonlinear model.

The default nodes' initial selections include all domains or all boundaries (or all instances of another geometric entity level). Their selection is always every instance that has no selection defined by another node on the same geometric entity level that is not contributing to the default node. All default nodes include a D (for "default") in the upper-left corner (for example, 🎦) to indicate their special status. It is not possible to delete the default nodes, but you can copy and duplicate default nodes. The copy or duplicate is a node of the same type as the default node but is a normal feature node with an initially empty selection.

For example, for a geometry with four boundaries, the default boundary condition's initial selection includes all four boundaries. If another exclusive boundary condition for Boundary 3 is added, that boundary becomes overridden (inactive) in the default boundary condition's selection. If you disable or remove that boundary condition, the default boundary condition becomes active for Boundary 3 again. You cannot change a default node's selection.

- Physics Nodes by Space Dimension and Table 7-1
- 0 See Also
- Deleting, Disabling, and Enabling Nodes



E

Note

- Key to the Nodes and Toolbar Buttons
- Physics Node Context Menu Layout

Some physics interfaces also add standard feature nodes directly when you add them to a model. They represent functionality that is likely to be useful throughout the model but that you might want to make active on a part of the geometry only or delete. Such nodes do not include a D in the upper-left corner.

# Physics Boundary Types

There are different types of boundaries for the physics, which all support different types of boundary conditions:

· Exterior boundaries, where most boundary conditions are applicable-see below.

- Interior boundaries, where special interface conditions can be applicable—see below.
- Axial symmetry boundaries, which are artificial boundaries representing the symmetry axis in axisymmetric models. See Physics Axial Symmetry Node.

If a selection for a boundary condition node, for example, contains boundaries of a type that is not applicable or supported, the **Selection** list has **(not applicable)** next to those boundary numbers.

#### INTERIOR AND EXTERIOR BOUNDARIES

When specifying boundary and interface conditions, COMSOL Multiphysics differentiates between exterior and interior boundaries:

- An exterior boundary is an outer boundary of the modeling domain.
- A *interior boundary* is a dividing interface between two domains in the modeling domain.

If an equation or physics interface is deactivated in one domain, the interior boundary between the active and inactive domain becomes an exterior boundary for its variables because it then borders on the outside of the active domain for those fields. The boundaries of the inactive domain are then void.



Figure 7-10: Examples of exterior and interior boundaries.



# Continuity on Interior Boundaries

Unless a specific boundary condition is specified on interior boundaries (such as a contact resistance condition), COMSOL ensures continuity in the field variables across

interior boundaries. For assembly geometries with identity pairs, select a **Continuity** node on the **Pairs** menu in the boundary part of the context menu for most physics interfaces. The **Continuity** condition is only suitable for pairs where the boundaries match.

#### **BOUNDARY SELECTION**

The selection list in this section shows the boundaries for the selected pairs.

#### PAIR SELECTION

Select the pairs where you want to impose continuity across the pair boundaries. Select the pairs from the **Pairs** list (Ctrl-click to deselect).



• Identity and Contact Pairs

• Specifying Boundary Conditions for Identity Pairs

# Physics Axial Symmetry Node

In axisymmetric models, boundaries on the symmetry axis are boundaries where only a condition for the axial symmetry exists. COMSOL Multiphysics adds a default **Axial Symmetry** node that is active on all boundaries on the symmetry axis. The condition on the symmetry axis is typically a zero Neumann or no-flux condition.

#### BOUNDARY SELECTION

The selection list for boundaries is not available because this is a default boundary condition. In the list, boundaries that are not on the symmetry axis have **(not applicable)** added after the boundary number.



- Physics Nodes by Space Dimension
- Key to the Nodes and Toolbar Buttons

# Specifying Boundary Conditions for Identity Pairs

The identity pairs connect parts of an assembly. You can specify boundary conditions for these pairs from the **Pairs** submenu at the bottom of the boundary condition part of the context menu for the physics. For physics defined on boundaries, a **Pairs** 

submenu is available for conditions on edges (in 3D) or points (in 2D). The **Pairs** submenu includes conditions suitable for pair boundaries, including **Continuity**, which provides continuity in the physics field across the pair boundary (continuity is the default behavior for interior boundaries in geometries formed as a union). The nodes in the **Model Builder** that represent pair boundary conditions use an icon with a pair symbol in the lower-left corner:

#### **BOUNDARY CONDITIONS ON NON-OVERLAPPING PARTS**

For identity pairs where parts of the boundaries do not overlap you need to specify boundary conditions for the non-overlapping parts, which typically represent exterior boundaries outside of the overlapping area. These boundary conditions appear as subnodes to the pair's boundary condition node in the Model Builder. By default, the default boundary condition for exterior boundaries apply to the non-overlapping parts. If you want to use another boundary condition for any of the non-overlapping parts, right-click the pair's boundary condition node and select any of the standard boundary conditions from the context menu. In the settings window, the selection include all applicable boundaries by default, but a separate boundary condition can be added for only a subset of the pair boundaries. The boundary conditions added as subnodes to the pair's boundary condition apply on the non-overlapping parts only. In the following illustration, which shows a simple example with two partially overlapping rectangles, there is one identity pair that consists of two boundaries, each with a nonoverlapping part. Then right-click the pair's boundary condition node and add one boundary condition for the top boundary and another boundary condition for the bottom boundary if desired.





- Physics Nodes by Space Dimension
- Key to the Nodes and Toolbar Buttons

# The Equation View Node

**Equation View**  $\left(\frac{\partial u}{\partial t} \right)$  is a subnode available for all the physics nodes. To display these subnodes, click the **Show** button ( $\mathbf{b}_{\overline{w}}$ ) and select **Equation View** from the **Model Builder**.

The **Equation View** settings window contains detailed information about the implementation of the physics feature: variables, shape functions, weak-form equation expressions, and constraints.

To update the values in the **Equation View** node's settings window to reflect the latest changes in the physics feature, click the **Refresh Equations** button ( **C** ) in the settings window's toolbar.



Editing the predefined expressions for variables, equations, and constraints means that the equations are altered and that COMSOL Multiphysics solves for the values of variables.

Edit the values of variables, weak-form expressions, and constraints in the corresponding tables. This makes it possible to introduce custom changes to the equations and variable definitions.

For a changed definition of a variable or a change to a weak-form expression or constraint, a warning icon ( ) appears in the leftmost column, and a small padlock is added to the lower-right corner of the icon for the physics feature node where you have made modifications in its equation view. To restore only the change in the selected variable, weak-form expression, or constraint, click the **Reset Selected** button ( ) under the table in the **Variables**, **Weak Expression**, or **Constraints** section. To reset all changes in the equation view, click the **Reset All** button ( ) in the settings

window's toolbar. If no changes remain, the padlock disappears from the corresponding physics feature node.



For information about the Equation displays available, see Physics Nodes—Equation Section.

#### VARIABLES

This section has a table with the variables that the physics feature defines. The table includes these columns:

- Name: the name of the variable
- **Expression**: the expression, using COMSOL Multiphysics syntax, that defines the variables
- **Unit**: the unit for the variable (in the active unit system)
- **Description**: a description of the variable
- Selection: the geometric entities (domains, boundaries, edges, or points) where the variable is defined (Domain 1, for example)
- **Details**: this column contains some details about the variable's behavior. See About the Details Column below.

#### SHAPE FUNCTIONS

This section has a table with the dependent variables that the physics feature defines and their shape functions. This is primarily applicable to equation model features like the main material nodes; for most physics features such as boundary conditions, the table is empty. The table has these columns:

- Name: the name of the variable.
- Shape function: the type of shape function (element) for the variable (for example, Lagrange for Lagrange elements, which are the most common elements).



Selecting an Element Type

• Unit: the unit for the variable (in the active unit system).

- **Description**: a description of the variable.
- **Shape frame**: the frame type (typically either a spatial or a material frame) for the shape function.
- **Selection**: the geometric entities (domains, boundaries, edges, or points) where the shape function is defined (**Domain I**, for example)
- **Details**: This column contains some details about the shape function's behavior. See About the Details Column below.

#### WEAK EXPRESSIONS

This section has a table with the weak-formulation equation contributions that the physics feature generates. The table consist of the following columns:

- Weak expression, the equation expressed in a weak formulation
- **Integration frame**, the frame type (typically either a spatial or a material frame) used when integrating the expression.
- Selection: the geometric entities (domains, boundaries, edges, or points) where the weak expression is defined (Domain I, for example)

Each equation contribution appears on its own row under **Weak expression**, but the order is not significant.



The PDE interfaces and the ODEs an DAEs interface do not display any weak expressions. They are either implemented using strong formulations, directly display the weak formulation, or define equations discretized in the time domain only.

#### CONSTRAINTS

This section has a table with the constraints that the physics feature generates. This is typically the case for boundary conditions of constraint types, such as prescribed displacements, temperature, or velocities. Many other physics features do not generate any constraints, and the table is then empty. The table consists of the following columns:

- Constraint: the expression for the constraint
- **Constraint force**: the expression that defines the associated constraint force, which is typically the test function of the constraint

- Shape function: the type of shape function (element) for the constraint (for example, Lagrange for Lagrange elements)
- **Selection**: the geometric entities (domains, boundaries, edges, or points) where the constraint is defined (**Boundaries 1–5**, for example)

### ABOUT THE DETAILS COLUMN

The **Details** column shows some details about the behavior of variables and shape functions. For variables:

- An empty cell indicates that overlapping contributions are overridden.
- + operation indicates that overlapping contributions are added
- In rare cases, other operations (* operation, for example) can occur

For shape functions:

• Slit means that the shape function creates a slit for the degree of freedom



• Physics Nodes by Space Dimension

• Key to the Nodes and Toolbar Buttons

# Specifying Model Equation Settings

The model equation settings appear in the main feature for a physics interface and describe the physics on the domains. Use different values for each domain using settings of the following types:

- Coefficients that define the PDE on the domain. The PDE coefficients are available for the mathematics (equation-based) interfaces.
- Material properties that define the physics in the domain. These properties are available in the physics interfaces.

In this section:

- Specifying Initial Values
- Modeling Anisotropic Materials

# Specifying Initial Values

An Initial Values node is added by default to each physics interface.

In some types of analyses you must provide initial values:

- As the initial condition for a time-dependent analysis
- As an initial guess for the nonlinear stationary solver
- As a linearization (equilibrium) point when solving a linearized stationary model or when performing an eigenvalue study.

To enter initial values, in the **Model Builder**, click the **Initial Values** node under a physics interface node. In the settings window, enter the **Initial Values** for all dependent variables (fields) in the physics interface. The default initial values are zero.

For some physics interfaces you can also enter initial values for the first time derivative of the dependent variables. These are used when solving time dependent problems containing second time derivatives (wave-type applications). Like other default settings, these initial values apply to all domains where you have not specified any other values.

If you want to use different initial values in different domains, right-click the main physics node and select **Initial Values** to create additional nodes as needed.



By default, the **Override and Contribution** section is displayed on the **Initial Values** settings window. Also click the **Show** button ( $\vdash_{\overline{\infty}}$ ) and select **Equation View** from the **Model Builder** to display the **Equation View** node under the node in the **Model Builder**. See Showing and Expanding Advanced Physics Sections for more information.



For more information about using initial conditions, see Dependent Variables in the COMSOL Multiphysics Reference Guide.

# Modeling Anisotropic Materials

The *c* coefficient in the coefficient form PDE corresponds to physical properties that can be anisotropic such as:

- Diffusion coefficient
- Permittivity
- · Thermal conductivity
- · Electrical conductivity

For an anisotropic material, the c coefficient is a tensor with at most four components in 2D and at most nine components in 3D:

$$c = \begin{bmatrix} c_{11} \ c_{12} \ c_{13} \\ c_{21} \ c_{22} \ c_{23} \\ c_{31} \ c_{32} \ c_{33} \end{bmatrix}$$

When specify and of the *c* coefficient components—as well as for certain material properties in some of the other physics interfaces—you can choose from the following types from the list underneath the fields:

- **Isotropic** (the default)—enter only one value.
- **Diagonal**—enter the diagonal components for an anisotropic material with the main axes aligned with the model's coordinate system.

- **Symmetric**—enter a symmetric matrix using the diagonal components and the upper off-diagonal components.
- Anisotropic—enter the full 2-by-2 (2D) or 3-by-3 (3D) matrix for an anisotropic material.

# Periodic Boundary Conditions

In this section:

- Using Periodic Boundary Conditions
- Periodic Boundary Condition Example

# Using Periodic Boundary Conditions

Use *periodic boundary conditions* to make the solution equal on two different (but usually equally shaped) boundaries.

To add a periodic boundary condition, in the **Model Builder**, right-click a physics interface node and select **Periodic Condition**. The periodic boundary condition typically implements standard periodicity (that is, the value of the solution is the same on the periodic boundaries), but in most cases you can also choose antiperiodicity so that the solutions have opposing signs. For fluid flow interfaces, the **Periodic Flow Condition** provides a similar periodic boundary condition but without a selection of periodicity. Typically, the periodic boundary conditions determines the source and destination boundaries automatically (an displays them, under **Model>Definitions**, in an **Explicit** selection node ( $\P$ ), which is "read only"), but you can also define feasible destination boundaries manually by adding a **Destination Selection** subnode.

For some physics interfaces you can choose the direction in which you want a periodic boundary condition. For a description of the standard periodic boundary condition, which most physics interfaces use, see Periodic Condition.

Model

Note

This model makes use of periodic boundary conditions: The KdV Equation and Solitons: Model Library path COMSOL_Multiphysics/Equation-Based_Models/kdv_equation

Periodic Boundary Condition Example

#### MODEL DEFINITION

Consider an eigenvalue equation on a rectangle of dimension  $1 \times \sqrt{\pi}$ .

$$-\Delta u = \lambda u \qquad \text{on } \Omega$$

$$u(x_1, y) = u(x_4, y) \qquad \text{on Boundaries 1 and 4}$$

$$u(x, y_2) = u(x, y_3) \qquad \text{on Boundaries 2 and 3}$$

$$3$$

$$I \qquad \Omega \qquad 4$$

2

### **RESULTS AND DISCUSSION**



Figure 7-11: The periodic pattern in the solution (6th eigenmode).

The wavelength of the sinusoidal solutions is the rectangle side length divided by a series of integers, each of which corresponds to an eigensolution. The locations of the maxima are random because the model does not constrain the absolute value of the solution anywhere.

#### MODELING INSTRUCTIONS

Model Wizard

- I Start COMSOL Multiphysics.
- 2 In the Model Wizard, select 2D from the Space dimension list. Click the Next button ( ⇒ ).
- 3 From the list of physics interfaces on the Add Physics page, select Mathematics>PDE Interfaces>Coefficient Form PDE (c). Click the Next button ( ⇒ ).
- 4 On the Select Study Page, select Preset Studies>Eigenvalue.
- 5 Click the Finish button ( 🔜 ).

#### Geometry Modeling

- I Right-click Geometry I and select Rectangle (____).
- 2 Type sqrt(pi) in the Height field.
- **3** Click the **Build All** button ( ) in the settings window toolbar.

#### PDE Settings

The default PDE coefficient values are correct.

#### **Periodic Boundary Conditions**

- I Right-click PDE and select Periodic Condition.
- 2 Select boundaries 1 and 4 in the Graphics window and click the Add to Selection button ( 4).
- 3 Right-click PDE and select Periodic Condition.
- 4 Select boundaries 2 and 3 in the Graphics window and click the Add to Selection button ( ♣ ).

In this case, COMSOL Multiphysics automatically identifies one boundary as the source and the other as the destination. Two **Explicit** selection nodes ( contain the destination boundaries for the two periodic boundary condition.

#### Mesh Generation

- I Right-click Mesh I and select Free Triangular ( M.).
- 2 Click the Build All button ( ) in the settings window toolbar.

#### Computing the Solution

The eigenvalue algorithm does not work reliably when the parameter specified in the **Search for eigenvalues about** field is equal to an eigenvalue. This particular problem has a zero eigenvalue, so the value of this parameter must be changed.

- I Select Study I>Eigenvalue I in the Model Tree.
- 2 In the settings window, locate the Study Settings section.
- **3** Type 10 in the Search for eigenvalues around field.
- 4 Right-click Study I and select Compute to compute the solution.

#### Analysis and Results

By default COMSOL Multiphysics plots the first eigenmode, which in this case is a flat solution associated with a zero eigenvalue.

- I Select 2D Plot Group I under Results in the Model Tree.
- 2 In the settings window, locate the **Data** section.
- **3** Look at the solution for different eigenvalues by making a corresponding selection in the **Eigenvalue** list. Start with the last eigenvalue.
- 4 Click the **Plot** button  $(\swarrow)$  in the settings window toolbar to plot each eigenvalue

## Calculating Accurate Fluxes

COMSOL Multiphysics provides two ways of calculating accurate reaction forces and fluxes:

- The first approach involves the reaction force operator (reacf) that makes it possible to compute integrals of reaction forces or fluxes during analysis. Use the reaction force operator when calculating integrals of reaction forces or fluxes during analysis. See The Reacf Operator for details.
- The second, more general approach for calculating reaction forces and fluxes is to use weak constraints. Use this approach when you need reaction forces or fluxes in other contexts than calculating integrals of reaction forces or fluxes.



Find further information on the use of weak constraints in the section Using Weak Constraints.

When using weak constraints in physics interfaces, the Lagrange multipliers are additional dependent variables in those physics interfaces. When using the reaction force operator, the reaction force operator of a certain dependent variable corresponds to the Lagrange multiplier of that dependent variable. The Lagrange multipliers correspond to the following quantities (but with the reversed sign) in the physics interfaces:

PHYSICS INTERFACE	QUANTITY
Electrostatics	Surface charge density
Magnetic Fields	Surface current
Electric Currents	Current flux
Heat Transfer	Heat flux
Transport of Diluted Species	Flux
Solid Mechanics	Force
Laminar Flow	Total force per area

TABLE 7-2: PHYSICS INTERFACE INTERPRETATION OF LAGRANGE MULTIPLIERS

COMSOL Multiphysics computes only the part of the boundary flux captured by the Lagrange multiplier. You might have additional flux coming from boundary sources or

nonidentity constraint matrices. This should not happen in the physics interfaces, though.



Lagrange multipliers in axial symmetry are not equal to the reaction flux per area but rather per length and full revolution.

	See the following examples:
2	• Flux Computation Example—Equation-Based Model
See Also	• Flux Calculation Example—Heat Transfer Model

## Flux Computation Example—Equation-Based Model

Consider calculating the flux over the constrained boundary of a rectangle. The PDE of the rectangle is Poisson's equation,  $\Delta u = 1$ , with u = 0 on the boundary. This example computes the flux using an expression, a reaction force operator, and a Lagrange multiplier.

## MODEL WIZARD

- I On the Select Space Dimension page, click the 2D button. Then click the Next button.
- 2 In the list of physics interface, open Mathematics>PDE Interfaces and then select Coefficient Form PDE (c). Then click the Next button.
- 3 From the Studies list, select Preset Studies>Stationary.
- 4 Click Finish.

## GEOMETRY MODELING

Draw a single rectangle of any size.

## COEFFICIENT FORM PDE

The default equation is Poisson' equation, but the default boundary condition is a zero flux (homogeneous Neumann boundary condition). Instead, add a homogeneous Dirichlet boundary condition: u = 0:

I In the Model Builder window, right-click the PDE (c) node and select Dirichlet Boundary Condition. **2** In the **Dirichlet Boundary Condition** node's settings window, select **All boundaries** from the **Selection** list in the **Boundary Selection** section.

### COMPUTING THE SOLUTION

In the Model Builder window, right-click Study I and choose Compute.

#### RESULTS—FLUX EXPRESSION

- I In the Model Builder window, choose Results>Derived Values>Surface Integration.
- 2 In the Surface Integration node's settings window, type 1 in the Expression field.
- 3 Select domain 1 and click the Evaluate button ( = ) at the top of the settings window. The rectangle's area appears in the Results window.
- 4 Choose Results>Derived Values>Line Integration.
- 5 In the Line Integration node's settings window, type nx*ux+ny*uy in the Expression field.
- **6** Select all boundaries and click the **Evaluate** button ( $\equiv$ ) at the top of the settings window. COMSOL Multiphysics computes the flux over the boundaries as the normal component of the gradient of *u*.

The influx is approximately equal to the integral of the negative source term in Poisson's equation.

#### **RESULTS**—**REACTION FORCE OPERATOR**

- I In the Line Integration node's settings window, type reacf(u) in the Expression field.
- **2** Select all boundaries and click the **Evaluate** button ( $\equiv$ ) at the top of the settings window. COMSOL Multiphysics computes the flux over the boundaries using the reaction force operator for the solution *u*. The computed value is much closer to the expected value. To see the value as a double floating-point number with full precision, click the **Full Precision** button in the **Results** window's toolbar.

#### COEFFICIENT FORM PDE-LAGRANGE MULTIPLIER

- I Under Physics, select Dirichlet Boundary Condition I. Clear the Prescribed value of u check box to remove this constraint.
- 2 Right-click PDE (c) and choose More>Weak Constraint on the boundary level.
- **3** In the **Weak Constraint** node's settings window, select **All boundaries** from the **Selection** list.

- 4 In the Weak Constraint section, type u in the Constraint expression field to constrain *u* to 0 at the boundary.
- **5** Expand the Lagrange Multiplier section and replace 1m with flux in the Lagrange multiplier variable field.

## COMPUTING THE SOLUTION—LAGRANGE MULTIPLIER

Right-click Study I and choose Compute.

### RESULTS-LAGRANGE MULTIPLIER

- I In the Line Integration node's settings window, type flux in the Expression field.
- 2 Select all boundaries and click the **Evaluate** button ( ≡ ) at the top of the settings window. COMSOL Multiphysics computes the flux over the boundaries using the Lagrange multiplies variable. The integral of the flux exactly equals the integral of the finite-element projection of the source term in Poisson's equation.

## Flux Calculation Example—Heat Transfer Model

Consider a heat transfer model where a heat flux of  $1 \text{ W/m}^2$  flows in through one boundary of a square 2D region. All other boundaries are kept at a fixed temperature of 293.15 K. The material is copper. This example verifies that the flux is conserved exactly using a Lagrange multiplier for computing the total flux over the bondaries with a fixed temperature.

### MODEL WIZARD

- I On the Select Space Dimension page, click the 2D button. Then click the Next button.
- 2 In the list of physics interface, select open Heat Transfer>Heat Transfer in Solids. Then click the Next button.
- 3 From the Studies list, select Preset Studies>Stationary.
- 4 Click Finish.

#### GEOMETRY MODELING

Draw a unit square (1-by-1 m).

## MATERIALS

In the Material Browser, locate Built-in>Copper and then right-click it and select Add Material to Model.

#### HEAT TRANSFER

The **Heat Transfer in Solids** node defines the material properties to be those from the material (copper) and does not need to be changed, but the default boundary condition is thermal insulation. Instead, add a heat flux to the bottom boundary and a fixed temperature on the other three boundaries.

- I In the Model Builder window, right-click Heat Transfer node and select Heat Flux.
- **2** Click boundary 2 (the bottom boundary) and then right-click it to confirm the selection
- 3 In the Heat Flux node's settings window, enter 1 in the General inward heat flux field for  $q_0$ .
- 4 In the Model Builder window, right-click Heat Transfer node and select Temperature.
- **5** Select the other three boundaries (1, 3, and 4) and add them to the selection for the temperature condition.

#### COMPUTING THE SOLUTION

In the **Model Builder** window, right-click **Study I** and choose **Compute**. The resulting plot shows the temperature distribution in the domain.

#### **RESULTS—FLUX EXPRESSION AND LAGRANGE MULTIPLIER**

- I In the Model Builder window, choose Results>Derived Values>Line Integration.
- **2** In the **Line Integration** node's settings window, select the three boundaries with a fixed temperature (1, 3, and 4).
- 3 Click the **Replace Expression** button ( ≥, ) and select **Heat Transfer>Total heat flux magnitude** (the variable ht.tfluxMag).
- 4 Click the Evaluate button ( = ) at the top of the settings window. The total heat flux across these boundaries appears in the Results window under Total heat flux magnitude and is about 0.986, which is close to but not exactly equal to the influx of 1. This value approaches 1 if you refine the mesh.
- 5 Click the Replace Expression button ( ≥ ) and select Heat Transfer>Lagrange multiplier for temperature (the variable T_lm).

## Using Load Cases

For linear stationary problems it can be of interest to see the solution for several different loads F (right-hand side of the basic PDE) on the same structure (a model where the geometry and materials are defined and do not change). Typically this is used for studies using linear combinations of different loads—*load cases*. It is then possible to solve for these load cases in a computationally efficient way because there is no need to reassemble the stiffness matrix. Varying constraints can also be part of a general load case definition, and COMSOL Multiphysics supports load cases that are combination of loads, with optional weights, and constraints.

In this section:

- · Defining Load Groups and Constraint Groups
- Defining and Evaluating Load Cases



Load Group

Constraint Group

## Defining Load Groups and Constraint Groups

For boundary conditions that represent loads and constraints, as well as other loads and constraints such as body loads, you can define *load groups* and *constraint groups*, which contain the loads and constraints, respectively, that you want to use as parts of load cases. All loads and constraints for solid mechanics support load groups and constraint groups. You can create load groups and constraint groups in two ways:

- Add a a Load Group (
   ) or Constraint Group (
   ) under Global Definitions to create groups to which you can later assign loads and constraints. If you sort the nodes, the load and constraint groups appear under the Load and Constraint Groups node (
   )
- Right-click the physics interface node for a load or constraint and choose Load Group>New Load Group or Constraint Group>New Constraint Group, respectively. In this case, the software creates a load group or constraint group and at the same time assigns that physics interface feature (a load or a constraint) to that group.

To assign a load or a constraint to a load group or constraint group, right-click the physics interface node for a load or constraint and from the **Load Group** or **Constraint Group** submenu choose one of the following:

- Active in All Load Groups (or Active in All Constraint Groups). This is the default setting, which you can use for some boundary conditions or other parts of the physics that take part in all load cases.
- One of the defined load groups or constraint groups such as Load Group 1, Load Group 2, and so on.
- New Load Group (or New Constraint Group) to create a new group as described earlier in this section.

Define as many groups as you need for the load cases that you want to study. Each load or constraint can only belong to one group. The next step is then to define the actual load cases as combinations of these groups.

• Tapered Cantilever with Two Load Cases: Model Library path COMSOL_Multiphysics/Structural_Mechanics/tapered_cantilever



• If you have the Structural Mechanics Module, also see Pratt Truss Bridge: Model Library path

Structural_Mechanics_Module/Civil_Engineering/pratt_truss_bridge

## Defining and Evaluating Load Cases

You define load cases in the **Stationary** study step's settings window. Follow these steps to create load cases:

- I In the Stationary study step's settings window, go to the Study Extensions section.
- 2 Select the Define load cases check box.
- 3 In the **Define load cases** area, click the **Add** ( 💠 ) button underneath the table to add a load case.
- 4 The added load case appears last in the table of load cases. Use the Move Up ( ☆ ), Move Down ( ♣ ), and Delete (★ ) buttons to rearrange the load cases in the table, and click the Add ( ♣ ) button to add more load cases.
- **5** For each load case you can change its name from the default (Load case 2, for example) in the **Load case** column.

- 6 Include the load groups and constraint groups for each load case by clicking the in the columns for the groups to include. The symbol then changes to ✓ to indicate that the group participates in the load case.
- 7 For load groups, optionally change the weight from its default value of 1.0 in the corresponding **Weight** column (the **Weight** column to the right of the load group that it affects). Use a positive value other than 1 to increase or decrease the magnitude of the load; a negative value also reverses the loads direction.

When you have defined all load cases you can compute the solution. COMSOL Multiphysics then solves for all load cases directly. In the plot groups that are created, a **Load case** list in the **Data** section of the **Plot Group** nodes' settings windows contains all load cases. To plot using the solution for a specific load case, select the load case of interest from the **Load case** list, and then click **Plot** ( $\checkmark$ ).

## Using Units

COMSOL Multiphysics supports a number of consistent unit systems, including the SI unit system, which is the default unit system. The user interface displays the unit for the physical quantities entered in the selected unit system, but by Using Standard Unit Prefixes and Syntax you can use any available and applicable unit or SI prefix to define your input quantities. In addition to SI units, many English units and units from the CGS (or cgs) system are also available, regardless of the unit system used in the model. All data in the material databases and Material Library product use SI units with declared units using the unit syntax (see Materials). This makes it possible to use the material data also in models with non-SI unit systems. Regardless of the selected unit system, you can always choose from a list of applicable units for plotting and results evaluation.

In this section:

- · Unit Systems in COMSOL Multiphysics, with links to the different unit systems
- Selecting a Unit System
- Using Standard Unit Prefixes and Syntax
- Switching Unit System
- About Temperature Units
- About Editing Geometry Length and Angular Units
- Indication of Unexpected, Unknown, or Inconsistent Units
- Units and Space Dimensions

In the tables with units, "N/A" means that a symbol for the unit is not available.

## Unit Systems in COMSOL Multiphysics

COMSOL Multiphysics supports the following unit systems:

## METRIC UNIT SYSTEMS

- SI units, the International System of Units (SI, Système International d'Unités). This is the default unit system (sometimes also called MKS). For a list of SI units in COMSOL Multiphysics, see SI Base, Derived, and Other Units.
- CGSA units. The CGS system uses centimeter, gram, and second as basic units of length, mass, and time, respectively. The remaining basic units are identical to the

SI units. The CGS unit system gives nice values for small lengths, masses, forces, pressures, and energies when working on a microscale and with weak electromagnetic forces. The derived units of force, pressure, and energy have well-known and widely used names: dyne, barye, and erg, respectively. CGSA adds *ampere* as the basic unit for electric current. For a list of the CGSA units, see Special CGSA Units.

- Electromagnetic units (EMU). This system is based on Ampère's law, which defines the unit of electric current once you select an appropriate value for the constant C. When dealing exclusively with magnetic effects, it is convenient to set C = 1. If CGS units are used for the remaining basic dimensions, the current unit is called an *abampere*, and the corresponding coherent unit system is called electromagnetic units. Unique names for derived units have been introduced by prefixing the SI name with *ab*-. For a list of EMU units, see Special EMU Units.
- Electrostatic units (ESU). Based on Coulomb's law for the force between point charges, ESU uses a unit of charge called the *statcoulomb* with CGS units for length, mass, and time. From there, the *statampere*, or *franklin*, and other derived units of the electrostatic unit system follow. For a list of ESU units, see Special ESU Units.
- MPa units. For stationary structural mechanics, where the density does not appear in the equations, it can be convenient to use a system where the newton and megapascal (hence the name: the MPa system) are naturally derived units of force and pressure. Keeping the SI unit for time, the basic units of length and mass become millimeter and tonne. Except for the force and pressure units, other derived units are nameless. For a list of MPa units, see Special MPa Units.

### ENGLISH UNIT SYSTEMS

- Foot-pound-second unit system (FPS units). The original foot-pound-second system seems to be the absolute system using the pound as a unit of mass. This version of the FPS system is in agreement with the IEEE standard (the pound is a unit of mass and not of force). The natural derived unit of force is the *poundal*. For a list of FPS units, see Special FPS Units.
- British engineering units. An alternative to the standard FPS system is the British
  engineering unit system (also called gravitational foot-pound-second system or
  foot-slug-second system). Here, the pound force is the natural unit of force, which
  causes the introduction of the mass unit *slug* such that a pound force is a slug-foot
  per second squared. For a list of British engineering units, see Special British
  Engineering Units.

- Inch-pound-second unit system (IPS units). It is possible to define varieties of the FPS and British engineering systems based on the inch instead of the foot as basic unit of length. This gives rise to two distinct inch-pound-second systems: the *absolute IPS system* (just called IPS) and the *gravitational IPS system*. For a list of IPS units, see Special IPS Units.
- Gravitational IPS units. This alternative IPS unit system considers the pound a unit of weight rather than a unit of mass. For a list of Gravitational IPS units, see Special Gravitational IPS Units.

## OTHER

• None. No units appear in the settings, which can be useful in non-dimensionalized models.

## Selecting a Unit System

#### SETTING THE UNIT SYSTEM ON THE GLOBAL LEVEL

To set the unit system for the entire MPH-file on a global level:

- I In the **Model Builder**, click the root node (the top node in the model tree). The root node's name is the name of the MPH-file or **Untitled.mph** before you have saved your work.
- 2 In the root node's settings window, select the unit system from the list in the **Unit System** section or **None** to turn off unit support.

### SETTING THE UNIT SYSTEM FOR INDIVIDUAL MODELS

By default, all models in the MPH-file use the same global unit system, but it is possible to use different unit systems in each model. To do so, follow these steps:

- I In the Model Builder, click the top node for a model branch (Model I, for example).
- 2 In the model node's settings window, locate the Model Settings section.

**3** Select the **Override global system** check box, and then select the unit system from the list of unit systems that becomes available.

To disable unit support in a model, choose **None** from the list in the **Unit System** section in the root node's settings window and make sure that the corresponding setting for each individual model is **Same as global system**. If unit support is turned off only for some models (or if the settings at global and model level differ for a single-model MPH-file) unexpected side effects may occur.

Using Standard Unit Prefixes and Syntax

## STANDARD UNIT PREFIXES

For SI units you can scale data using the standard prefixes for powers of 10—*kilo*, *mega*, *milli*, or *micro*, for example. Either the full prefix or the symbol can be used but you must use the same form for the prefix and the unit—that is, [milliampere] and [mA] are valid but not [mampere] or [milliA]). In the settings windows for plotting and numerical results, the **Unit** list contains the SI unit for the quantity, including the most common prefixes. The lists also contain applicable non-SI units, which in a few cases also support these prefixes.

Use Table 7-3 as a guide for the format to enter.

FULL PREFIX	SYMBOL	FACTOR	
yotta	Y	10 ²⁴	
zetta	Z	10 ²¹	
exa	Е	10 ¹⁸	
peta	Р	10 ¹⁵	
tera	Т	10 ¹²	
giga	G	10 ⁹	
mega	М	10 ⁶	
kilo	k	10 ³	
hekto	h	10 ²	
deca	da	10 ¹	
deci	d	10 ⁻¹	

TABLE 7-3: SI PREFIXES

₩ Tip

TABLE 7-3: SI PREFIXES

FULL PREFIX	SYMBOL	FACTOR
centi	с	10 ⁻²
milli	m	10 ⁻³
micro	u	10 ⁻⁶
nano	n	10 ⁻⁹
pico	Р	10-12
femto	f	10 ⁻¹⁵
atto	a	10 ⁻¹⁸
zepto	z	10 ⁻²¹ 10 ⁻²⁴
yocto	у	10 ⁻²⁴

#### STANDARD UNIT SYNTAX

You can use the unit syntax to specify a quantity with any applicable unit. To do so, append the unit to any constant or variable in a model using a syntax where you enclose the unit in brackets, for example, 200[ft] and 3e6[kg/m^3].

Both the name and the symbol can be used for a unit. For example, 2.4[ampere] and 2.4[A] are both valid to indicate an electric current in SI units (see SI Base, Derived, and Other Units). The SI units can also contain standard prefixes. Appending a unit means that you *multiply* the constant or variable to the left of the unit declaration with this unit. This multiplication takes precedence over other operators so, for example, 1/2[m] evaluates to  $0.5 \text{ m}^{-1} (0.5[1/m])$  whereas both (1/2)[m] and 1/2*1[m] evaluate to 50 cm (0.5[m] or 50[ cm]). Also, if L is a variable defined as 2[m], L[1/s] evaluates to 2[m/s].

The following examples show how to apply the unit syntax:

- Adding two quantities of the same kind that use different units: 0.5[ft]+33[mm]. COMSOL Multiphysics converts the result to the SI length unit (meters).
- Using multiplication with a unit to get consistent units for two quantities that you want to add, for example, 14[kg]+ht.rho[m^3], which works if ht.rho represents the density for a model.



For unit names with spaces and hyphens, such as *British thermal unit* and *pound-force*, only use the symbols when declaring units.

It is possible to add constants (without units) to any quantity. COMSOL Multiphysics then assumes that this value has the unit of the SI unit for that quantity. You can also concatenate several units, for example, 3.6[N][m], which is equivalent to typing 3.6[N*m] and evaluates to 3.6 N·m.

All data in the material databases and Material Library product use SI units and this unit syntax (see Materials).

### DECLARING UNITS FOR PARAMETERS, VARIABLES, AND FUNCTIONS

## **I**mportant

It is important to be aware of the following aspects of unit handling.

When using parameters, variables, and functions in expressions:

- If parameters or variables are used in the physics features (see ), it is good practice to use the unit syntax to define them. The settings windows for parameters and variables display the resulting unit, in SI units, of user-defined parameters and expressions. It is important to verify that the variables have the expected unit before using them in the physics settings. The unit of parameters and variables are otherwise undefined.
- Functions expect dimensionless inputs and outputs, so it is good practice to use make inputs such as time dimensionless using unit syntax. If the input is not dimensionless, COMSOL Multiphysics marks the expression in an orange color and reports an unexpected unit of input. For example, to use the time t as input to a Rectangle function rect1, use [1/s] to make the input dimensionless: rect1(t[1/s]).
- Using properties with undefined units in a model does not affect the numerical results during the analysis, but undefined units are required in the results and visualization stages—expressions involving such parameters and variables are also unitless.
- To declare the SI unit for electric resistance, ohm, use [ohm]. COMSOL Multiphysics then displays this as [Ω].
- If non-SI units or SI prefixes are used, the conversion to SI units also affects the value (quantity) using a scaling factor (and an offset in the case of temperature units). The **Value** column in a **Parameter** node's settings window displays the quantity and unit in the base SI unit system so that you can see the result of the unit

conversion. For example, a parameter is defined as 3[ft], the result in the Value column is 0.9144 m. See .

## SI Base, Derived, and Other Units

The SI units form an internationally accepted system with seven units for base quantities and a large number of derived units. Use the symbols for these and other units when declaring units in COMSOL Multiphysics (for example, 10[m/s] for a velocity).

- Table 7-4 lists the SI units for the seven base quantities.
- Table 7-5 lists the SI derived units supported in COMSOL Multiphysics.
- Table 7-6 lists additional units available in COMSOL regardless of the unit system in the model. If more than one name or symbol is available, use any of them, except when names contain more than one word or a hyphen. See also the tables with special units for other unit systems than the SI system; special units that are not listed in Table 7-6 are only available when using such a non-SI unit system.
- Table 7-7 lists other SI derived units without special names or symbols

TABLE 7-4: BASE SI UNITS

BASE QUANTITY	NAME	SYMBOL
length	meter, metre*	m
mass	kilogram	kg
time	second	s
electric current	ampere	Α
temperature	kelvin**	К
amount of substance	mole	mol
luminous intensity	candela	cd

* See About Editing Geometry Length and Angular Units

**See About Temperature Units

TABLE 7-5: SI DERIVED UNITS IN COMSOL MULTIPHYSICS

BASE QUANTITY	NAME	SYMBOL
absorbed dose	gray	Gy
capacitance	farad	F
conductance	siemens	S
dose equivalent	sievert	Sv

BASE QUANTITY	NAME	SYMBOL
electric charge	coulomb	С
electric resistance, impedance, reactance	ohm	Ω
electric potential difference, voltage	volt	V
energy, work, heat	joule	J
force, weight	newton	Ν
frequency	hertz	Hz
illuminance	lux	lx
inductance	henry	Н
luminous flux	lumen	lm
magnetic flux	weber	Wb
magnetic flux density, magnetic induction	tesla	Т
plane angle	radian	rad
power	watt	W
pressure	pascal	Pa
radioactivity	becquerel	Bq

TABLE 7-5: SI DERIVED UNITS IN COMSOL MULTIPHYSICS

TABLE 7-6: ADDITIONAL UNITS IN COMSOL MULTIPHYSICS

DERIVED QUANTITY	NAME	SYMBOLS	VALUE
acceleration	galileo	Gal	0.01 m/s ²
dipole moment	debye	D	3.33564095·10 ⁻³⁰ C∙m
energy	British thermal unit*	BTU, Btu	1055.05585 J
energy	calorie*	cal	4.184 J
energy	electronvolt	eV	I.6021765314·10 ⁻¹⁹ J
energy	erg	erg	10 ⁻⁷ J
force	dyne	dyn	10 ⁻⁵ N
force	poundal	pdl	0.138254954376 N
force	pound-force	lbf	4.4482216152605 N
frequency	rpm	RPM	1/60 Hz
length	angstrom	Å	10 ⁻¹⁰ m
length	inch	in	0.0254 m
length	foot	ft	0.3048 m

DERIVED QUANTITY	NAME	SYMBOLS	VALUE
length	mile*	mi	1609.344 m
length	microinch	uin	0.0254·10 ⁻⁶ m
length	milliinch	mil, thou	0.0254·10 ⁻³ m
length	nautical mile*, nautimile	nmi	1852 m
length	yard	yd	0.9144 m
magnetic field strength	oersted	Oe	10 ³ /(4·π) A/m
magnetic flux density	gauss	G	10 ⁻⁴ Т
mass	atomic mass unit, dalton	u, amu, Da	1.660538782·10 ⁻²⁷ kg
mass	gram	g	0,001 kg
mass	pound, pound-mass	lb, lbm	0.45359237 kg
mass	stone	st	6.35029318 kg
mass	slug	slug	approx. 14.5939 kg
mass	ton, tonne	t	1000 kg
permeability	millidarcy*	mD	9.869233·10 ⁻¹⁶ m ²
plane angle	degree	deg	π/180
pressure	atmosphere	atm	101325 Pa
pressure	bar	bar	100000 Pa
pressure	barye	ba	0.1 Pa
pressure	psi	psi	6.894757·10 ³ Pa
pressure	torr	Torr, mmHg	133.322 Pa
speed	mph, MPH	mph	0.44704 m/s
speed	knot*	knot	1852 km/h (approx. 0.614 m/s)
temperature	Celsius**	degC	T+273.15
temperature	Fahrenheit**	degF	5/9·T+459.67
temperature	Rankine**	R, Ra	5/9·T
time	year*	a, yr	31556952 s
time	day	d	86400 s
time	hour	h	3600 s
time	minute	min	60 s

TABLE 7-6: ADDITIONAL UNITS IN COMSOL MULTIPHYSICS

TABLE 7-6: ADDITIONAL UNITS IN COMSOL MULTIPHYSICS

DERIVED QUANTITY	NAME	SYMBOLS	VALUE
volume	gallon*	gal	0.003785411784 m ³
volume	imperialgallon	impgal	0.00454609 m ³
volume	liter, litre	L, I	0.001 m ³
volume	pint*	pt	0.000473176473 m ³
volume	quart*	qt	0.000946352946 m ³
volume flow rate	cubic feet per minute	CFM, cfm	4.719474·10 ⁻⁴ m ³ /s

* See the additional notes following this table.

** See About Temperature Units

## additional notes about Table 7-6

UNIT NAME	NOTE
British thermal unit	An energy unit defined as the amount of heat required to raise the temperature of one pound (pound-mass) of water by one degree from 60° to 61° Fahrenheit at a constant pressure of one atmosphere. Refer to the British thermal unit using the symbol only (Btu or BTU): for example, $0.28[Btu/(h*in*degF)]$ for a thermal conductivity.
calorie	Small calorie or gram calorie, which equals 4.184 J. A large calorie or kilogram calorie is 1000 calories (4.184 kJ). Use [kcal] for large calories.
millidarcy (mD)	Widely used for permeability in petroleum engineering. Typical values for the permeability of porous media are in the range of a few to a few hundred mD. The symbol D represents the debye, a unit for the magnetic dipole moment, and not the darcy unit.
mile	The international statute mile, which equals 1609.344 m.
nautimile	The nautical mile equals 1852 m.
knot	The same as nautical miles per hour.
year	A Gregorian year, which equals 365.2425 days.
gallon (gal)	This is the U.S. liquid gallon which equals 0.003785411784 m ³ ; the Imperial (UK) gallon (imperialgallon, impgal) is equal to 0.00454609 m ³ .
pint and quart	The U.S. liquid pint and U.S. liquid quart, respectively.

TABLE 7-7: EXAMPLES OF SI DERIVED UNITS WITHOUT SPECIAL NAMES

QUANTITY	NAME	SYMBOL
acceleration	meter per second squared	m/s ²
amount-of-substance concentration	mole per cubic meter	mol/m ³
area	square meter	m ²
current density	ampere per square meter	A/m ²
heat capacity, specific heat	joule per kilogram kelvin	J/(kg·K)
magnetic field strength	ampere per meter	A/m
mass density	kilogram per cubic meter	kg/m ³
permeability	henry per meter	H/m
speed, velocity	meter per second	m/s
wave number	reciprocal meter	m ⁻¹
volume	cubic meter	m ³

## Special British Engineering Units

The base units in the British engineering unit system are identical to the SI units with the following exceptions:

BASE QUANTITY	NAME	SYMBOL
length	foot	ft
mass	slug	N/A
temperature	Fahrenheit	degF

There is one derived unit that differs from the corresponding SI unit:

TABLE 7-9: DERIVED BRITISH ENGINEERING UNITS IN COMSOL MULTIPHYSICS

BASE QUANTITY	NAME	SYMBOL
force	pound-force	lbf

The British thermal unit is also available as Btu or BTU.



If the British engineering unit system is the base unit system, COMSOL Multiphysics constructs derived units from the applicable SI base units and the units listed in Table 7-8 and Table 7-9. This means, for example, that the unit for voltage displayed in the user interface is lbf-ft/As rather than V (volt). In a text field that expects a voltage as input, you need to use the unit syntax when entering a numerical value, for example, 10[V].

## Special CGSA Units

The base units in the CGSA unit system are identical to the SI units with the following exceptions:

TABLE 7-10: SPECIAL BASE UNITS IN THE CGSA UNIT SYSTEM

BASE QUANTITY	NAME	SYMBOL	
length	centimeter	cm	
mass	gram	g	

The CGSA unit system includes the following derived units that differ from the corresponding SI units:

TABLE 7-11: DERIV	d cgsa units in comso	

BASE QUANTITY	NAME	SYMBOL
acceleration	galileo	Gal
energy	erg	N/A
force	dyne	dyn
pressure	barye	N/A
speed	kyne	N/A

## Special EMU Units

The base units in the EMU unit system are identical to the SI units with the following exceptions:

TABLE 7-12: SPECIAL BASE UNITS IN THE EMU UNIT SYSTEM

BASE QUANTITY	NAME	SYMBOL
length	centimeter	cm

TABLE 7-12: SPECIAL BASE UNITS IN THE EMU UNIT SYSTEM

BASE QUANTITY	NAME	SYMBOL
mass	gram	g
electric current	abampere, biot	N/A

The EMU unit system includes the following derived units that differ from the corresponding SI units:

TABLE 7-13: DERIVED EMU UNITS IN COMSOL MULTIPHYSICS

BASE QUANTITY	NAME	SYMBOL
acceleration	galileo	Gal
capacitance	abfarad	N/A
conductance	absiemens	N/A
electric charge	abcoulomb	N/A
electric resistance	abohm	N/A
electric potential difference, voltage	abvolt	N/A
energy	erg	N/A
force	dyne	dyn
inductance	abhenry	N/A
magnetic flux	abweber	N/A
magnetic flux density	abtesla	N/A
pressure	barye	N/A
speed	kyne	N/A

## Special ESU Units

The base units in the ESU unit system are identical to the SI units with the following exceptions:

TABLE 7-14: SPECIAL BASE UNITS IN THE ESU UNIT SYSTEM

BASE QUANTITY	NAME	SYMBOL
length	centimeter	cm
mass	gram	g
electric current	statampere, franklin	N/A

The ESU unit system includes the following derived units that differ from the corresponding SI units:

BASE QUANTITY	NAME	SYMBOL
acceleration	galileo	Gal
capacitance	statfarad	N/A
conductance	statsiemens	N/A
electric charge	statcoulomb	N/A
electric resistance	statohm	N/A
electric potential difference, voltage	statvolt	N/A
energy	erg	N/A
force	dyne	dyn
inductance	stathenry	N/A
magnetic flux	statweber	N/A
magnetic flux density	stattesla	N/A
pressure	barye	N/A
speed	kyne	N/A

TABLE 7-15: DERIVED ESU UNITS IN COMSOL MULTIPHYSICS

## Special FPS Units

The base units in the FPS unit system are identical to the SI units with the following exceptions:

TABLE 7-16: SPECIAL BASE UNITS IN THE FPS UNIT SYSTEM

BASE QUANTITY	NAME	SYMBOL	
length	foot	ft	
mass	pound	lb	
temperature	Fahrenheit	degF	

There is one derived unit that differs from the corresponding SI unit:

TABLE 7-17: DERIVED FPS UNITS IN COMSOL MULTIPHYSICS

BASE QUANTITY	NAME	SYMBOL
force	poundal	N/A

## Special IPS Units

The base units in the IPS unit system are identical to the SI units with the following exceptions:

TABLE 7-18: SPECIAL BASE UNITS IN THE IPS UNIT SYSTEM

BASE QUANTITY	NAME	SYMBOL	
length	inch	in	
mass	pound	lb	
temperature	Fahrenheit	degF	

## Special MPa Units

The base units in the MPa unit system are identical to the SI units with the following exceptions:

TABLE 7-19: SPECIAL BASE UNITS IN THE MPA UNIT SYSTEM

BASE QUANTITY	NAME	SYMBOL	
length	millimeter	mm	
mass	tonne, ton	t	

There is one derived unit that differs from the corresponding SI unit:

TABLE 7-20: DERIVED MPA UNITS IN COMSOL MULTIPHYSICS

BASE QUANTITY	NAME	SYMBOL	
pressure	megapascal	MPa	

## Special Gravitational IPS Units

The base units in the Gravitational IPS unit system are identical to the SI units with the following exceptions:

TABLE 7-21: SPECIAL BASE UNITS IN THE GRAVITATIONAL IPS UNIT SYSTEM

BASE QUANTITY	NAME	SYMBOL	SYMBOL	
length	inch	in		
mass	GIPS_mass	N/A		
temperature	Fahrenheit	degF		

The following derived units differ from the corresponding SI units:

BASE QUANTITY	NAME	SYMBOL
force	pound-force	lbf
pressure	psi	psi

TABLE 7-22: DERIVED GRAVITATIONAL IPS UNITS IN COMSOL MULTIPHYSICS

## Switching Unit System

If the unit system is switched during modeling, or a unit system other than SI is used, COMSOL Multiphysics does not convert the data in the model. All physical constants and data in the materials libraries are in SI units and defined using the unit syntax, so you can use them with any unit system because COMSOL Multiphysics converts these values to the corresponding values in the model's unit system.

The units of other input data must be declared for the model using the unit syntax (or convert the numerical values to the new unit system manually).

## About Temperature Units

Note

The relationship between different temperature units involve an offset in addition to the usual scale factor. In many cases, the offset is not important to the physics equations because these equations are concerned only with temperature differences. There are, however, some cases where an absolute or thermodynamic temperature measure must be used. The most common example is the Stefan-Boltzmann law for black-body radiation used in radiation boundary conditions.

The SI unit system uses the Kelvin, which is an absolute temperature, as the basic unit of temperature. English unit systems use degree Fahrenheit as the basic unit of temperature, which, because the Fahrenheit scale is not absolute, is fine for most purposes except radiation. For such purposes, the Rankine scale provides the corresponding absolute temperature unit. See Table 7-23 for a list of acceptable unit syntax.

TABLE 7-23: TEMPERATURE UNITS

SCALE	UNIT
Celsius	[degC]
Fahrenheit	[degF]

TABLE 7-23: TEMPERATURE UNITS

SCALE	UNIT
Kelvin	[K]
Rankine	[R] or [Ra]

## DIFFERENTIAL VS. ABSOLUTE TEMPERATURE

If the dimension of an expression that includes a unit is temperature or 1/temperature, COMSOL Multiphysics interprets the dimension as an absolute temperature. If the dimension is something other than temperature but the unit expression includes temperature, the temperature is a differential temperature; that is, COMSOL Multiphysics uses no offset when converting between different temperature units.

The following examples show how the unit conversion works for different expressions that include temperature units:

- 100[degC] is an expression that has temperature as the dimension. COMSOL Multiphysics interprets it as an absolute temperature and evaluates it as 373.15 K.
- **373.15**[1/K] is interpreted as an absolute temperature (but no conversion is necessary from kelvin to kelvin).
- 100[degC/K] is dimensionless, and the temperature is therefore a differential temperature; that is, the result is 100 because the conversion uses no offset.
- To make COMSOL Multiphysics interpret 100[degC/K] as an absolute temperature, split the expression using two separate expressions such as 100[degC]*1[1/K], which equals 373.15. This is also what occurs when you use a variable (TC, for example) defined as 100[degC]. TC[1/K] is then also two expressions where both are interpreted as absolute temperature.

## About Editing Geometry Length and Angular Units

The default units are meters for length and degrees for angles. For many applications an independent length unit for the geometry might be required. For example, if the model describes a MEMS device, the natural length unit might be µm (micrometers), or the geometry imported from a CAD file might use another unit than meters. It can also be useful to specify the angular unit in radians instead.



The length unit for the geometry does not affect the units that include length in the physics interfaces or any other part of COMSOL Multiphysics.

- I Create or open a model file.
- 2 In the Model Builder, under a Model node, click the Geometry node.
- 3 Under Units, select a Length unit from the list.
- 4 Select an Angular unit—Degrees or Radians.
- **5** Select the **Scale values when changing units** check box to automatically scale for dimensions in the existing geometry.
- 6 Enter a Default relative repair tolerance and select a Geometry representation.



For details about the geometry settings, see The Geometry Node and Its Settings in the COMSOL Multiphysics Reference Guide.

When importing 3D CAD geometries, you can choose to use the length unit from the CAD file or the length unit from COMSOL.

## Indication of Unexpected, Unknown, or Inconsistent Units

The unit display appears orange for the properties in the settings for the physics and materials that have invalid or inconsistent units or a different unit than expected. An inconsistent unit can occur by summing terms with units that represent different physical quantities, such as 273[K]+3[ft], for example. A tooltip displays a message at the corresponding field. In the case of a valid but unexpected unit, this message contains the deduced and expected units in the current unit system.



If an unexpected or inconsistent unit appears in a text field for a physical property, COMSOL Multiphysics ignores the unit and uses the numerical value, including an SI prefix if present, as the input to the model. For example, in a text field for density using SI units, the software interprets 2930[K] as  $293 \text{ kg/m}^3$  and 2930[mK] as  $2.930 \text{ kg/m}^3$ .

A unit display that appears red contains a syntax error, which can be due to, for example, missing or misplaced parentheses.

## Units and Space Dimensions

Most physics interfaces support 2D (and in some cases also 1D) models in addition to 3D models. The units for intensive physical quantities such as density in the physics interfaces are the same regardless of the space dimension (for density, kg/m³ in SI units). This makes it possible to use common material property values also in models with other space dimensions than 3D using their well-known, physical units regardless of the dimension you are modeling in. In planar 2D, this means that the implementation includes an implicit unit depth in the out-of-plane direction, except for some physics interfaces (for solid mechanics and electric currents, for example), where the thickness is a user-defined property that defines the volume of the model domain. In axisymmetric models, the volume of the domain is defined by the 2D cross section in the *rz*-plane that is the geometry you define for such models. The volume that it defines is the area of the 2D cross section integrated a full 360 degrees in the circumferential direction.

# Overview of the Physics Interfaces

This chapter gives an overview of the available physics interfaces as well as some general guidelines for effective modeling.

In this chapter:

- The COMSOL Multiphysics Physics Interfaces
- Modeling Guidelines
- Equations for the Physics Interfaces

8

## The COMSOL Multiphysics Physics Interfaces

This section includes these topics:

- Introduction to the Physics Interfaces
- · Physics Interfaces Groups in the Model Wizard
- Physics List in COMSOL Multiphysics
- Selecting a Physics Interface
- Show More Physics Options
  - Showing and Expanding Advanced Physics Sections
  - The Physics Feature Nodes
  - Specifying Model Equation Settings
  - Periodic Boundary Conditions

C See Also

- The Model Builder Window
- Sorting Nodes by Space Dimension and Type
- Opening a Context Menu to Add Nodes
- Key to the Nodes and Toolbar Buttons

## Introduction to the Physics Interfaces

Solving PDEs generally means you must take the time to set up the underlying equations, material properties, and boundary conditions for a given problem. COMSOL Multiphysics, however, relieves you of much of this work. The package provides a number of *physics interfaces* that consist of predefined templates and user interfaces already set up with equations and variables for specific areas of physics. The physics interfaces consist of a number of features with associated windows on the COMSOL Desktop for the physics in domains and on boundaries, edges, and points along with predefined PDEs. A set of interface-dependent variables makes it easy to

visualize and evaluate the important physical quantities using conventional terminology and notation.

Suites of physics interfaces that are optimized for specific disciplines together with specialized model libraries are available in a group of optional products. See The COMSOL Modules for a list.

A complement to the physics interfaces, special interfaces for equation-based modeling simplify the setup of PDEs for modeling that does not explicitly refer to any particular application field. In addition a number of interfaces supplement the physics interfaces with special functionality such as the Sensitivity and Moving Mesh interfaces.

## Physics Interfaces Groups in the Model Wizard

The **Add Physics** page in the **Model Wizard** contains the main groups of physics interfaces and mathematics interfaces as in Table 8-1(some items only display if a license includes the add-on modules).

ICON	BRANCH NAME	DESCRIPTION OF PHYSICS INTERFACES IN THE BRANCH
×	Recently Used	Contains the most recently used interfaces for easy access to the ones used the most.
×.	AC/DC	For low-frequency electromagnetics such as electrostatics and electric currents.
))))	Acoustics	Interfaces for acoustics.
<b>*</b> *	Chemical Species Transport	Interfaces for chemical species transport by, for example, convection and diffusion, solving for the species concentrations.
U	Electrochemistry	Interfaces for electrochemistry and modeling of electrochemical components such as batteries and fuel cells. This branch is only available if a license includes the Batteries & Fuel Cells Module, the Electrodeposition Module, or the Corrosion Module.
11	Fluid Flow	Interfaces for fluid flow such as laminar single-phase flow and, with add-on modules, multiphase flow and turbulent flow.
<b>\$</b> \$\$	Heat Transfer	Interfaces for heat transfer in solids and fluids and thermal multiphysics applications such as Joule heating.

TABLE 8-1: PHYSICS INTERFACE GROUPS IN THE MODEL WIZARD

<mark>т</mark>р

ICON	BRANCH NAME	DESCRIPTION OF PHYSICS INTERFACES IN THE BRANCH		
🎨 Plasma		Interfaces for plasma modeling. This branch is only available if a license includes the Plasma Module.		
)+1-([] (()))	Radio Frequency	Interfaces for high-frequency electromagnetic field simulations solving the full Maxwell equations. This branch is only available if a license includes the RF Module.		
i.	Structural Mechanics	Interfaces for structural mechanics, studying displacements and stresses in solids, for example.		
Δu	Mathematics	Mathematics interfaces for solving PDEs, ODEs, and DAEs, for optimization (requires the Optimization Module) and sensitivity analysis, and for modeling moving meshes and parameterized geometry.		

#### TABLE 8-1: PHYSICS INTERFACE GROUPS IN THE MODEL WIZARD

## Physics List in COMSOL Multiphysics

The table lists the physics interfaces in COMSOL Multiphysics and their availability for 1D, 1D axisymmetric, 2D, 2D axisymmetric, and 3D geometries.

PHYSICS	ICON	TAG	SPACE DIMENSION	PRESET STUDIES	
AC/DC					
Electrostatics	×	es	all dimensions	stationary; time dependent	
Electric Currents	*	ec	all dimensions	stationary	
Magnetic Fields		mf	2D, 2D axisymmetric	stationary; frequency domain	
)))) Acoustics					
Pressure Acoustics					
Pressure Acoustics Frequency Domain	<b>()))</b>	acpr	all dimensions	eigenfrequency; frequency domain	

PHYSICS	ICON	TAG	SPACE DIMENSION	PRESET STUDIES
👷 Chemical Species Transport				
Transport of Diluted Species	s 🔁	chds	all dimensions	stationary; time dependent
Fluid Flow				
📚 Single-Phase Flow				
Single-Phase Flow, Laminar Flow	1	spf	3D, 2D, 2D axisymmetric	stationary; time dependent
<u> Heat</u> Transfer				
Heat Transfer in Solids	<b>)</b>	ht	all dimensions	stationary; time dependent
Heat Transfer in Fluids	(≋	ht	all dimensions	stationary; time dependent
🔰 Electromagnetic Heati	ng			
Joule Heating	13	jh	all dimensions	stationary; time dependent
Structural Mechanics				
Solid Mechanics	÷	solid	3D, 2D, 2D axisymmetric	stationary; eigenfrequency; time dependent
∆u Mathematics				
Wall Distance	霻	wd	all dimensions	stationary; time dependent
∆u PDE Interfaces				
Coefficient Form PDE	Δu	с	all dimensions	stationary; eigenfrequency; time dependent

PHYSICS	ICON	TAG	SPACE DIMENSION	PRESET STUDIES
General Form PDE	Δu	g	all dimensions	stationary; eigenfrequency; time dependent
Weak Form PDE	∫du	w	all dimensions	stationary; eigenfrequency; time dependent

# **∆u** Lower Dimensions

Coefficient Form Boundary PDE	Δu	cb	all dimensions	stationary; eigenfrequency; time dependent
Coefficient Form Edge PDE	Δu	ce	3D	stationary; eigenfrequency; time dependent
Coefficient Form Point PDE	Δu	ср	3D, 2D, 2D axisymmetric	stationary; eigenfrequency; time dependent
General Form Boundary PDE	Δu	gb	all dimensions	stationary; eigenfrequency; time dependent
General Form Edge PDE	Δu	ge	3D	stationary; eigenfrequency; time dependent
General Form Point PDE	Δu	gP	3D, 2D, 2D axisymmetric	stationary; eigenfrequency; time dependent
Weak Form Boundary PDE	∫du	wb	all dimensions	stationary; eigenfrequency; time dependent
Weak Form Edge PDE	∫du	we	3D	stationary; eigenfrequency; time dependent
Weak Form Point PDE	<b>J</b> du	wp	3D, 2D, 2D axisymmetric	stationary; eigenfrequency; time dependent

PHYSICS	ICON	TAG	SPACE DIMENSION	PRESET STUDIES
$\frac{d}{dt}$ ODE and DAE Interfa	ices			
Global ODEs and DAEs	d dt	ge	all dimensions	stationary; eigenfrequency; time dependent; frequency domain; eigenvalue
Domain ODEs and DAEs	$\frac{d}{dt}$	dode	all dimensions	stationary; time dependent; eigenvalue
Boundary ODEs and DAEs	$\frac{d}{dt}$	bode	all dimensions	stationary; time dependent; eigenvalue
Edge ODEs and DAEs	$\frac{d}{dt}$	eode	3D	stationary; time dependent; eigenvalue
Point ODEs and DAEs	$\frac{d}{dt}$	pode	3D, 2D, 2D axisymmetric	stationary; time dependent; eigenvalue
Events	_~	ev	all dimensions	time dependent
optimization and Sen	sitivity			
Optimization	٢	opt	all dimensions	stationary; eigenfrequency; time dependent; frequency domain; eigenvalue
Sensitivity	<b>h</b> h.	sens	all dimensions	stationary; eigenfrequency; time dependent; frequency domain; eigenvalue
√ ² Classical PDEs				
Helmholtz Equation	∇2	hzeq	all dimensions	stationary
Laplace Equation	∇2	lpeq	all dimensions	stationary
Poisson's Equation	∇2	poeq	all dimensions	stationary

PHYSICS	ICON	TAG	SPACE DIMENSION	PRESET STUDIES
Wave Equation	∇2	waeq	all dimensions	time dependent
Heat Equation	∇2	hteq	all dimensions	stationary; time dependent
Convection-Diffusion Equation	∇2	cdeq	all dimensions	stationary; time dependent
Deformed Mesh				
Deformed Geometry		dg	all dimensions	stationary; time dependent; frequency domain; eigenvalue
Moving Mesh	æ	ale	all dimensions	stationary; time dependent; frequency domain; eigenvalue

# Selecting a Physics Interface

When creating a model in COMSOL Multiphysics, you can select a single physics interface that describes one type of physics or select several physics interfaces for multiphysics modeling and coupled-field analyses.

### MODELING USING A SINGLE PHYSICS INTERFACE

Most of the physics interfaces contain stationary, eigenvalue, and time dependent (dynamic) study types. As already mentioned, these physics interfaces provide features and windows where you can create models using material properties, boundary conditions, and initial conditions. Each physics interfaces comes with a template that automatically supplies the appropriate underlying PDEs.

If you cannot find a physics interface that matches a given problem, try one of the mathematics interfaces, which allow you to define a custom model in general mathematical terms. Indeed, COMSOL Multiphysics can model virtually any scientific phenomenon or engineering problem that originates from the laws of science.

### MULTIPHYSICS MODELING USING MULTIPLE PHYSICS INTERFACES

When modeling real-world systems, you often need to include the interaction between different kinds of physic: multiphysics. For instance, an electric current produces heat,

and the properties of an electronic component such as an inductor vary with temperature. To solve such a problem, combine two or several physics interfaces into a single model using the multiphysics capabilities of COMSOL Multiphysics. For the example just mentioned, you can use the predefined Joule Heating interface, which is a combination of the Electric Currents and Heat Transfer physics interfaces. This way you create a system of two PDEs with two dependent variables: V for the electric potential and T for the temperature. There are many other predefined multiphysics couplings that provide a unified interface that combines two or more coupled physics interfaces for common multiphysics applications.

You can also combine physics interfaces and equation-based modeling for maximum flexibility.

To summarize the proposed strategy for modeling processes that involve several types of physics: Look for physics interfaces suitable for the phenomena of interest. If you find them among the physics interfaces, use them; if not, add one or more PDE interfaces for equation-based modeling.

When coupling multiple physics interfaces in a multiphysics model (without using a predefined multiphysics interface), the couplings can occur in domains and on boundaries. COMSOL Multiphysics automatically identifies potential *model inputs* for quickly forming couplings between physics. For example, a velocity field from a fluid-flow interface is a model input for convection in a heat transfer interface.

# Show More Physics Options

There are several features available on many physics interfaces or individual nodes. This section is a short overview of the options and includes links to the *COMSOL Multiphysics User's Guide* or *COMSOL Multiphysics Reference Guide* where additional information is available.



The links to the features described in the *COMSOL Multiphysics Reference Guide* do not work in the PDF, only from within the online help.

# u Tip

To locate and search all the documentation for this information, in COMSOL, select **Help>Documentation** from the main menu and either enter a search term or look under a specific module in the documentation tree.

To display additional features for the physics interfaces and feature nodes, click the **Show** button ( $\flat_{\overline{w}}$ ) on the **Model Builder** and then select the applicable option.

After clicking the **Show** button ( $r_{\overline{o}}$ ), some sections display on the settings window when a node is clicked and other features are available from the context menu when a node is right-clicked. For each, the additional sections that can be displayed include **Equation**, **Advanced Settings**, **Discretization**, **Consistent Stabilization**, and **Inconsistent Stabilization**.

You can also click the **Expand Sections** button ( $\checkmark$ ) in the **Model Builder** to always show some sections or click the **Show** button ( $\checkmark$ ) and select **Reset to Default** to reset to display only the **Equation** and **Override and Contribution** sections.

For most physics nodes, both the **Equation** and **Override and Contribution** sections are always available. Click the **Show** button (*****, **and** then select **Equation View** to display the **Equation View** node under all physics nodes in the **Model Builder**.

Availability of each feature, and whether it is described for a particular physics node, is based on the individual physics selected. For example, the **Discretization**, **Advanced Settings**, **Consistent Stabilization**, and **Inconsistent Stabilization** sections are often described individually throughout the documentation as there are unique settings.

SECTION	CROSS REFERENCE	LOCATION IN COMSOL MULTIPHYSICS USER'S GUIDE OR REFERENCE GUIDE
Show More Options and Expand Sections	<ul> <li>Showing and Expanding Advanced Physics Sections</li> <li>The Model Builder Window</li> </ul>	User's Guide
Discretization	<ul><li>Show Discretization</li><li>Element Types and Discretization</li></ul>	User's Guide
	<ul><li>Finite Elements</li><li>Discretization of the Equations</li></ul>	Reference Guide
Discretization - Splitting of complex variables	Compile Equations	Reference Guide

SECTION	CROSS REFERENCE	LOCATION IN COMSOL MULTIPHYSICS USER'S GUIDE OR REFERENCE GUIDE
Pair Selection	<ul><li>Identity and Contact Pairs</li><li>Specifying Boundary Conditions for Identity Pairs</li></ul>	User's Guide
Consistent and Inconsistent Stabilization	Show Stabilization	User's Guide
	<ul><li>Stabilization Techniques</li><li>Numerical Stabilization</li></ul>	Reference Guide
Geometry	Working with Geometry	User's Guide
Constraint Settings	Using Weak Constraints	User's Guide

# Modeling Guidelines

To allow you to model large-scale problems and for successful modeling in general, COMSOL Multiphysics lets you tune solver settings and use symmetries and other model properties to reach a solution or—failing that—interrupt the solution process to retrieve a partial solution. This section provides some tips and guidelines when modeling.

In this section:

- Using Symmetries
- Effective Memory Management
- Selecting an Element Type
- · Analyzing Model Convergence and Accuracy
- Achieving Convergence When Solving Nonlinear Equations
- Avoiding Strong Transients
- · Physics-Related Checks and Guidelines
- Results With Small Unphysical Values

### Using Symmetries

By using symmetries in a model you can reduce its size by one-half or more, making this an efficient tool for solving large problems. This applies to the cases where the geometries and modeling assumptions include symmetries.

The most important types of symmetries are axial symmetry and symmetry and antisymmetry planes or lines:

- Axial Symmetry is common for cylindrical and similar 3D geometries. If the geometry is axisymmetric, there are variations in the radial (r) and vertical (z) direction only and not in the angular (θ) direction. You can then solve a 2D problem in the rz-plane instead of the full 3D model, which can save considerable memory and computation time. Many COMSOL Multiphysics physics interfaces are available in axisymmetric versions and take the axial symmetry into account.
- Symmetry and Antisymmetry Planes or Lines are common in both 2D and 3D models. Symmetry means that a model is identical on either side of a dividing line or plane. For a scalar field, the normal flux is zero across the symmetry line. In

structural mechanics, the symmetry conditions are different. *Antisymmetry* means that the loading of a model is oppositely balanced on either side of a dividing line or plane. For a scalar field, the dependent variable is 0 along the antisymmetry plane or line. Structural mechanics applications have other antisymmetry conditions. Many physics interfaces have symmetry conditions directly available as features.

To take advantage of symmetry planes and symmetry lines, all of the geometry, material properties, and boundary conditions must be symmetric, and any loads or sources must be symmetric or antisymmetric. You can then build a model of the symmetric portion, which can be half, a quarter, or an eighth of the full geometry, and apply the appropriate symmetry (or antisymmetry) boundary conditions.

### Effective Memory Management

Especially in 3D modeling, extensive memory usage dictates some extra precautions. First, check that you have selected an iterative linear system solver. Normally you do not need to worry about which solver to use, because the physics interface makes an appropriate default choice. In some situations, though, it might be necessary to make additional changes to the solver settings and the model.

### ESTIMATING THE MEMORY USE FOR A MODEL

Out-of-memory messages can occur when COMSOL Multiphysics tries to allocate an array that does not fit sequentially in memory. It is common that the amount of available memory seems large enough for an array, but there might not be a contiguous block of that size due to memory fragmentation.

In estimating how much memory it takes to solve a specific model, the following factors are the most important:

- The number of node points
- · The number of dependent and independent variables
- · The element order
- The sparsity pattern of the system matrices. The sparsity pattern, in turn, depends on the shape of the geometry and the mesh. For example, an extended ellipsoid gives sparser matrices than a sphere.

The MUMPS and PARDISO out-of-core solvers can make use of available disk space to solve large models that do not fit in the available memory.

You can monitor the memory use in the bottom-right corner of the COSMOL Desktop, where the program displays the amount of physical memory (working set) and total virtual memory used.

#### CREATING A MEMORY-EFFICIENT GEOMETRY

A first step when dealing with large models is to try to reduce the model geometry as much as possible. Often you can find symmetry planes and reduce the model to a half, a quarter or even an eighth of the original size. Memory usage does not scale linearly but rather polynomially  $(Cn^k, k > 1)$ , which means that the model needs less than half the memory if you find a symmetry plane and cut the geometry size by half. Other ways to create a more memory-efficient geometry include:

- Avoiding small geometry objects where not needed and using Bézier curves instead of polygon chains.
- Using linear elements if possible (this is the default setting in many physics interfaces). See Selecting an Element Type.
- Making sure that the mesh elements are of a high quality. Mesh quality is important for an iterative linear system solver. Convergence is faster and more robust if the element quality is high.
- Avoiding geometries with sharp, narrow corners. Mesh elements get thin when they approach sharp corners, leading to poor element quality in the adjacent regions. Sharp corners are also unphysical and can lead to very large (even infinite, in theory) stress concentrations, for example.

### Selecting an Element Type

As the default element type for most physics interfaces, COMSOL Multiphysics uses typically uses first-order or second-order Lagrange elements or shape functions. Second-order elements and other higher-order elements add additional degrees of freedom on midpoint and interior nodes in the mesh elements. These added degrees of freedom typically provide a more accurate solution but also require more memory due to the reduced sparsity of the discretized system. For many application areas, such as stress analysis in solid mechanics, the increased accuracy of a second-order element is important because quantities such as stresses involve space derivatives and become constant within an element when using first-order elements. COMSOL recommends that you use the default element types. For some applications, it might be possible to use a lower-order element than the default element type, but you must then use care to ensure that the important quantities are resolved.



For information about editing shape functions, see The Equation View Node.

# Analyzing Model Convergence and Accuracy

It is important that the finite element model accurately captures local variations in the solution such as stress concentrations. In some cases you can compare your results to values from handbooks, measurements, or other sources of data. Many examples in the COMSOL Multiphysics Model Library include comparisons to established results or analytical solutions. Look for these *benchmark models* as a means of checking results.

If a model has not been verified by other means, a *convergence test* is useful for determining if the mesh density is sufficient. Here you refine the mesh and run the study again, and then check if the solution is converging to a stable value as the mesh is refined. If the solution changes when you refine the mesh, the solution is mesh dependent, so the model requires a finer mesh. You can use adaptive mesh refinement, which adds mesh elements based on an error criterion to resolve those areas where the error is large.

For convergence, it is important to avoid singularities in the geometry.

C See Also Avoiding Singularities and Degeneracies in the Geometry

# Achieving Convergence When Solving Nonlinear Equations

Nonlinear problems are often difficult to solve. In many cases, no unique solution exists. COMSOL Multiphysics uses a Newton-type iterative method to solve nonlinear systems of PDEs. This solution method can be sensitive to the initial estimate of the solution. If the initial conditions are too far from the desired solution, convergence might be impossible, even though it might be simple from a different starting value.

You can do several things to improve the chances for finding the relevant solutions to difficult nonlinear problems:

- Provide the best possible initial values.
- Solve sequentially and iterate between single-physics equations; finish by solving the fully coupled multiphysics problem when you have obtained better starting guesses.
- Ensure that the boundary conditions are consistent with the initial solution and that neighboring boundaries have compatible conditions that do not create singularities.
- Refine the mesh in regions of steep gradients.
- For convection-type problem, introduce artificial diffusion to improve the problem's numerical properties (see Stabilization Techniques in the COMSOL Multiphysics Reference Guide). Most physics interfaces for modeling of fluid flow and chemical species transport provide artificial diffusion as part of the default settings.
- Scaling can be an issue when one solution component is zero. In those cases, the automatic scaling might not work.
- Turn a stationary nonlinear PDE into a time-dependent problem. Making the problem time dependent generally results in smoother convergence. By making sure to solve the time-dependent problem for a time span long enough for the solution to reach a steady state, you solve the original stationary problem.
- Use the parametric solver and vary a material property or a PDE coefficient starting from a value that makes the equations less nonlinear to the value at which you want to compute the solution. This way you solve a series of increasingly difficult nonlinear problems. The solution of a slightly nonlinear problem that is easy to solve serves as the initial value for a more difficult nonlinear problem.

### Avoiding Strong Transients

If you start solving a time-dependent problem with initial conditions that are inconsistent, or if you use boundary conditions or sources that switch instantaneously at a certain time, you induce strong transient signals in a system. The time-stepping algorithm then takes very small steps to resolve the transient, and the solution time might be very long, or the solution process might even stop. Stationary problems can run into mesh-resolution issues such as overshooting and undershooting of the solution due to infinite flux problems.

Unless you want to know the details of these transients, start with initial conditions that lead to a consistent solution to a stationary problem. Only then turn on the

boundary values, sources, or driving fluxes over a time interval that is realistic for your model.

In most cases you should turn on your sources using a smoothed step over a finite time. What you might think of as a step function is, in real-life physics, often a little bit smoothed because of inertia. The step or switch does not happen instantaneously. Electrical switches take milliseconds, and solid-state switches take microseconds.

# Physics-Related Checks and Guidelines

There are some important checks and guidelines that primarily apply to different areas of physics. Making these checks ensure that the model input is sufficient and increase the chances for successful modeling. See also the modeling sections of the documentation for the physics interfaces and the modules for more information related to modeling different physics.

### FLUID FLOW AND TRANSPORT PHENOMENA

The following checks and guidelines primarily apply to fluid-flow modeling but also to modeling of other transport phenomena:

- If none of the boundary conditions include the pressure (most outlet conditions do, however), then you should specify the pressure at some point in the fluid domain. Without a specified pressure, the problem is underconstrained and it is difficult to get convergence.
- Make sure that the mesh if sufficiently fine, so that it contains at least 4–6 mesh elements across the thickness of a channel, for example.
- Make sure that the boundary conditions and the initial conditions match for time-dependent problems. For example, instead of starting with a full velocity on the wall, compared to a zero initial velocity field in the fluid, ramp up the velocity with a smoothed step function or a ramp function that takes the inlet velocity from zero, which matches the initial value for the velocity field, to the full velocity. See also Avoiding Strong Transients.
- For fluid-flow models it is important to estimate the flow regime (laminar or turbulent) using the Reynolds number, for example. If the flow is in the turbulent regime, a turbulence model is typically required.

### ACOUSTIC, STRUCTURAL, AND ELECTROMAGNETIC WAVE PROPAGATION

For models that describe wave propagation, it is important to fully resolve the wave in both time and space. In practice that means using a maximum mesh element size that

provides about 10 linear or five second-order elements per wavelength and also, for transient simulations, a fixed time step that is small enough.

### STRUCTURAL MECHANICS

The following checks and guidelines primarily apply to modeling of structural mechanics:

- Make sure that the model is fully constrained. At a minimum, you typically need to constrain the model to avoid all rigid-body movement, which for a 3D solid mechanics model means 6 constraints for three translations and three rotations. Otherwise the solution is not well defined and does not converge. It is not possible to add all 6 constraints in a single point, where you can constrain at most three translational degrees of freedom. For a 3D solid model you can use a "3-2-1 approach" to constrain 3 degrees of freedom at one point (a fixed constraint), 2 at another point, and 1 at a third point. To do so, select three convenient points (vertices) that are well separated. Then fix the first point in all three directions. Constrain the second point in the two directions orthogonal (normal) to the vector from point one to point two making sure that there is no restriction to deformation along the line from point one to point two. Finally constrain the third point in a direction normal to the plane formed by the three points. To test this approach, the model should expand or contract under temperature loading and have small stresses throughout with no stress concentrations. The corresponding minimum constraints for a 2D model are a fixed constraint at one point for the 2 translational degrees of freedom and an additional constraint in one direction at another point to constrain the single rotational degree of freedom.
- Consider if you can assume that the material is linear elastic and that the deformations are small. If not, consider using a nonlinear material model.
- Avoid sharp corners in the geometry, which are unphysical and lead to unbounded stress concentrations.

### Results With Small Unphysical Values

### WHERE AND WHY DO UNPHYSICAL VALUES APPEAR?

In some models small unphysical values can occur due to numerical artifacts. Examples include:

• Negative concentrations in mass transfer.

- A temperature that is slightly higher than the initial condition in time-dependent heat transfer studies.
- Small reaction forces that appear in unloaded directions in structural mechanics models.
- Small negative gaps in a contact analysis.
- Small negative effective plastic strain values.
- Stresses above the yield limit for an ideally plastic material in solid mechanics.

Some reasons for why these unphysical values occur:

- Numerical noise is a common cause. When the values of the dependent variables approach zero, the numerical noise can become relatively significant and cause some of the results to be slightly negative even if that is not physically possible.
- Interpolation and extrapolation of values can cause some values to become unphysical. For example, results for an elastoplastic material are correct (within some tolerance) at the integration points (Gauss points) inside the finite elements, but values might become unphysical when extrapolating the data to the element boundaries.



The **Plasticity** feature is available as a subnode to a **Linear Elastic Material** with the Nonlinear Structural Materials Module.

• Discontinuities in the model is another source of, for example, small negative concentrations due to a discontinuous initial value. With an initial value that is zero along a boundary for a convective transport models, for example, the physical interpretation is an initially sharp, gradually diffusing front moving away from the boundary. However, for the default shape function (second-order Lagrange elements), only continuous functions are admissible as solutions for the finite element model. The program then modifies the discontinuous initial value before the time stepping can begin. This often results in a small dip in the solution at the start time. In the example model that the following figure shows, the concentration is locally slightly negative at t = 0:



- Lack of mesh resolution is another cause of unphysical values such as negative concentrations. The resulting convergence problems are often the underlying issue when negative concentrations are observed in high convection regimes (high Peclet number) and in those with large reaction terms or fast kinetics (high Damkohler number).
- Incorrect physics in the model can also cause these types of problems. For mass transfer, for example, the use of a constant sink in a reaction term is an approximation that only works for large concentrations. When the concentration reaches zero, the reaction term continues to consume the species, finally resulting in a negative concentration.

### AVOIDING UNPHYSICAL VALUES

This section contains some ways to avoid computing or displaying unphysical values:

- In some cases it is possible to add a baseline to the dependent variable so that the numerical noise does not affect the solution in the same way as when the values of the dependent variable approach zero. This scaling is not possible with, for example, a reaction term that depends on the concentration because then the scale and origin do matter.
- Avoid discontinuities in the model by using, for example, the available smoothed step functions instead.

- Formulate logarithmic variables as a way of eliminating mesh resolution problems and negative dips by using the logarithm of the original dependent variable (the concentration, for example) as the dependent variable. The reason for this is that a linearly varying mesh can sometimes not capture the exponential behavior of the changes in the dependent variable. In addition, modeling the logarithm of the dependent variable ensures that the real concentration, for example, cannot become negative during the solution process.
- Avoid displaying small unphysical values due to numerical noise by clipping the values for the plot. You can do this by plotting, for example, c*(c>0) instead of c, which evaluates to 0 everywhere where *c* is smaller than 0. You can also adjust the range of the plot data and colors to only show values that are nonzero. In the case that the data range changes, parts of the plots where the values are outside the range become empty.
- It can also be useful to check how the mesh affects the solution by refining the mesh and check if the problem with unphysical values gets better or worse. If it gets better, then continue to refine the mesh. If it gets worse, you probably need to check the physics of the model.

# Equations for the Physics Interfaces

In this section:

- Physics Nodes-Equation Section
- Physics Nodes Advanced Settings

# Physics Nodes-Equation Section

For each physics interface and feature node there is an **Equation** section always available on the settings window. This has options to display mathematical equations applicable to the feature.



The Equation View Node



You can expand the section at any time from the settings window. Click the **Expand Sections** button (**T**) in the **Model Builder** and select **Equations**.

The display options available from the drop-down lists are dependent on the study types and other physics specific factors. See Figure 8-2 for an example comparing the equations that display for a **Stationary** or **Time Dependent** study for a **Heat Transfer** interface. Some settings windows do not have any options and only display the relevant equation and other windows have additional sections that become available for the **Equation** display based on the study type selected.



Study Types in the COMSOL Multiphysics Reference Guide

Node Contributions Display a Dotted Line Under Part of the Equation For all feature nodes (excluding the interface node level), the equation that displays includes a dotted line underneath where the node's contribution is made to the equation. See Figure 8-1 for an example where a section of the heat transfer equation is underlined, indicating where the **Heat Transfer in Solids** feature contributes to it.



Figure 8-1: An example of the Heat Transfer in Solids feature contribution to the equation for a 3D model.

#### Equation Form

When you add physics to a model, the default **Study types** are listed in the **Equation form** list. **Study controlled** is the default; select another option as required.

#### Show Equation Assuming

The **Show equation assuming** option is available by default when **Study controlled** is selected (or left as the default) as the **Equation form**. Availability of the options are based on the studies added and defined for the model.

For the following options—frequency and mode analysis frequency—you also have the option to use another frequency than the one used by the solver. This can be necessary if you need two different frequencies for two interfaces.

#### Frequency

This option is available if **Frequency domain** is selected as the **Equation form**. The default uses the frequency **From solver**. If **User defined** is selected, enter another value or expression (SI unit: Hz).

### Mode Analysis Frequency

This option is available if **Mode Analysis** or **Boundary Mode Analysis** is selected as the **Equation Form**. Enter a value or expression in the field (SI unit: Hz). Specify a frequency (it is not present as a solver variable).

### Port Name

This option is available with the RF Module **Electromagnetic Waves** interface and if **Boundary Mode Analysis** is selected as the **Equation Form**. Enter a value in the field (unitless).



Figure 8-2: An example of the Equation section on a Heat Transfer interface. Selecting the study type updates the equation accordingly.

# Physics Nodes Advanced Settings

Various settings are available by clicking the **Show** button (*****, **)** and selecting from the **Advanced>** menus. See Showing and Expanding Advanced Physics Sections for more information.

# The AC/DC Branch

Q

This chapter explains the physics interfaces for modeling electromagnetics, which you find under the **AC/DC** branch ( ) in the **Model Wizard**. It also contains sections about general fundamentals and theory for electric fields.

In this chapter:

- The Electromagnetics Interfaces
- Fundamentals of Electromagnetics
- Theory of Electric Fields
- Theory for the Electrostatics Interface
- Theory for the Electric Currents Interface
- Theory of Magnetic and Electric Fields
- Theory for the Magnetic Fields Interface
- The Electrostatics Interface
- The Electric Currents Interface
- The Magnetic Fields Interface

# The Electromagnetics Interfaces

For simulating electromagnetic fields, COMSOL Multiphysics has three physics interfaces.

With the first two, you can perform static simulations to solver for electric properties:

- Electrostatics
- Electric Currents
- Magnetic Fields

2D

2D Axi

Note

These interfaces are available in all space dimensions.

For 2D axisymmetric and 2D geometries, you can use the Magnetic Fields interface to perform magnetostatic simulations.

This section begins with a brief introduction to electromagnetics and a definition of the electromagnetic quantities. Then it describes each of the physics interfaces in detail.

The optional AC/DC Module contains specialized and extended physics interfaces for electromagnetic simulations, for example, for computations of inductors and capacitors. The optional RF Module includes physics interfaces for simulating electromagnetic wave propagation that are especially useful in microwave engineering and photonics.

# Fundamentals of Electromagnetics

In this section:

- Maxwell's Equations
- Constitutive Relations
- Potentials
- Material Properties
- About the Boundary and Interface Conditions
- Electromagnetic Forces
- References for Electromagnetic Theory

### Maxwell's Equations

The problem of electromagnetic analysis on a macroscopic level is that of solving *Maxwell's equations* subject to certain boundary conditions. Maxwell's equations are a set of equations, written in differential or integral form, stating the relationships between the fundamental electromagnetic quantities. These quantities are:

- Electric field intensity **E**
- Electric displacement or electric flux density **D**
- Magnetic field intensity **H**
- Magnetic flux density **B**
- Current density J
- Electric charge density ρ

The equations can be formulated in differential form or integral form. The differential form is presented here because it leads to differential equations that the finite element method can handle. For general time-varying fields, Maxwell's equations can be written as

$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
$$\nabla \cdot \mathbf{D} = \rho$$
$$\nabla \cdot \mathbf{B} = 0$$

The first two equations are also referred to as *Maxwell-Ampère's law* and *Faraday's law*, respectively. Equation three and four are two forms of *Gauss' law*: the electric and magnetic form, respectively.

Another fundamental equation is the equation of continuity

$$\nabla \cdot \mathbf{J} = -\frac{\partial \rho}{\partial t}$$

Out of the five equations mentioned, only three are independent. The first two combined with either the electric form of Gauss' law or the equation of continuity form such an independent system.

### Constitutive Relations

To obtain a closed system, the equations include *constitutive relations* that describe the macroscopic properties of the medium. They are given as

$$\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}$$
  
$$\mathbf{B} = \mu_0 (\mathbf{H} + \mathbf{M})$$
  
$$\mathbf{J} = \sigma \mathbf{E}$$
 (9-1)

where  $\varepsilon_0$  is the *permittivity of vacuum*,  $\mu_0$  is the *permeability of vacuum*, and  $\sigma$  the *electrical conductivity*. In the SI system, the permeability of vacuum is chosen to be  $4\pi \cdot 10^{-7}$  H/m. The velocity of an electromagnetic wave in vacuum is given as  $c_0$  and the permittivity of vacuum is derived from the relation

$$\varepsilon_0 = \frac{1}{c_0^2 \mu_0} = 8.854 \cdot 10^{-12} \text{ F/m} \approx \frac{1}{36\pi} \cdot 10^{-9} \text{ F/m}$$

The electromagnetic constants  $\varepsilon_0$ ,  $\mu_0$ , and  $c_0$  are available in COMSOL Multiphysics as predefined *physical constants*.

The *electric polarization vector*  $\mathbf{P}$  describes how the material is polarized when an electric field  $\mathbf{E}$  is present. It can be interpreted as the volume density of electric dipole moments.  $\mathbf{P}$  is generally a function of  $\mathbf{E}$ . Some materials can have a nonzero  $\mathbf{P}$  also when there is no electric field present.

The *magnetization vector* **M** similarly describes how the material is magnetized when a magnetic field **H** is present. It can be interpreted as the volume density of magnetic dipole moments. **M** is generally a function of **H**. Permanent magnets, for instance, have a nonzero **M** also when there is no magnetic field present.

For linear materials, the polarization is directly proportional to the electric field,  $\mathbf{P} = \varepsilon_0 \chi_e \mathbf{E}$ , where  $\chi_e$  is the *electric susceptibility*. Similarly in linear materials, the magnetization is directly proportional to the magnetic field,  $\mathbf{M} = \chi_m \mathbf{H}$ , where  $\chi_m$  is the *magnetic susceptibility*. For such materials, the constitutive relations are

$$\mathbf{D} = \varepsilon_0 (1 + \chi_e) \mathbf{E} = \varepsilon_0 \varepsilon_r \mathbf{E} = \varepsilon \mathbf{E}$$
$$\mathbf{B} = \mu_0 (1 + \chi_m) \mathbf{H} = \mu_0 \mu_r \mathbf{H} = \mu \mathbf{H}$$

The parameter  $\varepsilon_r$  is the *relative permittivity* and  $\mu_r$  is the *relative permeability* of the material. Usually these are scalar properties but can, in the general case, be 3-by-3 tensors when the material is anisotropic. The properties  $\varepsilon$  and  $\mu$  (without subscripts) are the *permittivity* and *permeability* of the material.

#### GENERALIZED CONSTITUTIVE RELATIONS



The Charge Conservation feature describes the macroscopic properties of the medium (relating the electric displacement  $\mathbf{D}$  with the electric field  $\mathbf{E}$ ) and the applicable material properties.

For nonlinear materials, a generalized form of the constitutive relationships is useful. The relationship used for electric fields is  $\mathbf{D} = \varepsilon_0 \varepsilon_r \mathbf{E} + \mathbf{D}_r$  where  $\mathbf{D}_r$  is the *remanent displacement*, which is the displacement when no electric field is present.

Similarly, a generalized form of the constitutive relation for the magnetic field is

$$\mathbf{B} = \mu_0 \mu_r \mathbf{H} + \mathbf{B}_r$$

where  $\mathbf{B}_{\mathbf{r}}$  is the *remanent magnetic flux density*, which is the magnetic flux density when no magnetic field is present.

For some materials, there is a nonlinear relationship between **B** and **H** such that

$$\mathbf{B} = f(|\mathbf{H}|)$$

The relation defining the current density is generalized by introducing an externally generated current  $\mathbf{J}_{e}$ . The resulting constitutive relation is  $\mathbf{J} = \sigma \mathbf{E} + \mathbf{J}_{e}$ .

### Potentials

Under certain circumstances it can be helpful to formulate the problems in terms of the *electric scalar potential* V and the *magnetic vector potential* A. They are given by the equalities

$$\mathbf{B} = \nabla \times \mathbf{A}$$
$$\mathbf{E} = -\nabla V - \frac{\partial \mathbf{A}}{\partial t}$$

The defining equation for the magnetic vector potential is a direct consequence of the magnetic Gauss' law. The electric potential results from Faraday's law.

### Material Properties

Until now, there has only been a formal introduction of the constitutive relations. These seemingly simple relations can be quite complicated at times. There are four main groups of materials where they require some consideration. A given material can belong to one or more of these groups. The groups are:

- Inhomogeneous materials
- Anisotropic materials
- Nonlinear materials
- Dispersive materials

A material can belong to one or more of these groups.

#### INHOMOGENEOUS MATERIALS

Inhomogeneous materials are the least complicated. An inhomogeneous medium is one in which the constitutive parameters vary with the space coordinates so that different field properties prevail at different parts of the material structure.

### ANISOTROPIC MATERIALS

For anisotropic materials the field relationships at any point differ for different directions of propagation. This means that a 3-by-3 tensor is necessary to properly define the constitutive relationships. If this tensor is symmetric, the material is often referred to as *reciprocal*. In such cases, rotate the coordinate system such that a diagonal matrix results. If two of the diagonal entries are equal, the material is *uniaxially anisotropic*. If none of the elements has the same value, the material is *biaxially anisotropic* (Ref. 2). Anisotropic parameters are needed, for example, to

examine permittivity in crystals (Ref. 2) and when working with conductivity in solenoids.

### NONLINEAR MATERIALS

Nonlinearity is the effect of variations in permittivity or permeability with the intensity of the electromagnetic field. Nonlinearity also includes hysteresis effects, where not only the current field intensities influence the physical properties of the material, but also the history of the field distribution.

#### **DISPERSIVE MATERIALS**

Dispersion describes changes in a wave's velocity with wavelength. In the frequency domain dispersion is expressed with a frequency dependence of the constitutive laws.

### About the Boundary and Interface Conditions

To get a full description of an electromagnetics problem, boundary conditions must be specified at material interfaces and physical boundaries. At interfaces between two media, the boundary conditions can be expressed mathematically as

$$\mathbf{n}_2 \times (\mathbf{E}_1 - \mathbf{E}_2) = \mathbf{0}$$
$$\mathbf{n}_2 \cdot (\mathbf{D}_1 - \mathbf{D}_2) = \rho_s$$
$$\mathbf{n}_2 \times (\mathbf{H}_1 - \mathbf{H}_2) = \mathbf{J}_s$$
$$\mathbf{n}_2 \cdot (\mathbf{B}_1 - \mathbf{B}_2) = \mathbf{0}$$

where  $\rho_s$  and  $\mathbf{J}_s$  denote *surface charge density* and *surface current density*, respectively, and  $\mathbf{n}_2$  is the outward normal from medium 2. Of these four conditions, only two are independent. This is an overdetermined system of equations, so it needs to be reduced. First select either equation one or equation four. Then select either equation two or equation three. Together these selections form a set of two independent conditions.

From these relationships, the interface condition is derived for the current density,

$$\mathbf{n}_2 \cdot (\mathbf{J}_1 - \mathbf{J}_2) = -\frac{\partial \rho_{\rm s}}{\partial t}$$

### INTERFACE BETWEEN A DIELECTRIC AND A PERFECT CONDUCTOR

A perfect conductor has infinite electrical conductivity and thus no internal electric field. Otherwise, it would produce an infinite current density according to the third

fundamental constitutive relation. At an interface between a dielectric and a perfect conductor, the boundary conditions for the **E** and **D** fields are simplified. Assume that subscript 1 corresponds to a perfect conductor; then  $D_1 = 0$  and  $E_1 = 0$  in the relationships just given. If, in addition, it is a time-varying case, then  $B_1 = 0$  and  $H_1 = 0$ , as well, as a consequence of Maxwell's equations. The result is the following set of boundary conditions for the fields in the dielectric medium for the time-varying case:

$$-\mathbf{n}_2 \times \mathbf{E}_2 = 0$$
  
$$-\mathbf{n}_2 \times \mathbf{H}_2 = \mathbf{J}_s$$
  
$$-\mathbf{n}_2 \cdot \mathbf{D}_2 = \rho_s$$
  
$$-\mathbf{n}_2 \cdot \mathbf{B}_2 = 0$$

### Electromagnetic Forces

The Magnetic Field interface contains a predefined domain-level variable for calculating the Lorentz force, which gives the force distribution exerted on a current-carrying conductor placed in magnetic flux density **B**. The Lorentz force is defined as  $\mathbf{F} = \mathbf{J} \times \mathbf{B}$ .

The Lorentz force gives very good accuracy for electromagnetic force calculations in conducting domains. For nonconducting domains, use a more general method— integrating the Maxwell stress tensor variables over the boundaries of the object for which to calculate the total force. The Maxwell surface stress tensor is available as a boundary variable.

# References for Electromagnetic Theory

1. D.K. Cheng, *Field and Wave Electromagnetics*, Addison-Wesley, Reading, Massachusetts, 1989.

2. J. Jin, *The Finite Element Method in Electromagnetics*, John Wiley & Sons, New York, 1993.

3. B.D. Popovic, *Introductory Engineering Electromagnetics*, Addison-Wesley, Reading, Massachusetts, 1971.

# Theory of Electric Fields

COMSOL Multiphysics includes physics interfaces for the modeling of static electric fields and currents. Deciding what specific physics interface and study type to select for a particular modeling situation requires a basic understanding of the charge dynamics in conductors. This section is a brief introduction to Charge Relaxation Theory.

Physics interfaces for the modeling of dynamic, quasi-static (that is, without including wave propagation effects) electric fields and currents are available with the AC/DC Module and MEMS Module.

# Charge Relaxation Theory

The different physics interfaces involving only the scalar electric potential can be interpreted in terms of the charge relaxation process. The fundamental equations involved are *Ohm's law* ( $\mathbf{J} = \sigma \mathbf{E}$ ) the *equation of continuity* 

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{J} = 0$$

and Gauss' law

g

Tip

$$\nabla \cdot (\mathbf{\varepsilon} \mathbf{E}) = \rho$$

By combining these, one can deduce the following differential equation for the space charge density in a homogeneous medium

$$\frac{\partial \rho}{\partial t} + \frac{\sigma}{\varepsilon} \rho = 0$$

This equation has the solution

$$\rho(t) = \rho_0 e^{-t/\tau}$$

where

$$\tau = \frac{\varepsilon}{\sigma}$$

is called the charge relaxation time. For a good conductor like copper,  $\tau$  is of the order of  $10^{-19}$  s whereas for a good insulator like silica glass, it is of the order of  $10^3$  s. For a pure insulator, it becomes infinite.

When modeling real world devices, there is not only the intrinsic time scale of charge relaxation time but also an external time scale t at which a device is energized or the observation time. It is the relation between the external time scale and the charge relaxation time that determines what physics interface and study type to use. The results are summarized in Table 9-1 below,

CASE	PHYSICS INTERFACE	STUDY TYPE
τ>>t	Electrostatics	Stationary
τ< <t< td=""><td>Electric Currents</td><td>Stationary</td></t<>	Electric Currents	Stationary
τ~t	Electric Currents	Time Dependent or Frequency Domain (in AC/DC Module or MEMS Module)

TABLE 9-1: SUITABLE PHYSICS INTERFACE AND STUDY TYPE FOR DIFFERENT TIME-SCALE REGIMES.

#### FIRST CASE: $\tau >> T$

If the external time scale is short compared to the charge relaxation time, the charges do not have time to redistribute to any significant degree. Thus the charge distribution can be considered as given model input and the best approach is to solve the *Electrostatics* formulation using the electric potential *V*.

By combining the definition of the potential with Gauss' law, you can derive the classical Poisson's equation. Under static conditions, the electric potential *V* is defined by the equivalence  $\mathbf{E} = -\nabla V$ . Using this together with the constitutive relation  $\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}$  between **D** and **E**, you can rewrite Gauss' law as a variant of Poisson's equation

$$-\nabla \cdot (\varepsilon_0 \nabla V - \mathbf{P}) = \rho$$

This equation is used in the Electrostatics interface. It is worth noting that Gauss' law does not require the charge distribution to be static. Thus, provided dynamics are slow enough that induced electric fields can be neglected and hence a scalar electric potential is justified, the formulation can be used also in the Time Dependent study type. That typically involves either prescribing the charge dynamics or coupling a separate formulation for this.

Such separate charge transport formulations can be found in the Plasma Module and the Chemical Reaction Engineering Module.

### SECOND CASE: $\tau$ <<T

<mark>т</mark>р

If the external time scale is long compared to the charge relaxation time, the stationary solution to the equation of continuity has been reached. In a stationary coordinate system, a slightly more general form than above of *Ohm's law* states that

$$\mathbf{J} = \sigma \mathbf{E} + \mathbf{J}^{\epsilon}$$

where  $\mathbf{J}^{\mathbf{e}}$  is an externally generated current density. The static form of the equation of continuity then reads

$$\nabla \cdot \mathbf{J} = -\nabla \cdot (\sigma \nabla V - \mathbf{J}^{\mathrm{e}}) = 0$$

To handle current sources the equation can be generalized to

$$-\nabla \cdot (\sigma \nabla V - \mathbf{J}^{\mathrm{e}}) = Q_{i}$$

This equation is used in the static study type for the Electric Currents interface.

# Theory for the Electrostatics Interface

The Electrostatics Interface is available for 3D, 2D in-plane, and 2D axisymmetric models. Applications with Electrostatics Equations include high-voltage apparatus, electronic devices, and capacitors. The term "statics" is not to be interpreted literally—it is the observation time or time scale at which the applied excitation changes is short compared to the charge relaxation time and that the electromagnetic wavelength and skin depth are very large compared to the size of the domain of interest.

If you do not know whether to use the Electric Currents or the Electrostatics interface, which both solve for the scalar electric potential *V*, consider using an explicit charge transport model. See Charge Relaxation Theory.

### Electrostatics Equations

Under static conditions the electric potential, V, is defined by the relationship

$$\mathbf{E} = -\nabla V$$

Combining this equation with the constitutive relationship  $\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}$  between the electric displacement  $\mathbf{D}$  and the electric field  $\mathbf{E}$ , it is possible to represent Gauss' law as the following equation:

$$-\nabla \cdot (\varepsilon_0 \nabla V - \mathbf{P}) = \rho$$

In this equation, the physical constant,  $\epsilon_0$  (SI unit: F/m) is the permittivity of vacuum, **P** (SI unit: C/m²) is the electric polarization vector, and  $\rho$  (SI unit: C/m³) is a space charge density. This equation describes the electrostatic field in dielectric materials.

For in-plane 2D modeling, the Electrostatics interface assumes a symmetry where the electric potential varies only in the x and y directions and is constant in the z direction. This implies that the electric field, **E**, is tangential to the xy-plane. With this symmetry, the same equation is solved as in the 3D case. The interface solves the following equation where d is the thickness in the z direction:

$$-\nabla \cdot d(\varepsilon_0 \nabla V - \mathbf{P}) = \rho$$

The axisymmetric version of the interface considers the situation where the fields and geometry are axially symmetric. In this case the electric potential is constant in the  $\varphi$  direction, which implies that the electric field is tangential to the *rz*-plane.

# Theory for the Electric Currents Interface

The Electric Currents Interface solves a current conservation problem for the scalar electric potential V and is available for 3D, 2D in-plane, and 2D axisymmetric models. Electrolysis and the computation of resistances of grounding plates are examples that involve conductive media with electrical conductivities and electric currents. If you are uncertain whether to use the Electric Currents interface or the Electrostatics interface, which both solve for the scalar electric potential V, refer to the section on Charge Relaxation Theory. In this section Electric Currents Equations in Steady State are discussed.

### Electric Currents Equations in Steady State

When handling stationary electric currents in conductive media you must consider the stationary equation of continuity. In a stationary coordinate system, the point form of *Ohm's law* states that  $\mathbf{J} = \sigma \mathbf{E} + \mathbf{J}_e$  where  $\sigma$  is the electrical conductivity (SI unit: S/m), and  $\mathbf{J}_e$  is an *externally generated current density* (SI unit: A/m²). The static form of the equation of continuity then states

$$\nabla \cdot \mathbf{J} = -\nabla \cdot (\sigma \nabla V - \mathbf{J}_{e}) = 0$$

To handle current sources, you can generalize the equation to

$$-\nabla \cdot (\sigma \nabla V - \mathbf{J}_{e}) = Q_{i}$$

In planar 2D the Electric Currents interface assumes that the model has a symmetry where the electric potential varies only in the x and y directions and is constant in the z direction. This implies that the electric field, **E**, is tangential to the *xy*-plane. The Electric Currents interface then solves the following equation where d is the thickness in the z direction:

$$-\nabla \cdot d(\sigma \nabla V - \mathbf{J}_{e}) = dQ_{i}$$
(9-2)

In 2D axisymmetry, the Electric Currents interface considers the situation where the fields and geometry are axially symmetric. In this case the electric potential is constant in the  $\varphi$  direction, which implies that the electric field is tangential to the *rz*-plane.

# Theory of Magnetic and Electric Fields

Quasi-static analysis of magnetic and electric fields is valid under the assumption that  $\partial \mathbf{D}/\partial t = 0$ . In this section:

- Maxwell's Equations
- Magnetic and Electric Potentials
- Gauge Transformations
- Selecting a Particular Gauge
- The Gauge and the Equation of Continuity for Dynamic Fields
- Time-Harmonic Magnetic Fields

### Maxwell's Equations

This implies that it is possible to rewrite Maxwell's equations in the following manner:

$$\nabla \times \mathbf{H} = \mathbf{J} = \sigma(\mathbf{E} + \mathbf{v} \times \mathbf{B}) + \mathbf{J}_{e}$$
$$\nabla \times \mathbf{E} = \frac{\partial \mathbf{B}}{\partial t}$$
$$\nabla \cdot \mathbf{B} = 0$$
$$\nabla \cdot \mathbf{D} = \rho$$
$$\nabla \cdot \mathbf{J} = 0$$

Here  $\mathbf{J}_{e}$  is an externally generated current density and  $\mathbf{v}$  is the velocity of the conductor. The crucial criterion for the quasi-static approximation to be valid is that the currents and the electromagnetic fields vary slowly. This means that the dimensions of the structure in the problem need to be small compared to the wavelength.

### Magnetic and Electric Potentials

Using the definitions of the potentials,

$$\mathbf{B} = \nabla \times \mathbf{A}$$
$$\mathbf{E} = -\nabla V - \frac{\partial \mathbf{A}}{\partial t}$$

and the constitutive relation  $\mathbf{B} = \mu_0(\mathbf{H} + \mathbf{M})$ , Ampère's law can be rewritten as

$$\sigma \frac{\partial \mathbf{A}}{\partial t} + \nabla \times (\mu_0^{-1} \nabla \times \mathbf{A} - \mathbf{M}) - \sigma \mathbf{v} \times (\nabla \times \mathbf{A}) + \sigma \nabla V = \mathbf{J}_e$$
(9-3)

The equation of continuity, which is obtained by taking the divergence of the above equation, adds the following equation:

$$\nabla \cdot \left( -\sigma \frac{\partial \mathbf{A}}{\partial t} + \sigma \mathbf{v} \times (\nabla \times \mathbf{A}) - \sigma \nabla V + \mathbf{J}_{e} \right) = 0$$
(9-4)

Equation 9-3 and Equation 9-4 form a system of equations for the two potentials  $\mathbf{A}$  and V.

# Gauge Transformations

The electric and magnetic potentials are not uniquely defined from the electric and magnetic fields through

$$\mathbf{E} = -\frac{\partial \mathbf{A}}{\partial t} - \nabla V$$
$$\mathbf{B} = \nabla \times \mathbf{A}$$

Introducing two new potentials

$$\tilde{\mathbf{A}} = \mathbf{A} + \nabla \Psi$$
$$\tilde{V} = V - \frac{\partial \Psi}{\partial t}$$

gives the same electric and magnetic fields:

$$\mathbf{E} = -\frac{\partial \mathbf{A}}{\partial t} - \nabla V = -\frac{\partial (\mathbf{A} - \nabla \Psi)}{\partial t} - \nabla \left(\tilde{V} + \frac{\partial \Psi}{\partial t}\right) = -\frac{\partial \tilde{\mathbf{A}}}{\partial t} - \nabla \tilde{V}$$
$$\mathbf{B} = \nabla \times \mathbf{A} = \nabla \times (\tilde{\mathbf{A}} - \nabla \Psi) = \nabla \times \tilde{\mathbf{A}}$$

The variable transformation of the potentials is called a *gauge transformation*. To obtain a unique solution, choose the gauge, that is, put constraints on  $\Psi$  that make the solution unique. Another way of expressing this additional condition is to put a constraint on  $\nabla \cdot \mathbf{A}$ . A vector field is uniquely defined up to a constant if both  $\nabla \cdot \mathbf{A}$  and  $\nabla \times \mathbf{A}$  are given. This is called *Helmholtz's theorem*.

One particular gauge is the *Coulomb gauge* given by the constraint:  $\nabla \cdot \mathbf{A} = 0$ .

# Selecting a Particular Gauge

Important observations are that in the dynamic case  $\mathbf{A}$  and V are coupled via the selected gauge. For a dynamic formulation, it is also possible to select a  $\Psi$  such that the scalar electric potential vanishes and only the magnetic vector potential has to be considered. The dynamic formulations (frequency domain and time dependent study types) of the Magnetic Fields interface are operated in this gauge as it involves only  $\mathbf{A}$ . In the static limit,  $\mathbf{A}$  and V are not coupled via the gauge selection and thus any gauge can be chosen for  $\mathbf{A}$  when performing magnetostatic modeling.

# The Gauge and the Equation of Continuity for Dynamic Fields

After eliminating the electric potential by choosing the appropriate gauge and disregarding the velocity term. The equation of continuity obtained by taking the divergence of Ampère's law reads:

$$\nabla \cdot \left( -\sigma \frac{\partial \mathbf{A}}{\partial t} + \mathbf{J}_{\mathrm{e}} \right) = \mathbf{0}$$

It is clear that unless the electrical conductivity is uniform, the particular gauge used to eliminate V cannot be the Coulomb gauge as that would violate the equation of continuity and would thereby also violate Ampère's law.

# Time-Harmonic Magnetic Fields

In the time-harmonic case, there is no computational cost for including the displacement current in Ampère's law (then called Maxwell-Ampère's law):

$$\nabla \times \mathbf{H} = \mathbf{J} = \sigma(\mathbf{E} + \mathbf{v} \times \mathbf{B}) + j\omega \mathbf{D} + \mathbf{J}^{\epsilon}$$

In the transient case the inclusion of this term would lead to a second-order equation in time, but in the harmonic case there are no such complications. Using the definition of the electric and magnetic potentials, the system of equations becomes

$$-\nabla \cdot ((j\omega\sigma - \omega^{2}\varepsilon_{0})\mathbf{A} - \sigma\mathbf{v} \times (\nabla \times \mathbf{A}) + (\sigma + j\omega\varepsilon_{0})\nabla V - (\mathbf{J}^{e} + j\omega\mathbf{P})) = 0$$
  
$$(j\omega\sigma - \omega^{2}\varepsilon_{0})\mathbf{A} + \nabla \times (\mu_{0}^{-1}\nabla \times \mathbf{A} - \mathbf{M}) - \sigma\mathbf{v} \times (\nabla \times \mathbf{A}) + (\sigma + j\omega\varepsilon_{0})\nabla V = \mathbf{J}^{e} + j\omega\mathbf{P}$$

The constitutive relation  $\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}$  has been used for the electric field.

To obtain a particular gauge that reduces the system of equation, choose  $\Psi = -jV/\omega$  in the gauge transformation. This gives

$$\tilde{\mathbf{A}} = \mathbf{A} - \frac{j}{\omega} \nabla V \qquad \tilde{V} = 0$$

When  $\tilde{V}$  vanishes from the equations, only the second one is needed,

$$(j\omega\sigma - \omega^2 \varepsilon_0)\tilde{\mathbf{A}} + \nabla \times (\mu_0^{-1} \nabla \times \tilde{\mathbf{A}} - \mathbf{M}) - \sigma \mathbf{v} \times (\nabla \times \tilde{\mathbf{A}}) = \mathbf{J}^{\mathrm{e}} + j\omega \mathbf{P}$$

Working with  $\mathbf{A}$  is often the best option when it is possible to specify all source currents as external currents  $\mathbf{J}^{\mathbf{e}}$  or as surface currents on boundaries.

# Theory for the Magnetic Fields Interface

Simulation of magnetic fields is of interest when studying magnets, motors, transformers, and conductors carrying static or alternating currents. The Magnetic Fields Interface is used for 3D, 2D in-plane, and 2D axisymmetric models. Unless you have a license for the AC/DC Module, only 2D modeling involving out-of-plane currents and axisymmetric modeling involving azimuthal currents are supported.

In this section:

- Magnetostatics Equation
- Frequency Domain Equation
- Transient Equation



For a deeper theoretical background to the magnetic vector potential used below, see the section starting with Maxwell's Equations.

# Magnetostatics Equation

To derive the magnetostatic equation, start with Ampère's law for static cases  $\nabla \times \mathbf{H} = \mathbf{J}$ . The current is

$$\mathbf{J} = \mathbf{\sigma}\mathbf{v}\times\mathbf{B} + \mathbf{J}^{\mathrm{e}}$$

where  $\mathbf{J}^{\mathbf{e}}$  is an externally generated current density, and  $\mathbf{v}$  is the velocity of the conductor.

Using the definitions of magnetic potential,  $\mathbf{B} = \nabla \times \mathbf{A}$  and the constitutive relationship,  $\mathbf{B} = \mu_0 (\mathbf{H} + \mathbf{M})$ , rewrite Ampère's law as

$$\nabla \times (\mu_0^{-1} \nabla \times \mathbf{A} - \mathbf{M}) - \sigma \mathbf{v} \times (\nabla \times \mathbf{A}) = \mathbf{J}^{e}$$

which is the equation used in magnetostatics.

# Frequency Domain Equation

To derive the time harmonic equation this physics interface solves, start with Ampère's law including displacement currents (then called Maxwell-Ampère's law) as these do not involve any extra computational cost in the frequency domain,

$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t} = \sigma \mathbf{E} + \sigma \mathbf{v} \times \mathbf{B} + \mathbf{J}^e + \frac{\partial \mathbf{D}}{\partial t}$$

Now assume time-harmonic fields and use the definitions of the fields,

$$\mathbf{B} = \nabla \times \mathbf{A}$$
$$\mathbf{E} = -j\omega \mathbf{A}$$

and combine them with the constitutive relationships  $\mathbf{B} = \mu_0(\mathbf{H} + \mathbf{M})$  and  $\mathbf{D} = \epsilon_0 \mathbf{E}$  to rewrite Ampère's law as

$$(j\omega\sigma - \omega^2 \varepsilon_0)\mathbf{A} + \nabla \times (\mu_0^{-1} \nabla \times \mathbf{A} - \mathbf{M}) - \sigma \mathbf{v} \times (\nabla \times \mathbf{A}) = \mathbf{J}^{e}$$

# Transient Equation

The transient equation this physics interface solves is Ampère's law, here illustrated with the constitutive relation  $\mathbf{B} = \mu_0(\mathbf{H} + \mathbf{M})$ .

$$\sigma \frac{\partial \mathbf{A}}{\partial t} + \nabla \times (\mu_0^{-1} \nabla \times \mathbf{A} - \mathbf{M}) - \sigma \mathbf{v} \times (\nabla \times \mathbf{A}) = \mathbf{J}_e$$

# The Electrostatics Interface

The **Electrostatics** interface ( ), found under the **AC/DC** branch ( ) in the **Model Wizard**, has the equations, boundary conditions, and space charges for modeling electrostatic fields, solving for the electric potential.

**Charge Conservation** is the main feature, which adds the equation for the electric potential and has a settings window for defining the constitutive relation for the electric displacement field and its associated properties such as the relative permittivity.

When this interface is added, these default nodes are also added to the **Model Builder**— **Charge Conservation**, **Zero Charge** (default boundary condition), and **Initial Values**. Right-click the **Electrostatics** node to add other features that implement, for example, boundary conditions and space charges.



Electric Sensor: Model Library path COMSOL_Multiphysics/ Electromagnetics/electric_sensor

## INTERFACE IDENTIFIER

The interface identifier is a text string that can be used to reference the respective physics interface if appropriate. Such situations could occur when coupling this interface to another physics interface, or when trying to identify and use variables defined by this physics interface, which is used to reach the fields and variables in expressions, for example. It can be changed to any unique string in the **Identifier** field.

The default identifier (for the first interface in the model) is es.

#### DOMAIN SELECTION

The default setting is to include **All domains** in the model to define the electric potential and the equations that describe the potential field for dielectrics. To choose specific domains, select **Manual** from the **Selection** list.

ID

Ø.

2D



Enter a default value for the **Out-of-plane thickness** d (SI unit: m). The default value of 1 is typically not representative for a thin dielectric medium, for example. Instead it describes a unit thickness that makes the 2D equation identical to the equation used for 3D models. See also Change Thickness (Out-of-Plane).

#### DISCRETIZATION

To display this section, select click the Show button ( ) and select Discretization. Select an element order for the Electric potential—Linear, Quadratic (the default), Cubic, Quartic, or (in 2D only) Quintic. Specify the Value type when using splitting of complex variables—Real or Complex (the default).

#### DEPENDENT VARIABLES

The dependent variable is the **Electric potential** *V*. You can change its name, which changes both the field name and the variable name. If the new name coincides with the name of another electric potential field in the model, the interfaces will share degrees of freedom. The new name must not coincide with the name of a field of another type, or with a component name belonging to some other field.

• Show More Physics Options



- Domain, Boundary, Edge, Point, and Pair Conditions for the Electrostatics Interface
- Theory for the Electrostatics Interface

Domain, Boundary, Edge, Point, and Pair Conditions for the Electrostatics Interface

The Electrostatics Interface has these domain, boundary, edge, point, and pair features available.

## About the Boundary Conditions

The relevant interface condition at interfaces between different media is

$$\mathbf{n}_2 \cdot (\mathbf{D}_1 - \mathbf{D}_2) = \rho_s$$

In the absence of surface charges, this condition is fulfilled by the natural boundary condition

$$\mathbf{n} \cdot [(\varepsilon_0 \nabla V - \mathbf{P})_1 - (\varepsilon_0 \nabla V - \mathbf{P})_2] = -\mathbf{n} \cdot (\mathbf{D}_1 - \mathbf{D}_2) = 0$$

# Available Features

These features are available for this interface and listed in alphabetical order. Also see Table 9-2 for a list of interior and exterior boundary conditions, including edge, point, and pair availability.

- Change Cross-Section
- Change Thickness (Out-of-Plane)
- Charge Conservation
- Electric Displacement Field
- Electric Potential
- External Surface Charge Accumulation
- Floating Potential
- Ground
- Initial Values
- Line Charge
- Line Charge (on Axis)
- Line Charge (Out-of-Plane)
- Periodic Condition
- Point Charge
- Point Charge (on Axis)
- Space Charge Density
- Surface Charge Density
- Thin Low Permittivity Gap
- Zero Charge (the default boundary condition)

Table 9-2 lists the interior and exterior boundaries available with this interface. It also includes edge, point, and pair availability.

FEATURE	INTERIOR	EXTERIOR	ALSO AVAILABLE FOR
Change Cross-Section	x	x	pairs
Change Thickness (Out-of-Plane)	x	x	pairs
Electric Displacement Field	x	x	pairs
Electric Potential	x	x	edges, points, and pairs
External Surface Charge Accumulation		x	pairs
Floating Potential	x	x	pairs
Ground	x	x	edges, points, and pairs
Periodic Condition		x	not applicable
Surface Charge Density	x	x	pairs
Thin Low Permittivity Gap	x		not applicable
Zero Charge (the default)	x	x	pairs

TABLE 9-2: INTERIOR AND EXTERIOR BOUNDARY CONDITIONS (INCLUDING EDGE, POINT, AND PAIR AVAILABILITY) FOR THE ELECTROSTATICS INTERFACE

For axisymmetric models, COMSOL Multiphysics takes the axial symmetry boundaries (at r = 0) into account and automatically adds an **Axial Symmetry** feature to the model that is valid on the axial symmetry boundaries only. There are also **Line Charge (on Axis)** and **Point Charge (on Axis)** features available.

Continuity on Interior Boundaries
Identity and Contact Pairs
Specifying Boundary Conditions for Identity Pairs



Help>Documentation from the main menu and either enter a search term or look under a specific module in the documentation tree.

-

ID Axi

É.

2D Axi

T

Tiþ

# Charge Conservation

The **Charge Conservation** node adds the equations for charge conservation according to Gauss' law for the electric displacement field. It provides an interface for defining the constitutive relation and its associated properties such as the relative permittivity.

## DOMAIN SELECTION

From the **Selection** list, choose the domains to define the electric potential and the equation based on Gauss' law that describes the potential field.

# MODEL INPUTS

This section contains field variables that appear as model inputs, if the current settings include such model inputs. By default, this section is empty.

# MATERIAL TYPE

Select a Material type—Solid, Non-solid, or From material.

# COORDINATE SYSTEM SELECTION

The **Global coordinate system** is selected by default. The **Coordinate system** list contains any additional coordinate systems that the model includes.

#### ELECTRIC FIELD

Select a **Constitutive relation** to describe the macroscopic properties of the medium (relating the electric displacement **D** with the electric field **E**) and the applicable material properties, such as the relative permittivity. Select:

- **Relative permittivity** to use the constitutive relation  $\mathbf{D} = \varepsilon_0 \varepsilon_r \mathbf{E}$  (the default).
- Polarization to use the constitutive relation  $\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}$ .
- **Remanent electric displacement** to use constitutive relation  $\mathbf{D} = \varepsilon_0 \varepsilon_r \mathbf{E} + \mathbf{D}_r$ , where  $\mathbf{D}_r$  is the remanent displacement (the displacement when no electric field is present).
  - If Relative permittivity is selected, the default is to take the Relative permittivity  $(\epsilon_r)$  values From material. If User defined is selected, select Isotropic, Diagonal, Symmetric, or Anisotropic and enter values or expressions in the field or matrix.
  - If **Polarization** is selected, enter the components based on space dimension for the **Polarization** vector **P** (SI unit: C/m²).
  - If Remanent electric displacement is selected, the default is to take the Relative permittivity ( $\epsilon_r$ ) values From material. If User defined is selected, select lsotropic, Diagonal, Symmetric, or Anisotropic and enter values or expressions in the field or

matrix. Then enter the components based on space dimension for the **Remanent** electric displacement  $D_r$  (SI unit: C/m²).

# Space Charge Density

The **Space Charge Density** node adds a space charge density  $\rho$ , which appears on the right-hand side of the equation that the interface defines.

#### DOMAIN SELECTION

From the Selection list, choose the domains to define a space charge density.

#### SPACE CHARGE DENSITY

Enter a value or expression for the **Space charge density**  $\rho_a$  (SI unit: C/m³).

# Initial Values

The **Initial Values** node adds an initial value for the electric potential V that can serve as an initial condition for a transient simulation or as an initial guess for a nonlinear solver.

## DOMAIN SELECTION

From the Selection list, choose the domains to define an initial value.

# INITIAL VALUES

Enter a value or expression for the initial value of the **Electric potential** *V*. The default value is 0 V.

#### Ground

The **Ground** node is the default boundary condition and implements ground as the boundary condition V = 0.

Ground means that there is a zero potential on the boundary. This boundary condition is also applicable at symmetry boundaries where the potential is known to be antisymmetric with respect to the boundary.

For some interfaces, also select additional **Ground** features from the **Edges** (3D models) or **Points** (2D and 3D models) submenus. For 2D axisymmetric models, it can be applied on the Symmetry axis.

#### BOUNDARY, EDGE, OR POINT SELECTION

From the **Selection** list, choose the geometric entity (boundaries, edges, or points) to apply a ground (zero potential) boundary condition.



Beware that constraining the potential on edges or points in 3D or on points in 2D usually yields a current outflow that is mesh dependent.

#### PAIR SELECTION

If **Ground** is selected from the **Pairs** menu, choose the pair to define. An identity pair has to be created first. Ctrl-click to deselect.

# CONSTRAINT SETTINGS

To display this section, click the Show button ( $r_{\odot}$ ) and select Advanced Physics Options. Select a Constraint type—Bidirectional, symmetric or Unidirectional. If required, select the Use weak constraints check box.

# Electric Potential

The **Electric Potential** node provides an electric potential  $V_0$  as the boundary condition  $V = V_0$ .

Because the electric potential is being solved for in the interface, the value of the potential is typically defined at some part of the geometry. For some interfaces, also select additional **Electric Potential** features from the **Edges** (3D models) or **Points** (2D and 3D models) submenus. For 2D axisymmetric models, it can be applied on the Symmetry axis.

# BOUNDARY, EDGE, OR POINT SELECTION

From the **Selection** list, choose the geometric entity (boundaries, edges, or points) to apply an electric potential as the boundary condition.



Beware that constraining the potential on edges or points in 3D or on points in 2D usually yields a current outflow that is mesh dependent.

#### PAIR SELECTION

If **Electric Potential** is selected from the **Pairs** menu, choose the pair to define. An identity pair has to be created first. Ctrl-click to deselect.

### ELECTRIC POTENTIAL

Enter the value or expression for the **Electric potential**  $V_0$  (SI unit: V).

#### CONSTRAINT SETTINGS

To display this section, click the Show button ( ) and select Advanced Physics Options. Select a Constraint type—Bidirectional, symmetric or Unidirectional. If required, select the Use weak constraints check box.

# Surface Charge Density

The **Surface Charge Density** node provides the following surface-charge boundary condition for exterior boundaries (left) and interior boundaries (right):

$$-\mathbf{n} \cdot \mathbf{D} = \rho_{s}, \qquad \mathbf{n} \cdot (\mathbf{D}_{1} - \mathbf{D}_{2}) = \rho_{s}$$

Specify the surface charge density  $\rho_s$  at an outer boundary or at an interior boundary between two nonconducting media.

#### **BOUNDARY SELECTION**

From the Selection list, choose the boundaries to apply a surface charge density.

#### PAIR SELECTION

If **Surface Charge Density** is selected from the **Pairs** menu, choose the pair to define. An identity pair has to be created first. Ctrl-click to deselect.

## SURFACE CHARGE DENSITY

Enter the value or expression for the Surface charge density  $\rho_{\rm s}$  (SI unit: C/m²).

# External Surface Charge Accumulation

The External Surface Charge Accumulation node implements the boundary condition

$$-\mathbf{n} \cdot \mathbf{D} = \rho_{s}$$

where  $\rho_s$  is the solution of the following distributed ODE on the boundary:

$$\frac{d\rho_{\rm s}}{dt} = \mathbf{n} \cdot \mathbf{J}_i + \mathbf{n} \cdot \mathbf{J}_e$$

where  $\mathbf{n} \cdot \mathbf{J}_i$  is the normal component of the total ion current density on the wall and  $\mathbf{n} \cdot \mathbf{J}_e$  is the normal component of the total electron current density on the wall, which are feature inputs.

# **BOUNDARY SELECTION**

From the Selection list, choose the boundaries to apply a surface charge accumulation.

### PAIR SELECTION

If **External Surface Charge Accumulation** is selected from the **Pairs** menu, choose the pair to define. An identity pair has to be created first. Ctrl-click to deselect.

# EXTERNAL SURFACE CHARGE ACCUMULATION

Enter values or expressions for the Normal ion current density  $\mathbf{n} \cdot J_i$  (SI unit: A/m²) and the Normal electron current density  $\mathbf{n} \cdot J_e$  (SI unit: A/m²).

# Floating Potential

The **Floating Potential** node is used when modeling a metallic electrode at floating potential. The electrode may have a charge  $Q_0$  deposited on it.

# **BOUNDARY SELECTION**

From the Selection list, choose the boundaries to define the floating electrode.

#### PAIR SELECTION

If **Floating Potential** is selected from the **Pairs** menu, choose the pair to define. An identity pair has to be created first. Ctrl-click to deselect.

## FLOATING POTENTIAL

Specify a an optionally non zero **Charge**  $Q_0$  (SI unit: C).

# CONSTRAINT SETTINGS

To display this section, click the Show button ( $r_{\odot}$ ) and select Advanced Physics Options. Select a Constraint type—Bidirectional, symmetric or Unidirectional. If required, select the Use weak constraints check box. The **Electric Displacement Field** node adds the following electric-displacement boundary condition:

$$\mathbf{n} \cdot \mathbf{D} = \mathbf{n} \cdot \mathbf{D}_0$$

It specifies the normal component of the electric displacement field at a boundary.

# **BOUNDARY SELECTION**

From the **Selection** list, choose the boundaries to use the normal component of the displacement field as the boundary condition.

#### PAIR SELECTION

If **Displacement Field** is selected from the **Pairs** menu, choose the pair to define. An identity pair has to be created first. Ctrl-click to deselect.

#### COORDINATE SYSTEM SELECTION

The **Global coordinate system** is selected by default. The **Coordinate system** list contains any additional coordinate systems that the model includes.

# ELECTRIC DISPLACEMENT FIELD

Enter the coordinates of the Boundary electric displacement field  $\mathbf{D}_0$  (SI unit: C/m²).

# Periodic Condition

The **Periodic Condition** node defines periodicity or antiperiodicity between two boundaries. If required, activate periodic conditions on more than two boundaries, in which case the Periodic Condition tries to identify two separate surfaces that can each consist of several connected boundaries.

> For more complex geometries it might be necessary to use the **Destination Selection** subnode. With this subnode the boundaries which constitute the source and destination surfaces can be manually specified. To add the subnode, right-click the **Periodic Condition** node and select **Destination Selection**.

# **BOUNDARY SELECTION**

From the Selection list, choose the boundaries to apply a periodic condition.

g

Tip

#### PERIODIC CONDITION

Select a Type of periodicity—Continuity or Antiperiodicity.

# CONSTRAINT SETTINGS

To display this section, click the Show button ( $rac{1}{20}$ ) and select Advanced Physics Options. Select a Constraint type—Bidirectional, symmetric or Unidirectional. If required, select the Use weak constraints check box.

Ca See Also	Periodic Condition
	Destination Selection
	Using Periodic Boundary Conditions
	Periodic Boundary Condition Example

# Zero Charge

The **Zero Charge** node adds the condition that there is zero charge on the boundary so that  $\mathbf{n} \cdot \mathbf{D} = 0$ . This boundary condition is also applicable at symmetry boundaries where the potential is known to be symmetric with respect to the boundary. This is the default boundary condition at exterior boundaries. At interior boundaries, it means that no displacement field can penetrate the boundary and that the electric potential is discontinuous across the boundary.

### **BOUNDARY SELECTION**

From the Selection list, choose the boundaries to apply a zero charge condition.

## PAIR SELECTION

If **Zero Charge** is selected from the **Pairs** menu, choose the pair to define. An identity pair has to be created first. Ctrl-click to deselect.

# Thin Low Permittivity Gap

Use the Thin Low Permittivity Gap node

$$\mathbf{n} \cdot \mathbf{D}_1 = \frac{\varepsilon_0 \varepsilon_r}{d_s} (V_1 - V_2)$$
$$\mathbf{n} \cdot \mathbf{D}_2 = \frac{\varepsilon_0 \varepsilon_r}{d_s} (V_2 - V_1)$$

to model a thin gap of a material with a small permittivity compared to the adjacent domains. The layer has the thickness  $d_s$  and the relative permittivity  $\varepsilon_r$ . The indices 1 and 2 refer to the two sides of the boundary.

### BOUNDARY SELECTION

From the **Selection** list, choose the boundaries to apply a thin low permittivity gap condition.

## MATERIAL TYPE

Select a Material type—Solid, Non-solid, or From material.

#### PAIR SELECTION

When **Thin Low Permittivity Gap** is selected from the **Pairs** menu, choose the pair to define. An identity pair has to be created first. Ctrl-click to deselect.

#### THIN LOW PERMITTIVITY GAP

The default is to take the **Relative permittivity**  $(\mathcal{E}_r)$  values **From material**. Select **User defined** to enter a different value or expression.

Enter a **Surface thickness**  $d_s$  (SI unit: m).

Line Charge



For 3D models, use the **Line Charge** node to specify line charges along the edges of a geometry.

# EDGE SELECTION

From the Selection list, choose the edges to add a line charge.



Beware that constraining the potential on edges usually yields a current outflow that is mesh dependent.

## LINE CHARGE

Enter a value or expression to apply a **Line charge**  $Q_L$  (SI unit: C/m). This source represents electric charge per unit length.



Line Charge (on Axis)



For 2D axisymmetric models, use the **Line Charge (on Axis)** node to specify line charges along the symmetry axis.

# **BOUNDARY SELECTION**

From the Selection list, choose the boundaries on axis to add a line charge.

# LINE CHARGE (ON AXIS)

Enter a value or expression to apply a **Line charge**  $Q_L$  (SI unit: C/m). This source represents electric charge per unit length.



Line Charge (Out-of-Plane)



Use the **Line Charge (Out-of-Plane)** node to specify line charges along the points of a geometry for 2D and 2D axisymmetric models.

# POINT SELECTION

From the **Selection** list, choose the points to add a line charge.



Beware that constraining the potential on points usually yields a current outflow that is mesh dependent.

# LINE CHARGE (OUT-OF-PLANE)

Enter a value or expression to apply a **Line charge**  $Q_L$  (SI unit: C/m). This source represents electric charge per unit length.



Point Charge



The **Point Charge** node adds a point source to 3D models. The point charge represents an electric displacement field flowing out of the point.

# POINT SELECTION

From the Selection list, choose the points to add a point charge.



Beware that constraining the potential on points usually yields a current outflow that is mesh dependent.

#### POINT CHARGE

Enter a value or expression to apply a **Point charge**  $Q_P$  (SI unit: C) to points. This source represents an electric displacement field flowing out of the point.



Point Charge (on Axis)



The **Point Charge (on Axis)** node adds a point source to 2D axisymmetric models. The point charge represents an electric displacement field flowing out of the point.

### POINT SELECTION

From the Selection list, choose the points to add a point charge.



Beware that constraining the potential on points usually yields a current outflow that is mesh dependent.

# POINT CHARGE (ON AXIS)

Enter a value or expression to apply a **Point charge**  $Q_P$  (SI unit: C) to points on axis. This source represents an electric displacement field flowing out of the point.



• Point Charge

• Line Charge (Out-of-Plane)



This feature is available with 1D models. This setting overrides the global **Thickness** setting made in any interface that uses this feature.

Use the **Change Cross-Section** feature to set the cross-section area for specific geometric entities.

## DOMAIN OR BOUNDARY SELECTION

From the **Selection** list, choose the geometric entity (domains or boundaries) to define the change cross-section.

#### PAIR SELECTION

When **Change Cross-Section** is selected from the **Pairs** menu, choose the pair to define. An identity pair has to be created first. Ctrl-click to deselect.

# CHANGE CROSS-SECTION

Enter a value or expression for the **Cross-section area** A (SI unit: m²). The default value of 1 unit length is typically not representative for a thin domain. Instead it describes a unit thickness that makes the 1D equation identical to the equation used for 3D models.

Callso See Also For 2D models, see Change Thickness (Out-of-Plane).

Change Thickness (Out-of-Plane)



This feature is available for 2D models. This setting overrides the global **Thickness** setting made in any interface that uses this feature.

Use the **Change Thickness (Out-of-Plane)** feature to set the out-of-plane thickness for specific geometric entities.

#### DOMAIN OR BOUNDARY SELECTION

From the **Selection** list, choose the geometric entity (domains or boundaries) to define the change thickness.

### PAIR SELECTION

When **Change Thickness (Out-of-Plane)** is selected from the **Pairs** menu, choose the pair to define. An identity pair has to be created first. Ctrl-click to deselect.

# CHANGE THICKNESS (OUT-OF-PLANE)

Enter a value or expression for the **Out-of-plane thickness** d (SI unit: m). The default value of 1 unit length is typically not representative for a thin domain. Instead it describes a unit thickness that makes the 2D equation identical to the equation used for 3D models.



For 1D models, see Change Cross-Section.

Infinite Elements



For information about this feature, see About Infinite Element Domains and Perfectly Matched Layers.

# The Electric Currents Interface

The **Electric Currents** interface (**)**, found under the **AC/DC** branch (**)** in the **Model Wizard**, has the equations, boundary conditions, and current sources for modeling electric currents in conductive media, solving for the electric potential.

**Current Conservation** is the main feature, which adds the equation for the electric potential and provides a settings window for defining the electrical conductivity as well as the constitutive relation for the electric displacement field and its associated material properties such as the relative permittivity.

When this interface is added, these default nodes are also added to the **Model Builder**— **Current Conservation**, **Electric Insulation** (the default boundary condition), and **Initial Values**. Right-click the **Electric Currents** node to add other features that implement, for example, boundary conditions and current sources.



Pacemaker Electrode: Model Library path COMSOL_Multiphysics/ Electromagnetics/pacemaker_electrode

#### INTERFACE IDENTIFIER

The interface identifier is a text string that can be used to reference the respective physics interface if appropriate. Such situations could occur when coupling this interface to another physics interface, or when trying to identify and use variables defined by this physics interface, which is used to reach the fields and variables in expressions, for example. It can be changed to any unique string in the **Identifier** field.

The default identifier (for the first interface in the model) is ec.

## DOMAIN SELECTION

The default setting is to include **All domains** in the model to define the electric potential and the equations that describe the potential field for conductive media. To choose specific domains, select **Manual** from the **Selection** list.

#### THICKNESS (ID)/ OUT-OF-PLANE THICKNESS (2D)



Ø.

2D

Enter a default value for the **Cross-section area** A (SI unit: m²). The default value of 1 is typically not representative for a thin domain. Instead it describes a unit thickness that makes the 1D equation identical to the equation used for 3D models. See also Change Cross-Section (described for the **Electrostatics** interface).

Enter a default value for the **Out-of-plane thickness** *d* (SI unit: m) (see Equation 9-2). The default value of 1 is typically not representative for a thin dielectric medium, for example. Instead it describes a unit thickness that makes the 2D equation identical to the equation used for 3D models. See also Change Thickness (Out-of-Plane) (described for the **Electrostatics** interface).

#### DEPENDENT VARIABLES

The dependent variable is the **Electric potential** *V*. You can change its name, which changes both the field name and the variable name. If the new name coincides with the name of another electric potential field in the model, the interfaces will share degrees of freedom. The new name must not coincide with the name of a field of another type, or with a component name belonging to some other field.

#### DISCRETIZATION

To display this section, click the Show button ( ) and select Discretization. Select an Electric potential—Linear, Quadratic (the default), Cubic, Quartic, or (in 2D only) Quintic. Specify the Value type when using splitting of complex variables—Real or Complex (the default).

• Show More Physics Options



- Domain, Boundary, Edge, Point, and Pair Features for the Electric Currents Interface
- Theory for the Electric Currents Interface

Domain, Boundary, Edge, Point, and Pair Features for the Electric Currents Interface

The Electric Currents Interface has these domain, boundary, edge, point, and pair conditions available.

# About the Boundary Conditions

The exterior and interior boundary conditions listed in Table 9-2 are available. The relevant interface condition at interfaces between different media and interior boundaries is continuity; that is,

$$\mathbf{n}_2 \cdot (\mathbf{J}_1 - \mathbf{J}_2) = \mathbf{0}$$

which is the natural boundary condition.

#### Available Features

These features are available for this interface and listed in alphabetical order. Also see Table 9-2 for a list of interior and exterior boundary conditions, including edge, point, and pair availability.

- Boundary Current Source
- Contact Impedance
- Current Conservation
- Current Source
- Distributed Impedance
- Electric Insulation
- External Current Density
- Floating Potential
- Initial Values
- Line Current Source
- Line Current Source (on Axis)
- Normal Current Density
- Point Current Source
- Sector Symmetry

These features are described for the **Electrostatics** interface:

- Change Cross-Section
- Change Thickness (Out-of-Plane)

- Electric Potential
- Ground
- Periodic Condition

	Continuity on Interior Boundaries
2	Identity and Contact Pairs
See Also	Specifying Boundary Conditions for Identity Pairs



For axisymmetric models, COMSOL Multiphysics takes the axial symmetry boundaries (at r = 0) into account and automatically adds an **Axial Symmetry** node to the model that is valid on the axial symmetry boundaries only.



To locate and search all the documentation, in COMSOL, select **Help>Documentation** from the main menu and either enter a search term or look under a specific module in the documentation tree.

Table 9-2 lists the interior and exterior boundaries available with this interface. It also includes edge, point, and pair availability.

TABLE 9-3: INTERIOR AND EXTERIOR BOUNDARY CONDITIONS (INCLUDING EDGE, POINT, AND PAIR
AVAILABILITY) FOR THE ELECTRIC CURRENTS INTERFACE

FEATURE	INTERIOR	EXTERIOR	ALSO AVAILABLE FOR
Boundary Current Source	x		pairs
Contact Impedance	x		pairs
Distributed Impedance	x	x	not applicable
Electric Insulation	x	x	pairs
Electric Potential	x	x	edges, points, and pairs
Floating Potential	x	x	pairs
Ground	x	x	edges, points, and pairs
Normal Current Density		x	not applicable
Periodic Condition		x	not applicable

# Current Conservation

The **Current Conservation** node adds the continuity equation for the electrical potential and provides an interface for defining the electric conductivity as well as the constitutive relation and the relative permittivity for the displacement current.

## DOMAIN SELECTION

From the **Selection** list, choose the domains to define the electric potential and the continuity equation that describes the potential field.

#### MODEL INPUTS

This section contains field variables that appear as model inputs, if the current settings include such model inputs. By default, this section is empty. If a linear temperature relation is added for the conductivity, then the source for the temperature T can be defined. From the **Temperature** list, select an existing temperature variable (from another physics interface) if available, or select **User defined** to define a value or expression for the temperature (SI unit: K) in the field that appears underneath the list.

#### MATERIAL TYPE

Select a Material type—Solid (the default), Non-solid, or From material.

# COORDINATE SYSTEM SELECTION

The **Global coordinate system** is selected by default. The **Coordinate system** list contains any additional coordinate systems that the model includes.

### CONDUCTION CURRENT

By default, the Electrical conductivity  $\sigma(SI \text{ unit: } S/m)$  for the media is defined From material. Or select User defined, Linearized resistivity, or Porous media.

• If **User defined** is selected, select **Isotropic**, **Diagonal**, **Symmetric**, or **Anisotropic** depending on the characteristics of the electrical conductivity, and then enter values or expressions in the field or matrix.



If another type of temperature dependence is used other than a linear temperature relation, enter any expression for the conductivity as a function of temperature.

• Select **Linearized resistivity** for a temperature-dependent conductivity (this occurs in, for example, Joule heating, and is also called resistive heating). The equation describing the conductivity:

$$\sigma = \frac{1}{\rho_0(1 + \alpha(T - T_0))}$$

where  $\rho_0$  is the resistivity at the reference temperature  $T_0$ , and  $\alpha$  is the temperature coefficient of resistance, which describes how the resistivity varies with temperature.

The default Reference temperature T_{ref} (SI unit: K), Resistivity temperature coefficient α (SI unit: 1/K), and Reference resistivity ρ₀ (SI unit: Ωm) are taken From material, which means that the values are taken from the domain material.



Only certain material models (see Materials) support the Linearized resistivity.

- To specify other values for any of these properties, select **User defined** from the list and then enter a value or expression. *T* is the current temperature, which can be a value that is specified as a model input or the temperature from a heat transfer interface. The definition of the temperature field appears in the **Model Inputs** section.

## ELECTRIC FIELD



See **Electric Field** as described for the Charge Conservation node for the Electrostatics interface.

# Floating Potential

The **Floating Potential** node is useful when modeling a metallic electrode at floating potential. The electrode may have a charge  $Q_0$  deposited on it.

#### **BOUNDARY SELECTION**

From the Selection list, choose the boundaries to define the floating electrode.

#### PAIR SELECTION

If **Floating Potential** is selected from the **Pairs** menu, choose the pair to define. An identity pair has to be created first. Ctrl-click to deselect.

## FLOATING POTENTIAL

Specify a an optionally non zero **Charge**  $Q_0$  (SI unit: C).



For the **Electric Currents** interface, enter a **Terminal current**  $I_0$  (SI unit: A). Specify zero current for a disconnected electrode.

#### CONSTRAINT SETTINGS

To display this section, click the Show button ( ) and select Advanced Physics Options. Select a Constraint type—Bidirectional, symmetric or Unidirectional. If required, select the Use weak constraints check box.

# External Current Density

The **External Current Density** node adds an externally generated current density  $\mathbf{J}_{e}$ , which appears in Ohm's law

$$\mathbf{J} = \sigma \mathbf{E} + \mathbf{J}_{e}$$

and in the equation that the interface defines.

#### DOMAIN SELECTION

From the Selection list, choose the domains to define an external current density.

#### COORDINATE SYSTEM SELECTION

The **Global coordinate system** is selected by default. The **Coordinate system** list contains any additional coordinate systems that the model includes.

# EXTERNAL CURRENT DENSITY

Based on space dimension, enter the coordinates (**x**, **y**, and **z** for 3D models for example) of the **External current density**  $J_{\rho}$  (SI unit: A/m²).

# Current Source

The **Current Source** node adds a distributed current source  $Q_j$  in the equation that the interface defines. Use this feature with caution as it may violate the current conservation law that is inherent in Maxwell-Ampère's law.

# DOMAIN SELECTION

From the Selection list, choose the domains to define a current source.

#### CURRENT SOURCE

Enter a value or expression for the **Current source**  $Q_j$  (SI unit: A/m³).

# Initial Values

The **Initial Values** node adds an initial value for the electric potential that can serve as an initial condition for a transient simulation or as an initial guess for a nonlinear solver. If more than one set of initial values is required, right-click to add additional **Initial Values** features.

# DOMAIN SELECTION

From the Selection list, choose the domains to define an initial value.

#### INITIAL VALUES

Enter a value or expression for the initial value of the **Electric potential** V (SI unit: V). The default value is 0 V.

# Boundary Current Source

The **Boundary Current Source** node adds a current source  $Q_{\rm j}$  on the boundary.

$$\mathbf{n} \cdot (\mathbf{J}_1 - \mathbf{J}_2) = Q_j$$

It is applicable to interior boundaries that represent either a source or a sink of current.

# **BOUNDARY SELECTION**

From the Selection list, choose the boundaries to apply a current source.

#### PAIR SELECTION

If **Boundary Current Source** is selected from the **Pairs** menu, choose the pair to define. An identity pair has to be created first. Ctrl-click to deselect.

#### **BOUNDARY CURRENT SOURCE**

Enter a value or expression for the **Boundary current source**  $Q_i$  (SI unit: A/m²).

# Normal Current Density

The **Normal Current Density** node is applicable to exterior boundaries that represent either a source or a sink of current. It provides a condition for specifying the normal current density as an inward or outward current flow:

$$-\mathbf{n} \cdot \mathbf{J} = J_n$$

Or, alternatively, as a current density  $\mathbf{J}_0$ :

$$\mathbf{n} \cdot \mathbf{J} = \mathbf{n} \cdot \mathbf{J}_0$$

The normal current density is positive when the current flows inward in the domain.

# **BOUNDARY SELECTION**

From the **Selection** list, choose the boundaries to apply a current flow as the boundary condition using the normal current density.

## COORDINATE SYSTEM SELECTION

The **Global coordinate system** is selected by default. The **Coordinate system** list contains any additional coordinate systems that the model includes.

#### NORMAL CURRENT DENSITY

Select an option from the Type list-Inward current density or Current density.

- If **Inward current density** is selected, enter a value or expression for the **Normal** current density  $J_n$  (SI unit: A/m²). Use a positive value for an inward current flow or a negative value for an outward current flow.
- If Current density is selected, enter values or expressions for the components of the Current density (SI unit: A/m²) in the J₀ fields.

The **Distributed Impedance** node adds a distributed impedance boundary condition to a model.

<mark>т</mark>р

Use this boundary condition to model a thin sheet of a resistive material, connected to a reference potential  $V_{ref}$ .

The layer impedance can be specified either with the bulk material conductivity  $\sigma_s$ , the relative permittivity  $\varepsilon_r$  and the layer thickness  $d_s$ , or directly with the surface resistance  $\rho_s$  and capacitance  $C_s$ . Assuming DC currents, the equation is:

$$\begin{split} \mathbf{n} \cdot (\mathbf{J}_1 - \mathbf{J}_2) &= \frac{\sigma_s}{d_s} (V - V_{\text{ref}}) \\ \mathbf{n} \cdot (\mathbf{J}_1 - \mathbf{J}_2) &= \frac{1}{\rho_s} (V - V_{\text{ref}}) \end{split}$$

## **BOUNDARY SELECTION**

From the Selection list, choose the boundaries to apply a distributed impedance.

#### DISTRIBUTED IMPEDANCE

Enter the Reference potential  $V_{ref}$  (SI unit: V).

Select a potentially complex valued Layer specification—Thin layer (the default) or Surface impedance.

- If Thin layer is selected, enter values or expressions for the:
  - Surface thickness  $d_s$  (SI unit: m). The default is  $5 \cdot 10^{-3}$  m (5 mm).
  - Electrical conductivity  $\sigma(SI unit: S/m)$  and Relative permittivity  $\varepsilon_r$ . The defaults take values From material. Select User defined to enter different values or expressions.
- If Surface impedance is selected, enter values or expressions for the Surface resistance  $\rho_s$  (SI unit:  $\Omega m^2$ ) and for the Surface capacitance  $C_s$  (SI unit: F/m²).

# Electric Insulation

**Electric Insulation** is the default boundary condition and this feature adds electric insulation as the boundary condition:

 $\mathbf{n} \cdot \mathbf{J} = \mathbf{0}$ 

This boundary condition means that no electric current flows into the boundary. At interior boundaries, it means that no current can flow through the boundary and that the electric potential is discontinuous across the boundary. It is also applicable at symmetric boundaries where the potential is known to be symmetric with respect to the boundary.

To add electric insulation to an interior boundary, add an **Electric Insulation** node in addition to the one that represents the default boundary condition. Electric insulation as the default boundary condition is not applicable to interior boundaries.

#### **BOUNDARY SELECTION**

From the Selection list, choose the boundaries to apply electric insulation.

# PAIR SELECTION

<mark>т</mark>р

If **Electric Insulation** is selected from the **Pairs** menu, choose the pair to define. An identity pair has to be created first. Ctrl-click to deselect.

# Contact Impedance

Use the **Contact Impedance** node on interior boundaries to model a thin layer of resistive material. It can also be added as a pair.

$$\mathbf{n} \cdot \mathbf{J}_{1} = \frac{\sigma}{d_{s}}(V_{1} - V_{2})$$
$$\mathbf{n} \cdot \mathbf{J}_{2} = \frac{\sigma}{d_{s}}(V_{2} - V_{1})$$
$$\mathbf{n} \cdot \mathbf{J}_{1} = \frac{1}{\rho_{s}}(V_{1} - V_{2})$$
$$\mathbf{n} \cdot \mathbf{J}_{2} = \frac{1}{\rho_{s}}(V_{2} - V_{1})$$

608 | CHAPTER 9: THE AC/DC BRANCH

The layer impedance can be specified either with the bulk material conductivity  $\sigma_s$ , the relative permittivity  $\varepsilon_r$  and the layer thickness  $d_s$ , or directly with the surface resistance  $\rho_s$  and capacitance  $C_s$ . The indices 1 and 2 refer to the two sides of the boundary.



These parameters work the same as with Distributed Impedance.



Thin-Film Resistance: Model Library path COMSOL_Multiphysics/ Electromagnetics/thin_film_resistance

#### **BOUNDARY SELECTION**

From the Selection list, choose the boundaries to apply a contact resistance.

#### PAIR SELECTION

If **Contact Impedance** is selected from the **Pairs** menu, choose the pair to define. An identity pair has to be created first. Ctrl-click to deselect.

#### MATERIAL TYPE

Select a Material type—Solid (the default), Non-solid, or From material.

#### SURFACE IMPEDANCE

Select a potentially complex valued **Layer specification—Thin layer** (the default) or **Surface impedance**.

- If Thin layer is selected, enter values or expressions for the:
  - Surface thickness  $d_s$  (SI unit: m). The default is  $5 \cdot 10^{-3}$  m (5 mm).
  - Electrical conductivity  $\sigma$  (SI unit: S/m) and Relative permittivity  $\epsilon_r$ . The defaults take values From material. Select User defined to enter different values or expressions.
- If Surface impedance is selected, enter values or expressions for the Surface resistance  $\rho_s$  (SI unit:  $\Omega m^2$ ) and for the Surface capacitance  $C_s$  (SI unit: F/m²).

# Sector Symmetry

Select **Sector Symmetry** at interfaces between rotating objects where sector symmetry is used. It is only available for pairs.



This feature assumes rotation around the origin.

#### **BOUNDARY SELECTION**

From the **Selection** list, choose the boundaries from an existing identity pair. This pair first has to be created.

#### PAIR SELECTION

When **Sector Symmetry** is selected from the **Pairs** menu, choose the pair to define. An identity pair has to be created first. Ctrl-click to deselect.

# SECTOR SETTINGS

Enter the Number of sectors (<50)  $n_{\rm sect}$ . The default is 2.

#### Select a Type of periodicity—Continuity or Antiperiodicity.

Based on space dimension, enter values or expressions in the table for the Axis of rotation  $a_{rot}$ .

#### CONSTRAINT SETTINGS



- Identity and Contact Pairs
- Specifying Boundary Conditions for Identity Pairs

The **Line Current Source** node adds a line source to edges in 3D models and to points in 2D and 2D axisymmetric models. The line source represents electric current per unit length.

# EDGE OR POINT SELECTION

From the Selection list, choose the edges or points to add a current source.



2D

¢.

2D Axi

Beware that constraining the potential on edges or points usually yields a current outflow that is mesh dependent.

# LINE CURRENT SOURCE

Enter a value or expression to apply a **Line current source**  $Q_j$  (SI unit: A/m). This source represents electric current per unit length.



Line Current Source (on Axis)

Line Current Source (on Axis)



The **Line Current Source (on Axis)** node adds a line source to boundaries in 2D axisymmetric models. The line source represents electric current per unit length.

#### **BOUNDARY SELECTION**

From the Selection list, choose the boundaries to add a line current source (on axis).

#### LINE CURRENT SOURCE (ON AXIS)

Enter a value or expression to apply a **Line current source**  $Q_j$  (SI unit: A/m) to boundaries. This source represents electric current per unit length.

Line Current Source

Point Current Source

SD

•

See Also

The **Point Current Source** node adds a point source and represents an electric current flowing out of the point. Add point sources to 3D models from the **Points** menu.

#### POINT SELECTION

From the Selection list, choose the points to add a current source.



Beware that constraining the potential on points usually yields a current outflow that is mesh dependent.

#### POINT CURRENT SOURCE

Enter a value or expression to apply a **Point current source**  $Q_j$  (SI unit: A) to points. This source represents an electric current flowing out of the point.



- Line Current Source to apply it to points for 2D models.
- Point Current Source (on Axis) to apply to points for 2D axisymmetric models.



The **Point Current Source (on Axis)** node adds a point source and represents an electric current flowing out of the point in 2D axisymmetric models.

## POINT SELECTION

From the Selection list, choose the points to add a current source.



Beware that constraining the potential on points usually yields a current outflow that is mesh dependent.

#### POINT CURRENT SOURCE

Enter a value or expression to apply a **Point current source**  $Q_j$  (SI unit: A) to points. This source represents an electric current flowing out of the point.



• Point Current Source to apply this feature to points on 3D models.

• Line Current Source to apply it to points for 2D models.

## The Magnetic Fields Interface

The Magnetic Fields interface (, , ), found under the AC/DC branch ( ) in the Model Wizard, has the equations, boundary conditions, and currents for modeling magnetic fields, solving for the magnetic vector potential. The main feature is the Ampère's Law feature, which adds the equation for the magnetic vector potential and provides an interface for defining the constitutive relations and its associated properties such as the relative permeability.

When this interface is added, these default nodes are also added to the **Model Builder**— **Magnetic Fields**, **Ampère's Law**, **Magnetic Insulation** (the default boundary condition), and **Initial Values**. Right-click the **Magnetic Fields** node to add other features that implement, for example, boundary conditions and external currents.



Quadrupole Lens: Model Library path COMSOL_Multiphysics/ Electromagnetics/quadrupole

#### INTERFACE IDENTIFIER

The interface identifier is a text string that can be used to reference the respective physics interface if appropriate. Such situations could occur when coupling this interface to another physics interface, or when trying to identify and use variables defined by this physics interface, which is used to reach the fields and variables in expressions, for example. It can be changed to any unique string in the **Identifier** field.

The default identifier (for the first interface in the model) is mf.

## DOMAIN SELECTION

The default setting is to include **All domains** in the model to define the magnetic vector potential and the equations that describe the potential field for magnetic fields. To choose specific domains, select **Manual** from the **Selection** list.

## BACKGROUND FIELD

Select an option from the Solve for list—Full field (the default) or Reduced field. If Reduced field is selected, specify a Background magnetic vector potential  $A_b$  (SI unit: Wb/m). The total field used in the physics and equations are given by the sum of the reduced and background fields.



The current vector has the same direction as the magnetic vector potential, so this setting also controls the direction in which applied and induced currents can flow in the model. The default option is to solve for the out-of-plane component only.

Select **Components—Out-of-plane vector potential** (the default), **In-plane vector potential**, or **Three-component vector potential** for the magnetic vector potential. From the practical viewpoint this choice is equivalent to deciding in what directions the electric current is allowed to flow (out-of-plane currents, in-plane currents or currents flowing in all three coordinate directions).

#### THICKNESS

Enter a value or expression for the global Out-of-plane thickness d (SI unit: m). The default value of 1 m is typically not representative for a thin domain. Instead it describes a unit thickness that makes the 2D equation identical to the equation used for 3D models.
 Use the Change Thickness (Out-of-Plane) node (described for the Electrostatics interface) to define specific geometric entities (for example,

domains) instead of a global setting for the thickness.

#### DEPENDENT VARIABLES

The dependent variable is the **Magnetic vector potential** *A*. You can change both its field name and the individual component variable names. If the new field name coincides with the name of another magnetic vector potential field in the model, the interfaces will share degrees of freedom and component names. The new field name must not coincide with the name of a field of another type, or with a component name belonging to some other field. Component names must be unique within a model, except for fields of the same type sharing a common field name.

#### DISCRETIZATION

7

See Also

To display this section, click the Show button ( $r_{\overline{o}}$ ) and select Discretization. Select a Magnetic vector potential—Quadratic (the default), Linear, Cubic, or Quartic. Specify the Value type when using splitting of complex variables—Real or Complex (the default).

Show More Physics Options

- Domain, Boundary, Point, and Pair Conditions for the Magnetic Fields
   Interface
  - Theory for the Magnetic Fields Interface

Domain, Boundary, Point, and Pair Conditions for the Magnetic Fields Interface

The Magnetic Fields Interface has these domain, boundary, point, and pair features available. Features are listed in alphabetical order.

About the Boundary Conditions With no surface currents present the interface conditions

$$\mathbf{n}_2 \times (\mathbf{A}_1 - \mathbf{A}_2) = \mathbf{0}$$
$$\mathbf{n}_2 \times (\mathbf{H}_1 - \mathbf{H}_2) = \mathbf{0}$$

need to be fulfilled. Because **A** is being solved for, the tangential component of the magnetic potential is always continuous, and thus the first condition is automatically fulfilled. The second condition is equivalent to the natural boundary condition and is hence also fulfilled unless surface currents are explicitly introduced.

## Available Features

These features are available for this interface and listed in alphabetical order. Also see Table 9-2 for a list of interior and exterior boundary conditions.

- Ampère's Law
- Change Thickness (Out-of-Plane) (described for the Electrostatics interface)
- External Current Density
- Initial Values
- Line Current (Out-of-Plane)
- Magnetic Field

- Magnetic Insulation (the default boundary condition)
- Magnetic Potential
- Perfect Magnetic Conductor
- Surface Current

<mark>т</mark>р

• Velocity (Lorentz Term)

To locate and search all the documentation, in COMSOL, select **Help>Documentation** from the main menu and either enter a search term or look under a specific module in the documentation tree.

Table 9-2 lists the interior and exterior boundaries available with this interface.

FEATURE	INTERIOR	EXTERIOR
Change Thickness (Out-of-Plane)	x	x
Magnetic Field	x	x
Magnetic Insulation	x	x
Magnetic Potential	x	x
Perfect Magnetic Conductor	x	x
Periodic Condition		x
Surface Current	x	x

TABLE 9-4: INTERIOR AND EXTERIOR BOUNDARY CONDITIONS FOR THE MAGNETIC FIELDS INTERFACE

2D Axi

For 2D axisymmetric models, COMSOL Multiphysics takes the axial symmetry boundaries (at r = 0) into account and automatically adds an **Axial Symmetry** node to the model that is valid on the axial symmetry boundaries only.



About Infinite Element Domains and Perfectly Matched Layers

## Ampère's Law

The **Ampère's Law** feature adds Ampère's law for the magnetic field and provides an interface for defining the constitutive relation and its associated properties such as the relative permeability as well as electric properties.

## DOMAIN SELECTION

From the **Selection** list, choose the domains to define the magnetic vector potential and the equation based on Ampère's law that defines the potential.

#### MODEL INPUTS

This section contains field variables that appear as model inputs, if the current settings include such model inputs. By default, this section is empty. If a linear temperature relation is added for the conductivity, then define the source for the temperature T. From the **Temperature** list, select an existing temperature variable (from another physics interface) if available, or select **User defined** to define a value or expression for the temperature (SI unit: K) in the field that appears underneath the list.

#### MATERIAL TYPE

Select a Material type—Non-solid (the default), Solid, or From material.

## COORDINATE SYSTEM SELECTION

The **Global coordinate system** is selected by default. The **Coordinate system** list contains any additional coordinate systems that the model includes.

## CONDUCTION CURRENT

By default, the Electrical conductivity  $\sigma(SI \text{ unit: } S/m)$  for the media is defined From material. Also select User defined or Linearized resistivity from the list.

- If **User defined** is selected, choose **Isotropic**, **Diagonal**, **Symmetric**, or **Anisotropic** based on the characteristics of the electrical conductivity, and then enter values or expressions in the field or matrix.
- If **Linearized resistivity** is selected, it defines the electric resistivity (and conductivity) as a linear function of temperature and this equation describes the conductivity:

$$\sigma = \frac{1}{\rho_0(1 + \alpha(T - T_0))}$$

where  $\rho_0$  is the resistivity at the reference temperature  $T_0$ .  $\alpha$  is the temperature coefficient of resistance, which describes how the resistivity varies with temperature.

- The default Reference temperature T_{ref} (SI unit: K), Resistivity temperature coefficient α (SI unit: 1/K), and Reference resistivity ρ₀ (SI unit: Ω·m) are taken From material, which means that the values are taken from the boundary material.
- To specify other values for any of these properties, select **User defined** from the list and then enter a value or expression. *T* is the current temperature, which can be a value specified as a model input or the temperature from a heat transfer interface. The definition of the temperature field is in the **Model Inputs** section.

#### ELECTRIC FIELD

The default **Relative permittivity**  $\varepsilon_{r}$  (unitless) for the media is used **From material** and defined on the shell domain. If **User defined** is selected, choose **Isotropic**, **Diagonal**, **Symmetric**, or **Anisotropic** based on the characteristics of the permittivity and then enter values or expressions in the field or matrix.

#### MAGNETIC FIELD

Specify the **Constitutive relation** that describe the macroscopic properties of the medium (relating the magnetic flux density **B** and the magnetic field **H**) and the applicable material properties, such as the relative permeability.

Select a Constitutive relation—Relative permeability (the default), HB curve, Magnetic losses, Remanent flux density, or Magnetization.



The equation for the selected constitutive relation displays under the list. For all options, the default uses values **From material**, or select **User defined** to enter a different value or expression.

- Select **Relative permeability**  $\mu_{\mathbf{r}}$  (unitless) to use the constitutive relation  $\mathbf{B} = \mu_0 \mu_{\mathbf{r}} \mathbf{H}$ . If **User defined** is selected, choose **Isotropic**, **Diagonal**, **Symmetric**, or **Anisotropic** and enter values or expressions in the field or matrix.
- Select **HB curve**  $|\mathbf{H}|$  (SI unit: A/m) to use a curve that relates magnetic flux density **B** and the magnetic field **H** as  $|\mathbf{H}| = f(|\mathbf{B}|)$ .

- Select Magnetic losses μ' and μ" (unitless) to describe the relative permeability as a complex-valued quantity: μ_r = μ' + *i*μ", where μ' and μ" are the real and imaginary parts, respectively.
- Select **Remanent flux density B**_r (SI unit: T) to use the constitutive relation  $\mathbf{B} = \mu_0 \mu_r \mathbf{H} + \mathbf{B}_r$ , where  $\mathbf{B}_r$  is the remanent flux density (the flux density when no magnetic field is present).
  - The default relative permeability  $\mu_r$  (unitless) uses values From material. If User defined is selected, choose Isotropic, Diagonal, Symmetric, or Anisotropic based on the characteristics of the relative permeability and enter another value or expression in the field or matrix.
  - Enter **x** and **y** components for the for the remanent flux density **B**_r.
- Select Magnetization M (SI unit: A/m) to use the constitutive relation  $\mathbf{B} = \mu_0 \mathbf{H} + \mu_0 \mathbf{M}$ . Enter x and y components.

## External Current Density

The **External Current Density** feature adds an externally generated current density  $J_e$ , which appears on the right-hand side of the equation that the **Magnetic Fields** interface defines.

## DOMAIN SELECTION

From the Selection list, choose the domains to define an external current density.

## COORDINATE SYSTEM SELECTION

The **Global coordinate system** is selected by default. The **Coordinate system** list contains any additional coordinate systems that the model includes.

## EXTERNAL CURRENT DENSITY

Enter a value or expression for each component of the External current density  $J_e$  (SI unit: A/m²).

## Velocity (Lorentz Term)

The **Velocity (Lorentz term)** feature adds velocity **v**. The external current is equal to  $\sigma \mathbf{v} \times \mathbf{B}$ . This feature is only valid as follows

• In 2D and 2D axisymmetry when solving for only the out-of-plane component of the magnetic vector potential.

Important

To use the velocity feature correctly requires deep physical insight. In situations when the moving domain is of bounded extent in the direction of the motion or material properties vary in this direction or it contains magnetic sources that also move, the Lorentz term must not be used.

An operational definition of when it can be used is that the moving domain should only contain an induced magnetic source (magnetization + eddy currents) that has to be stationary with respect to the motion. Thus, it cannot be used for modeling projectiles of finite length or projectiles containing magnets. It can be used to model conductive, homogeneous spinning disks (magnetic brakes), magnets over a moving infinite homogenous plane (maglev trains), a flow of homogeneous conducting fluid past a magnet (liquid metal pumps, Hall generators/thrusters).



If in doubt, contact COMSOL Technical Support www.comsol.com/support

## DOMAIN SELECTION

From the Selection list, choose the domains to define the velocity.

## COORDINATE SYSTEM SELECTION

The **Global coordinate system** is selected by default. The **Coordinate system** list contains any additional coordinate systems that the model includes.

## VELOCITY (LORENTZ TERM)

Select **User defined** to enter the components for the **Velocity** vector  $\mathbf{v}$  (SI unit: m/s) or, if present, select any velocity field—**Velocity field (spf/pf1)**, for example—defined in the model.

🔐 Tip For example, using the velocity field is useful when coupling to the velocity field of a fluid for a magnetohydrodynamic model.

## Initial Values

The **Initial Values** feature adds an initial value for the magnetic vector potential *A* that can serve as an initial value for a transient simulation or as an initial guess for a nonlinear solver.

## **BOUNDARY SELECTION**

From the Selection list, choose the boundaries to define an initial value.

### INITIAL VALUES

Enter values or expressions for the initial value of the Magnetic vector potential  $\mathbf{A}$  (SI unit: Wb/m). The default is 0.

## Magnetic Insulation

The Magnetic Insulation node is the default boundary condition for the Magnetic Fields interface and adds a boundary condition that sets the tangential components of the magnetic potential to zero at the boundary  $\mathbf{n} \times \mathbf{A} = 0$ .



Magnetic insulation is a special case of the magnetic potential boundary condition that sets the tangential component of the magnetic potential to zero.

It is used for the modeling of a lossless metallic surface, for example a ground plane or as a symmetry type boundary condition. It imposes symmetry for magnetic fields and "magnetic currents." In the transient and time harmonic formulations it also imposes antisymmetry for electric fields and electric currents. It supports induced electric surface currents and thus any prescribed or induced electric currents (volume, surface, or edge currents) flowing into a perfect electric conductor boundary is automatically balanced by induced surface currents.



The magnetic insulation boundary condition is used on exterior and interior boundaries representing the surface of a lossless metallic conductor or (on exterior boundaries) representing a symmetry cut. The shaded (metallic) region is not part of the model but still carries effective mirror images of the sources. Note also that any current flowing into the boundary is perfectly balanced by induced surface currents. The tangential vector potential (and electric field) vanishes at the boundary.

## **BOUNDARY SELECTION**



For the default node no user selection is required. **All boundaries** is automatically selected, it applies to all the *external* boundaries.

When additional nodes are added, from the **Selection** list choose the boundaries to define the magnetic insulation.

## CONSTRAINT SETTINGS

To display this section, click the Show button ( $r_{\odot}$ ) and select Advanced Physics Options. Select a Constraint type—Bidirectional, symmetric or Unidirectional. If required, select the Use weak constraints check box.

## Magnetic Field

The **Magnetic Field** feature adds a boundary condition for specifying the tangential component of the magnetic field at the boundary:

$$\mathbf{n} \times \mathbf{H} = \mathbf{n} \times \mathbf{H}_0$$

#### **BOUNDARY SELECTION**

From the Selection list, choose the boundaries to specify the magnetic field.

## PAIR SELECTION

If **Magnetic Field** is selected from the **Pairs** menu, choose the pair to define. An identity pair has to be created first. Ctrl-click to deselect.

## MAGNETIC FIELD

Enter the value or expression for the Magnetic Field  $\mathbf{H}_0$  (SI unit: A/m) coordinates.

## Surface Current

The **Surface Current** feature adds a boundary condition for a surface current density **J**_s:

$$-\mathbf{n} \times \mathbf{H} = \mathbf{J}_s$$
$$\mathbf{n} \times (\mathbf{H}_1 - \mathbf{H}_2) = \mathbf{J}_s$$

### **BOUNDARY SELECTION**

From the Selection list, choose the boundaries to specify a surface current.

### PAIR SELECTION

If **Surface Current** is selected from the **Pairs** menu, choose the pair to define. An identity pair has to be created first. Ctrl-click to deselect.

## SURFACE CURRENT

Enter values or expressions for the Surface current density  ${\bf J}_{\rm s}~({\rm SI}~{\rm unit}~{\rm A/m})$  coordinates.

## Magnetic Potential

The **Magnetic Potential** feature adds a boundary condition for the magnetic vector potential:

$$\mathbf{n} \times \mathbf{A} = \mathbf{n} \times \mathbf{A}_0$$

#### **BOUNDARY SELECTION**

From the Selection list, choose the boundaries to specify the magnetic potential.

#### COORDINATE SYSTEM SELECTION

The **Global coordinate system** is selected by default. The **Coordinate system** list contains any additional coordinate systems that the model includes.

## PAIR SELECTION

If **Magnetic Potential** is selected from the **Pairs** menu, choose the pair to define. An identity pair has to be created first. Ctrl-click to deselect.

## MAGNETIC POTENTIAL

Enter a value or expression for the Magnetic vector potential  $A_0$  (SI unit: Wb/m) coordinates.

## CONSTRAINT SETTINGS

To display this section, click the Show button ( $r_{\odot}$ ) and select Advanced Physics Options. Select a Constraint type—Bidirectional, symmetric or Unidirectional. If required, select the Use weak constraints check box.

## Perfect Magnetic Conductor

The **Perfect Magnetic Conductor** boundary condition  $\mathbf{n} \times \mathbf{H} = 0$  is a special case of the surface current boundary condition that sets the tangential component of the magnetic field and thus also the surface current density to zero. On external boundaries, this can be interpreted as a "high surface impedance" boundary condition or used as a symmetry type boundary condition. It imposes symmetry for electric fields and electric currents. Electric currents (volume, surface, or edge currents) are not allowed to flow into a perfect magnetic conductor boundary as that would violate current conservation. On interior boundaries, the perfect magnetic conductor boundary condition

addition to setting the surface current density to zero also makes the tangential magnetic vector potential (and in dynamics the tangential electric field) discontinuous.



The perfect magnetic conductor boundary condition is used on exterior boundaries representing the surface of a high impedance region or a symmetry cut. The shaded (high impedance) region is not part of the model but nevertheless carries effective mirror images of the sources. Note also that any electric current flowing into the boundary is forbidden as it cannot be balanced by induced electric surface currents. The tangential magnetic field vanishes at the boundary. On interior boundaries, the perfect magnetic conductor boundary condition literally sets the tangential magnetic field to zero which in addition to setting the surface current density to zero also makes the tangential magnetic vector potential (and in dynamics the tangential electric field) discontinuous.

#### **BOUNDARY SELECTION**

From the **Selection** list, choose the boundaries to model as perfect magnetic conductors.

## PAIR SELECTION

If **Perfect Magnetic Conductor** is selected from the **Pairs** menu, choose the pair to define. An identity pair has to be created first. Ctrl-click to deselect.

## Line Current (Out-of-Plane)

Use the **Line Current (Out-of-Plane)** feature, selected from the **Points** menu, to specify a line current out of the modeling plane. In axially symmetric geometries this is the rotational direction, in 2D geometries this is the z-direction.

### POINT SELECTION

From the Selection list, choose the points to add a line current.

#### LINE CURRENT (OUT-OF-PLANE)

Enter a value or expression for the **Out-of-plane current**  $I_0$  (SI unit: A).

# 10

## The Acoustics Branch

This chapter describes how to use the Pressure Acoustics, Frequency Domain interface, found under the **Acoustics>Pressure Acoustics** branch ()) in the **Model Wizard**, for modeling and simulation of acoustics and vibrations.

In this chapter:

- Fundamentals of Acoustics
- Theory for the Pressure Acoustics, Frequency Domain Interface
- The Pressure Acoustics, Frequency Domain Interface

## Fundamentals of Acoustics

There are certain difficulties that often arise when modeling acoustics, such as the rather severe requirements on the mesh resolution, the modeling of artificial boundaries, and the modeling of real-world damping materials. This section starts with a brief introduction to acoustics and gives some examples of standard acoustics problems.

C See Also Overview of the Physics Interfaces and Building a COMSOL Model

In this section:

- Acoustics Explained
- Examples of Standard Acoustics Problems
- Mathematical Models for Acoustic Analysis

## Acoustics Explained

Acoustics is the physics of *sound*. Sound is the sensation, as detected by the ear, of very small rapid changes in the air pressure above and below a static value. This static value is atmospheric pressure (about 100,000 pascals), which varies slowly. Associated with a sound pressure wave is a flow of energy. Physically, sound in air is a longitudinal wave where the wave motion is in the direction of the movement of energy. The wave crests are the pressure maxima, while the troughs represent the pressure minima.

Sound results when the air is disturbed by some source. An example is a vibrating object, such as a speaker cone in a sound system. It is possible to see the movement of a bass speaker cone when it generates sound at a very low frequency. As the cone moves forward it compresses the air in front of it, causing an increase in air pressure. Then it moves back past its resting position and causes a reduction in air pressure. This process continues, radiating a wave of alternating high and low pressure at the speed of sound.

These standard problems or scenarios occur frequently when analyzing acoustics:

Depending on the basic dependent variable used to model the acoustic field, the acoustical interfaces can be divided in two main categories:

- *Pressure Acoustics*—The dependent variable is the acoustic pressure, *p*.
- Aeroacoustics—The dependent variable is the potential, φ, for the acoustic particle-velocity field, v= ∇φ. In the typical situation, the fluid is in motion with a total velocity, v_{tot} = V + v, split into a stationary background-flow velocity, V, and the particle velocity, v, associated with the acoustic waves. Analysis of this type of problem requires the Acoustics Module.

## The Radiation Problem

A vibrating structure (a speaker, for example) radiates sound into the surrounding space. A far-field boundary condition or a PML (perfectly matched layer) is necessary to model the unbounded domain.

## The Scattering Problem

An incident wave impinges on a body and creates a scattered wave. A far-field radiation boundary condition or a PML is necessary.

## The Sound Field in an Interior Space (for Example, a Room)

The acoustic waves stay in a finite volume so no radiation condition is necessary.

## Coupled Fluid-Elastic Structure Interaction (Structural Acoustics)

If the radiating or scattering structure consists of an elastic material, the interaction must be considered between the body and the surrounding fluid. In the multiphysics coupling, the acoustic analysis provides a load (the sound pressure) to the structural analysis, and the structural analysis provides accelerations to the acoustic analysis.

## The Transmission Problem

An incident sound wave propagates into a body, which can have different acoustic properties. Pressure and acceleration are continuous on the boundary.

## Aeroacoustics Problems

Sound (noise) is generated by turbulent fluid motion or by the interaction between a fluid and a surface. Analysis of this type of problem requires the Acoustics Module.

Sound waves in a lossless medium are governed by the following equation for the (differential) pressure p (SI unit: N/m²):

$$\frac{1}{\rho_0 c_s^2} \frac{\partial p}{\partial t^2} + \nabla \cdot \left( -\frac{1}{\rho_0} (\nabla p - \mathbf{q}) \right) = Q$$

Here  $\rho_0$  (SI unit: kg/m³) refers to the density and  $c_s$  (SI unit: m/s) denotes the speed of sound. The *dipole source* **q** (SI unit: N/m³), and the *monopole source* **Q** (SI unit: 1/s²), are both optional additional sources. The combination  $\rho_0 c_s^2$  is called the *bulk modulus*, commonly denoted  $\beta$  (SI unit: N/m²).

A special case is a time-harmonic wave, for which the pressure varies with time as

$$p(\mathbf{x},t) = p(\mathbf{x})e^{i\omega t}$$

where  $\omega = 2\pi f (rad/s)$  is the angular frequency, f (Hz) as usual denoting the frequency. Assuming the same harmonic time-dependence for the source terms, the wave equation for acoustic waves reduces to an inhomogeneous Helmholtz equation:

$$\nabla \cdot \left(-\frac{1}{\rho_0}(\nabla p - \mathbf{q})\right) - \frac{\omega^2 p}{\rho_0 c_s^2} = Q$$
(10-1)

With the source terms removed, this equation can also be treated as an eigenvalue PDE to solve for eigenmodes and eigenfrequencies. Typical boundary conditions are sound-hard boundaries (walls), sound-soft boundaries, impedance boundary conditions, and radiation boundary conditions.

These are described in more detail below.

In lossy media, an additional term of first order in the time derivative needs to be introduced to model attenuation of the sound waves:

$$\frac{1}{\rho_0 c_s^2} \frac{\partial p}{\partial t^2} - d_a \frac{\partial p}{\partial t} + \nabla \cdot \left( -\frac{1}{\rho_0} (\nabla p - \mathbf{q}) \right) = Q$$

Note also that even when the sound waves propagate in a lossless medium, attenuation frequently occurs by interaction with the surroundings at the boundaries of the system.

## Theory for the Pressure Acoustics, Frequency Domain Interface

The Pressure Acoustics, Frequency Domain Interface is designed for the analysis of various types of pressure acoustics problems in the frequency domain, all concerning pressure waves in a fluid. An acoustics model can be part of a larger multiphysics model that describes, for example, the interactions between structures and acoustic waves. This interface is suitable for modeling acoustics phenomena that do not involve fluid flow.

This interface solves for the acoustic pressure, p. It is available in all space dimensions—for 3D, 2D, and 1D Cartesian geometries as well as for 2D and 1D axisymmetric geometries.

These studies are discussed briefly in this section:

- Frequency Domain Study
- Eigenfrequency Study
- References for the Pressure Acoustics, Frequency Domain Interface

## Frequency Domain Study

The frequency domain—or time-harmonic—formulation uses the following inhomogeneous Helmholtz equation:

$$\nabla \cdot \left(-\frac{1}{\rho_c}(\nabla p - \mathbf{q})\right) - \frac{\omega^2 p}{\rho_c c_c^2} = Q$$
(10-2)

In this equation,  $p = p(\mathbf{x}, \omega)$  (the dependence on  $\omega$  is henceforth not explicitly indicated). With this formulation compute the frequency response with a parametric sweep over a frequency range using a harmonic load.

When there is damping,  $\rho_c$  and  $c_c$  are complex-valued quantities. The available damping models and how to apply them is described in the section Damping Models

Equation 10-2 is the equation that the software solves for 3D geometries. In lower-dimensional and axisymmetric cases, restrictions on the coordinate dependence

mean that the equations differ from case to case. Here is a brief summary of the situation.

## 2 D

In 2D, the pressure is of the form

$$p(\mathbf{r}) = p(x, y)e^{-ik_z z}$$

which inserted in Equation 10-2 gives

$$\nabla \cdot \left(-\frac{1}{\rho_c}(\nabla p - \mathbf{q})\right) - \frac{1}{\rho_c} \left(\frac{\omega^2}{c_c^2} - k_z^2\right) p = Q$$
(10-3)

The *out-of-plane wave number*,  $k_z$ , can be set on the Pressure Acoustics page. By default its value is zero. In the mode analysis type,  $-ik_z$  is used as the eigenvalue.

## 2D AXISYMMETRY

For 2D axisymmetric geometries the independent variables are the radial coordinate, r, and the axial coordinate, z. The only dependence allowed on the azimuthal coordinate,  $\varphi$ , is through a phase factor,

$$p(r,\phi,z) = p(r,z)e^{-im\phi}$$
(10-4)

where *m* denotes the *circumferential wave number*. Because the azimuthal coordinate is periodic, *m* must be an integer. Just like  $k_z$  in the 2D case, *m* can be set on the Pressure Acoustics page.

As a result of Equation 10-4, the equation to solve for the acoustic pressure in 2D axisymmetric geometries becomes

$$\frac{\partial}{\partial r} \left[ -\frac{r}{\rho_c} \left( \frac{\partial p}{\partial r} - q_r \right) \right] + r \frac{\partial}{\partial z} \left[ -\frac{1}{\rho_c} \left( \frac{\partial p}{\partial z} - q_z \right) \right] - \left[ \left( \frac{\omega}{c_c} \right)^2 - \left( \frac{m}{r} \right)^2 \right] \frac{rp}{\rho_c} = rQ$$

## ID AXISYMMETRY

In 1D axisymmetric geometries,

$$p(r,\phi,z) = p(r)e^{-i(k_z z + m\phi)}$$

leading to the radial equation

$$\frac{\partial}{\partial r} \left[ -\frac{r}{\rho_c} \left( \frac{\partial p}{\partial r} - q_r \right) \right] - \left[ \left( \frac{\omega}{c_c} \right)^2 - \left( \frac{m}{r} \right)^2 - k_z^2 \right] \frac{rp}{\rho_c} = rQ$$

where both the circumferential wave number m, and the *axial wave number*  $k_z$ , appear as parameters.

## I D

The equation for the 1D case is obtained by taking the pressure to depend on a single Cartesian coordinate, x:

$$\frac{d}{dx}\left(-\frac{1}{\rho_c}\left(\frac{dp}{dx}-q\right)\right) - \frac{\omega^2}{\rho_c c_c^2}p = Q$$

## Eigenfrequency Study

In the eigenfrequency formulation the source terms are absent, the eigenmodes and eigenfrequencies are solved for:

$$\nabla \cdot \left(-\frac{1}{\rho_c} \nabla p\right) + \frac{\lambda^2 p}{\rho_c c^2} = 0$$
(10-5)

The eigenvalue  $\lambda$  introduced in this equation is related to the eigenfrequency f, and the angular frequency  $\omega$ , through  $\lambda = i2\pi f = i\omega$ . Because they are independent of the pressure, the solver ignores any dipole and monopole sources unless a coupled eigenvalue problem is being solved.

Equation 10-5 applies to the 3D case. The equations solved in eigenfrequency studies in lower dimensions and for axisymmetric geometries are obtained from their time-harmonic counterparts, given in the previous subsection, by the substitution  $\omega^2 \rightarrow \lambda^2$ .

Switch between specifying the eigenvalues, the eigenfrequencies, or the angular frequencies by selecting from the Eigenvalue transformation list in the solver sequence's Eigenvalue feature node's settings window.

## References for the Pressure Acoustics, Frequency Domain Interface

1. D. Givoli and B. Neta, "High-order Non-reflecting Boundary Scheme for Time-dependent Waves," *J. Comput. Phys.*, vol. 186, pp. 24–46, 2004.

2. A. Bayliss, M. Gunzburger, and E. Turkel, "Boundary Conditions for the Numerical Solution of Elliptic Equations in Exterior Regions," *SIAM J. Appl. Math.*, vol. 42, no. 2, pp. 430–451, 1982.

3. A.B. Bauer, "Impedance Theory and Measurements on Porous Acoustic Liners," *J. Aircr.*, vol. 14, pp. 720–728, 1977.

4. S. Temkin, *Elements of Acoustics*, Acoustical Society of America, 2001.

## The Pressure Acoustics, Frequency Domain Interface

The **Pressure Acoustics, Frequency Domain** interface ()) has the equations, boundary conditions, and sources for modeling acoustics, solving for the sound pressure. Select the interface from the **Pressure Acoustics** branch ()) in the **Model Wizard**.

The sound pressure, p, which is solved for in pressure acoustics, represents the acoustic variations (or excess pressure) to the ambient pressure. The ambient pressure is in the absence of flow simply the static absolute pressure.

When the geometrical dimensions of the acoustic problems are reduced from 3D to 2D (planar symmetry or axisymmetric) or to 1D axisymmetric, it is possible to specify an out-of-plane wave number,  $k_z$ , and circumferential wave number, m, when applicable. The wave number used in the equations,  $k_{eq}$ , contains both the ordinary wave number, k, as well as the out-of-plane wave number and circumferential wave number, when applicable.

The following table lists the names SI units for the most important physical quantities in the **Pressure Acoustics, Frequency Domain** interface:

QUANTITY	SYMBOL	SI UNIT	ABBREVIATION
Pressure	p	pascal	Pa
Density	ρ	kilogram/meter ³	kg/m ³
Frequency	f	hertz	Hz
Wave number	k	l/meter	l/m
Dipole source	q	newton/meter ³	N/m ³
Monopole source	Q	I/second ²	1/s ²
Speed of sound	$c_{ m s}$	meter/second	m/s
Acoustic impedance	Z	pascal-second/meter	Pa·s/m
Normal acceleration	$a_n$	meter/second ²	m/s ²
Source location	$r_0$	meter	m
Wave direction	$\mathbf{n}_{\mathbf{k}}$	(dimensionless)	I

TABLE 10-1: PRESSURE ACOUSTICS, FREQUENCY DOMAIN INTERFACE PHYSICAL QUANTITIES

In the following descriptions of the functionality in this interface, the subscript c in  $\rho_c$  and  $c_c$  (the density and speed of sound, respectively) denotes that these can be complex-valued quantities in models with damping.

When this interface is added, these default nodes are also added to the Model Builder— Pressure Acoustics Model, Sound Hard Boundary (Wall), and Initial Values.

Right-click the **Pressure Acoustics** node to other features that implement, for example, boundary conditions.

## Model

Eigenmodes of a Room: Model Library path COMSOL_Multiphysics/ Acoustics/eigenmodes_of_room

#### INTERFACE IDENTIFIER

The interface identifier is a text string that can be used to reference the respective physics interface if appropriate. Such situations could occur when coupling this interface to another physics interface, or when trying to identify and use variables defined by this physics interface, which is used to reach the fields and variables in expressions, for example. It can be changed to any unique string in the **Identifier** field.

The default identifier (for the first interface in the model) is acpr.

## DOMAIN SELECTION

The default setting is to include **All domains** in the model to define a sound pressure field and the associated acoustics equation. To choose specific domains, select **Manual** from the **Selection** list.

## SOUND PRESSURE LEVEL SETTINGS

The zero level on the dB scale varies with the type of fluid. That value is a reference pressure that corresponds to 0 dB. This variable occurs in calculations of the sound pressure level based on the root mean square (rms) pressure,

$$\overline{p} = \sqrt{\frac{1}{2}p\operatorname{conj}(p)}$$

an expression valid for the case of harmonically time-varying acoustic pressure, p.

Based on the fluid type, select a Reference pressure for the sound pressure level. Select:

• Use reference pressure for air to use a reference pressure of 20  $\mu$ Pa (20·10⁻⁶ Pa).

- Use reference pressure for water to use a reference pressure of 1  $\mu$ Pa (1·10⁻⁶ Pa).
- User-defined reference pressure to enter a reference pressure  $p_{ref, SPL}$  (SI unit: Pa). The default value is the same as for air, 20  $\mu$ Pa.

## TYPICAL WAVE SPEED

Enter a value or expression for the Typical wave speed for perfectly matched layers  $c_{\rm ref}$  (SI unit m/s).

## DEPENDENT VARIABLES

This interface defines one dependent variable (field), the **Pressure** *p*. If required, edit the name, which changes both the field name and the dependent variable name. If the new field name coincides with the name of another pressure field in the model, the interfaces will share degrees of freedom and dependent variable name. The new field name must not coincide with the name of a field of another type, or with a component name belonging to some other field.

## ADVANCED SETTINGS

To display this section, select click the **Show** button ( $\flat_{\overline{\infty}}$ ) and select **Advanced Physics Options**. Normally these settings do not need to be changed.

ID Axi

2D Axi

Edit the following as required:

- **Circumferential wave number** *m* is an integer-valued number used in axisymmetry and is by default 0.
- **Out-of-plane wave number**  $k_z$  is used in 2D and 1D axisymmetry and is by default 0.

#### DISCRETIZATION

To display this section, click the Show button ( $r_{\overline{o}}$ ) and select Discretization. Select Quadratic (the default), Linear, Cubic, or Quartic for the Pressure. Specify the Value type when using splitting of complex variables—Real or Complex (the default).

	Show More Physics Options
Ø	• Domain, Boundary, Edge, Point, and Pair Features for the Pressure
C See Also	Acoustics, Frequency Domain Interface
500 7 130	Theory for the Pressure Acoustics, Frequency Domain Interface

Domain, Boundary, Edge, Point, and Pair Features for the Pressure Acoustics, Frequency Domain Interface

The Pressure Acoustics, Frequency Domain Interface has these domain, boundary, edge, point, and pair features available and listed in alphabetical order.

**Domain Features** 

- Pressure Acoustics Model
- Monopole Source
- Dipole Source
- Initial Values

Boundary Conditions



Continuity in pressure is the default condition on interior boundaries.

- Cylindrical Wave Radiation
- Destination Selection
- Impedance
- Interior Sound Hard Boundary (Wall)
- Normal Acceleration
- Periodic Condition
- Plane Wave Radiation
- Pressure
- Sound Hard Boundary (Wall)
- Sound Soft Boundary
- Spherical Wave Radiation

Edge, Point, and Pair Conditions

- Continuity
- Pressure

- Sound Hard Boundary (Wall)
- Sound Soft Boundary



For axisymmetric models, COMSOL Multiphysics takes the axial symmetry boundaries (at r = 0) into account and automatically adds an **Axial Symmetry** node to the model that is valid on the axial symmetry boundaries only.



To locate and search all the documentation, in COMSOL, select **Help>Documentation** from the main menu and either enter a search term or look under a specific module in the documentation tree.

## Pressure Acoustics Model

The **Pressure Acoustics Model** feature adds the equations for time-harmonic and eigenfrequency acoustics modeling in the frequency domain. In the settings window, define the properties for the acoustics model and model inputs including temperature.

## DOMAIN SELECTION

From the **Selection** list, choose the domains to compute the acoustic pressure field and the equation that defines it.

## PRESSURE ACOUSTICS MODEL

The default **Fluid Model** for pressure acoustics is a **Linear elastic** fluid. By default the values for the **Density**  $\rho$  (SI unit: kg/m³) and the **Speed of sound** *c* (SI unit: m/s) are taken **From material**. Select **User defined** to enter other values for these properties.

## Monopole Source

Use the Monopole Source feature to radiate a uniform sound field in all directions.

## DOMAIN SELECTION

From the Selection list, choose the domains to define the monopole source.

### MONOPOLE SOURCE

Enter a Monopole source Q (SI unit:  $1/s^2$ ). The default is 0.

## Dipole Source

Use the **Dipole Source** feature to radiate a sound field that is typically stronger in two opposite directions.

## DOMAIN SELECTION

From the Selection list, choose the domains to define the dipole source.

### DIPOLE SOURCE

Enter coordinates for the **Dipole source** q (SI unit: N/m³). These are the individual components of the dipole source vector. The defaults are 0.

## Initial Values

The **Initial Values** feature adds initial values for the sound pressure and the pressure time derivative that can serve as an initial guess for a nonlinear solver. If more than one initial value is needed, right-click the interface node to add more **Initial Values** nodes.

#### DOMAIN SELECTION

From the Selection list, choose the domains to define an initial value.

#### INITIAL VALUES

Enter a value or expression for the initial values for the **Pressure** p (SI unit: Pa) and the **Pressure time derivative**, dp/dt (SI unit: Pa/s). The defaults are 0.

## Sound Hard Boundary (Wall)

The **Sound Hard Boundary (Wall)** adds a boundary condition for a sound hard boundary or wall, which is a boundary at which the normal component of the acceleration is zero:

$$-\mathbf{n}\cdot\left(-\frac{1}{\rho_0}(\nabla p-\mathbf{q})\right) = 0$$

For zero dipole charge and constant fluid density, this means that the normal derivative of the pressure is zero at the boundary:

$$\frac{\partial p}{\partial n} = 0$$

Sound-hard boundaries are available for all study types.

## **BOUNDARY SELECTION**

From the **Selection** list, choose the boundaries to define as sound hard boundaries (wall).

## Normal Acceleration

The Normal Acceleration adds an inward normal acceleration  $a_n$ :

$$-\mathbf{n}\cdot\left(-\frac{1}{\rho_0}(\nabla p-\mathbf{q})\right) = a_n$$

Alternatively, specify the acceleration a of the boundary. The part in the normal direction is used to define the boundary condition:

$$\mathbf{n} \cdot \left( -\frac{1}{\rho_0} (\nabla p - \mathbf{q}) \right) = \mathbf{n} \cdot \mathbf{a}_0$$

This feature represents an external source term. It can also be used to couple acoustics with a structural analysis for modeling acoustic-structure interaction.

### **BOUNDARY SELECTION**

From the **Selection** list, choose the boundaries to specify a normal acceleration boundary condition.

## NORMAL ACCELERATION

Select a **Type**—Select **Inward Acceleration** to enter the value of the inward normal acceleration  $a_n$  (SI unit: m/s²). Use a positive value for inward acceleration or a negative value for outward acceleration. Select **Acceleration** to enter values for the components of the acceleration  $a_0$  (SI unit: m/s²).

Sound Soft Boundary

The **Sound Soft Boundary** adds a boundary condition for a sound soft boundary, where the acoustic pressure vanishes: p = 0.

This boundary condition is an appropriate approximation for a liquid-gas interface and in some cases for external waveguide ports.

## BOUNDARY SELECTION

From the **Selection** list, choose the boundaries to define as sound soft boundaries. If the feature is selected from the **Pairs** submenu, this list cannot be edited and it shows the boundaries in the selected pairs.

## PAIR SELECTION

If **Sound Soft Boundary** is selected from the **Pairs** menu, choose the pair to define. An identity pair has to be created first. Ctrl-click to deselect.

#### CONSTRAINT SETTINGS

To display this option, click the Show button ( ) and select Advanced Physics Options. Select a Constraint type—Bidirectional, symmetric or Unidirectional. If required, select the Use weak constraints check box.

## Pressure

The **Pressure** node creates a boundary condition that acts as a pressure source at the boundary, which means a constant acoustic pressure  $p_0$  is specified and maintained at the boundary:  $p = p_0$ . In the frequency domain,  $p_0$  is the amplitude of a harmonic pressure source.

The feature is also available from the **Pairs** submenu as an option at interfaces between parts in an assembly.

## BOUNDARY SELECTION

From the **Selection** list, choose the boundaries to specify a pressure boundary condition. If the feature is selected from the **Pairs** submenu, this list cannot be edited and it shows the boundaries in the selected pairs.

## PRESSURE

Enter the value of the **Pressure**  $p_0$  (SI unit: Pa) at the boundary.

## PAIR SELECTION

If **Pressure** is selected from the **Pairs** menu, choose the pair to define. An identity pair has to be created first. Ctrl-click to deselect.

#### CONSTRAINT SETTINGS

To display this option, click the Show button ( $r_{\infty}$ ) and select Advanced Physics Options. Select a Constraint type—Bidirectional, symmetric or Unidirectional. If required, select the Use weak constraints check box.

## Impedance

The **Impedance** node adds an impedance boundary condition, which is a generalization of the sound-hard and sound-soft boundary conditions:

$$-\mathbf{n} \cdot \left(-\frac{1}{\rho_c} (\nabla p_t - \mathbf{q})\right) = -\frac{i \omega p_t}{Z_i}$$

Here  $Z_i$  is the acoustic input impedance of the external domain. From a physical point of view, the acoustic input impedance is the ratio between pressure and normal particle velocity.

The **Impedance** boundary condition is a good approximation for a locally reacting surface—a surface for which the normal velocity at any point depends only on the pressure at that exact point.



In the two opposite limits  $Z_i \to \infty$  and  $Z_i \to 0$ , this boundary condition is identical to the **Sound Hard** boundary condition and the **Sound Soft** boundary condition, respectively.

## **BOUNDARY SELECTION**

From the **Selection** list, choose the boundaries to specify an impedance boundary condition.

## IMPEDANCE

Enter the value of the **Input impedance**  $Z_i$  (SI unit: Pa·s/m). The default value is 1.2 kg/m³·343 m/s.

## Plane, Spherical, and Cylindrical Radiation Boundary Conditions

Specify a **Plane Wave Radiation**, **Spherical Wave Radiation**, or **Cylindrical Wave Radiation** boundary condition to allow an outgoing wave to leave the modeling domain with minimal reflections. The condition can be adapted to the geometry of the modeling domain. The **Plane** wave type is suitable for both far-field boundaries and ports.

Because many waveguide structures are only interesting in the plane-wave region, it is particularly relevant for ports.

**Radiation** boundary conditions are available for all types of studies. For the frequency domain study, Givoli and Neta's reformulation of the Higdon conditions (Ref. 1) for plane waves has been implemented to the second order. For **Cylindrical** and **Spherical** waves COMSOL uses the corresponding 2nd-order expressions from Bayliss, Gunzburger, and Turkel (Ref. 2). The Eigenfrequency study implement the same expansions to the first order.

The first-order radiation boundary conditions in the frequency domain read

$$-\mathbf{n} \cdot \left(-\frac{1}{\rho_c} (\nabla p_t - \mathbf{q})\right) + (ik + \kappa(r)) \frac{p}{\rho_c} = (ik + \kappa(r)) \frac{p_i}{\rho_c} + \mathbf{n} \cdot \left(\frac{\nabla p_i}{\rho_c}\right)$$

where *k* is the wave number and  $\kappa(r)$  is a function whose form depends on the wave type:

- Plane wave:  $\kappa(r) = 0$  (see Plane Wave Radiation)
- Cylindrical wave:  $\kappa(r) = 1/(2r)$  (see Cylindrical Wave Radiation)
- Spherical wave:  $\kappa(r) = 1/r$  (see Spherical Wave Radiation)

In the cylindrical and spherical wave cases, *r* is the shortest distance from the point  $\mathbf{r} = (x, y, z)$  on the boundary to the source. The right-hand side of the equation represents an optional incoming pressure field  $p_i$  (see Incident Pressure Field).

The second order radiation boundary conditions in the frequency domain are defined below. In these equations,  $\Delta_{T}$  at a given point on the boundary denotes the Laplace operator in the tangent plane at that particular point.

Plane wave:

$$-\mathbf{n}\cdot\left(-\frac{1}{\rho_c}(\nabla p_t - \mathbf{q})\right) + i\frac{k}{\rho_c}p + \frac{i}{2k\rho_c}\Delta_{\mathrm{T}}p = \frac{i}{2k\rho_c}\Delta_{\mathrm{T}}p_i + i\frac{k}{\rho_c}p_i + \mathbf{n}\cdot\frac{1}{\rho_c}\nabla p_i$$

In the notation of Givoli and Neta (Ref. 1), the above expressions correspond to the parameter choices  $C_0 = C_1 = C_2 = \omega/k$ . For normally incident waves this gives a vanishing reflection coefficient.

• Cylindrical wave:

This boundary condition is based on a series expansion of the outgoing wave in cylindrical coordinates (Ref. 2), and it assumes the field is independent of the axial coordinate. Specify the axis of this coordinate system by giving an orientation

 $(n_x, n_y, n_z)$  and a point  $(x_0, y_0, z_0)$  on the axis. In axisymmetric geometries the symmetry axis is the natural and only choice.

• Spherical wave:

$$\begin{split} -\mathbf{n} \cdot \left( -\frac{1}{\rho_c} (\nabla \mathbf{p}_t - \mathbf{q}) \right) + \left( ik_{eq} + \frac{1}{r} \right) \frac{p}{\rho_c} - \frac{r \Delta_{\mathrm{T}} p}{2\rho_c (ik_{eq}r + 1)} \\ &= -\frac{r \Delta_{\mathrm{T}} p_{\mathrm{i}}}{2\rho_{0c} (ik_{eq}r + 1)} + \left( ik_{eq} + \frac{1}{r} \right) \frac{p_{\mathrm{i}}}{\rho_c} + \mathbf{n} \cdot \frac{1}{\rho_c} \nabla p_{\mathrm{i}} \end{split}$$

Use this option to allow a radiated or scattered wave—emanating from an object centered at the point  $(x_0, y_0, z_0)$  that is specified—to leave the modeling domain without reflections. The boundary condition is based on an expansion in spherical coordinates from Bayliss, Gunzburger, and Turkel (Ref. 2), implemented to the second order.

## Plane Wave Radiation

The **Plane Wave Radiation** node adds a radiation boundary condition for a plane wave (see Plane, Spherical, and Cylindrical Radiation Boundary Conditions for equations). If required, right-click the main node to add an Incident Pressure Field.



Acoustics of a Muffler: Model Library path COMSOL_Multiphysics/ Acoustics/automotive_muffler

## **BOUNDARY SELECTION**

From the Selection list, choose the boundaries to use a plane wave radiation condition.

## Spherical Wave Radiation

The **Spherical Wave Radiation** feature adds a radiation boundary condition for a spherical wave, for which you define the source location (see Plane, Spherical, and Cylindrical Radiation Boundary Conditions for equations). If required, right-click the main node to add an Incident Pressure Field.

#### **BOUNDARY SELECTION**

From the **Selection** list, choose the boundaries to use a spherical wave radiation condition.

#### SPHERICAL WAVE RADIATION

Enter coordinates for the **Source location**  $r_0$  (SI unit: m).

## Cylindrical Wave Radiation

The **Cylindrical Wave Radiation** feature adds a radiation boundary condition for a cylindrical wave, for which you define the source location and the source axis direction (see Plane, Spherical, and Cylindrical Radiation Boundary Conditions for equations). If required, right-click the main node to add an Incident Pressure Field.

#### **BOUNDARY SELECTION**

From the **Selection** list, choose the boundaries to use a cylindrical wave radiation condition.

#### CYLINDRICAL WAVE RADIATION

Enter coordinates for the **Source location**  $r_0$  (SI unit: m) and the **Source axis** direction  $r_{axis}$  (unitless).

## Periodic Condition

The Periodic Condition feature adds a periodic boundary condition.

## BOUNDARY SELECTION

From the **Selection** list, choose the boundaries to define a periodic boundary condition. The software automatically identifies the boundaries as either source boundaries or destination boundaries.



This feature works well for cases like opposing parallel boundaries. In other cases use a **Destination Selection** subnode to control the destination. By default it contains the selection that COMSOL Multiphysics identifies.

## PERIODICITY SETTINGS

Select a Type of periodicity—Continuity (the default), Antiperiodicity, Floquet periodicity, or Cyclic symmetry.

If Floquet Periodicity is selected, enter a k-vector for Floquet periodicity k_F (SI unit: rad/m) for the x, y, and z coordinates (3D models), or the r and z coordinates (2D axisymmetric models), or x and y coordinates (2D models).

- If Cyclic symmetry is selected, select a Sector angle—Automatic (the default), or User defined. If User defined is selected, enter a value for  $\theta_{\rm S}$  (SI unit: rad). For any selection, also enter a Mode number m (unitless).
- Periodic Condition
   Destination Selection
   Using Periodic Boundary Conditions
   Periodic Boundary Condition Example

## Incident Pressure Field

The **Incident Pressure Field** node is a subnode to all non reflecting boundary conditions (plane, cylindrical, or spherical wave radiation, for example). Add this node by right-clicking the boundary condition and selecting **Incident Pressure Field**. If the incident pressure field is a predefined plane wave, it is of the type:

$$p_{i} = p_{0}e^{-i(\mathbf{k}\cdot\mathbf{r})} = p_{0}e^{-ik_{cq}\left(\frac{\mathbf{r}\cdot\mathbf{e}_{k}}{\|\mathbf{e}_{k}\|}\right)}$$

where  $p_0$  is the wave amplitude, **k** is the wave vector (with amplitude  $k_{eq} = |\mathbf{k}|$  and wave direction vector  $\mathbf{e}_k$ ), and **r** is the location on the boundary. The incident pressure field can also be a user-defined value or expression.

## **BOUNDARY SELECTION**

From the **Selection** list, choose the boundaries to include an incident pressure field  $p_i$  in the boundary condition. By default, this feature node inherits the selection from its parent node, and only a selection that is a subset of the parent node's selection can be used.

#### INCIDENT PRESSURE FIELD

From the **Incident pressure field type** list, select **Plane wave** to define an incident pressure field of plane wave type. Enter a **Pressure amplitude**  $p_0$  (SI unit: Pa) and **Wave direction e**_k (SI unit: m).

Select User defined to enter the expression for the **Incident pressure field**  $p_i$  (SI unit: Pa) as a function of space. The default is 0.

The **Interior Sound Hard Boundary (Wall)** node adds a boundary condition for a sound hard boundary or wall on interior boundaries. A sound-hard boundary is a boundary at which the normal component of the acceleration is zero:

$$-\mathbf{n} \cdot -\left(\frac{1}{\rho_c}(\nabla p - \mathbf{q})\right)_1 = 0 \qquad -\mathbf{n} \cdot \left(\left(-\frac{1}{\rho_c}(\nabla p - \mathbf{q})\right)_2 = 0$$

For zero dipole charge and constant fluid density, this means that the normal derivative of the pressure is zero at the boundary.

## BOUNDARY SELECTION

From the **Selection** list, choose the interior boundaries to define as sound hard boundaries (wall).

Axial Symmetry



The **Axial Symmetry** node is a default node added for all 1D and 2D axisymmetric models. The boundary condition is active on all boundaries on the symmetry axis.

## BOUNDARY SELECTION



The boundaries section shows on which boundaries the feature is active. All boundaries on the symmetry axis are automatically selected.

# Continuity

**Continuity** is available as an option at interfaces between parts in a pair.

**Q** See Also • Identity and Contact Pairs

• Specifying Boundary Conditions for Identity Pairs

This condition gives continuity in pressure and in the normal acceleration over the pair (subscripts 1 and 2 in the equation refer to the two sides in the pair):

$$-\mathbf{n} \cdot \left[ -\left(\frac{1}{\rho_c} (\nabla p_t - \mathbf{q})\right)_1 - \left(-\frac{1}{\rho_c} (\nabla p_t - \mathbf{q})\right)_2 \right] = 0 \text{ boundary selection}$$



This list cannot be edited. It shows the boundaries in the selected pairs.

#### PAIR SELECTION

When **Continuity** is selected from the **Pairs** menu, choose the pair to define. An identity pair has to be created first. Ctrl-click to deselect.

#### CONSTRAINT SETTINGS

To display this option, click the Show button ( ) and select Advanced Physics Options. Select a Constraint type—Bidirectional, symmetric or Unidirectional. If required, select the Use weak constraints check box.

# The Chemical Species Transport Branch

This chapter explains how to use the Transport of Diluted Species interface, found under the **Chemical Species Transport** branch (2010) in the Model Wizard, to model and simulate mass transfer by diffusion and convection based on Fick's law of diffusion.

In this chapter:

- Theory for the Transport of Diluted Species Interface
- The Transport of Diluted Species Interface

# Theory for the Transport of Diluted Species Interface

The Transport of Diluted Species Interface provides a predefined modeling environment for studying the evolution of chemical species transported by diffusion and convection. The interface assumes that all species present are dilute; that is, that their concentration is small compared to a solvent fluid or solid. As a rule of thumb, a mixture containing several species can be considered dilute when the concentration of the solvent is more than 90 mol%. Due to the dilution, mixture properties such as density and viscosity can be assumed to correspond to those of the solvent.

Fick's law governs the diffusion of the solutes dilute mixtures or solutions. The Transport of Diluted Species interface supports the simulation of chemical species transport by convection and diffusion in 1D, 2D, and 3D as well as for axisymmetric models in 1D and 2D. In this section:

- Mass Balance Equation
- Convective Term Formulation
- Solving a Diffusion Equation Only

#### Mass Balance Equation

The default node attributed to The Transport of Diluted Species Interface assumes chemical species transport through diffusion and convection and implements the mass balance equation:

$$\frac{\partial c}{\partial t} + \mathbf{u} \cdot \nabla c = \nabla \cdot (D \nabla c) + R \tag{11-1}$$

Equation 11-1 includes these quantities (with the SI unit in parentheses):

- *c* is the concentration of the species  $(mol/m^3)$
- *D* denotes the diffusion coefficient  $(m^2/s)$
- *R* is a reaction rate expression for the species  $(mol/(m^3 \cdot s))$
- **u** is the velocity vector (m/s)

The first term on the left-hand side of Equation 11-1 corresponds to the accumulation (or indeed consumption) of the species.

The second term accounts for the convective transport due to a velocity field **u**. This field can be expressed analytically or be obtained from coupling this physics interface to one that describes fluid flow (momentum balance). To include convection in the mass balance equation, an expression that includes the spatial and time variables, or else the velocity vector component variable names from a fluid flow interface can be entered into the appropriate field. The velocity fields from existing fluid flow interfaces are available directly as predefined fields.

On the right-hand side of the mass balance equation (Equation 11-1), the first term describes the diffusion transport, accounting for interaction between the dilute species and the solvent. A field for the *diffusion coefficient* is available in the interface and any equation that relates to another variable, such as temperature, can be entered there. The node has a matrix that is used to describe the diffusion coefficient, if it is vectorized or is a tensor. Anisotropic diffusion can therefore be simulated here.

Finally, the second term on the right-hand side of Equation 11-1 represents a source or sink term, typically due to a chemical reaction. In order for the chemical reaction to be specified, another node must be added to the Transport of Diluted Species interface—the Reaction node, which has a field to specify a reaction equation using the variable names of all participating species.

With the Chemical Reaction Engineering Module, and if the Reaction Engineering interface has been added to set up the mass balance, then the reaction equations show up in this node.

# Convective Term Formulation

<mark>т</mark>р

The default node attributed to The Transport of Diluted Species Interface assumes chemical species transport through diffusion and convection and implements the mass balance equation in Equation 11-1.

There are two ways to present a mass balance where chemical species transport occurs through diffusion and convection. These are the non-conservative and conservative formulations of the convective term:

non-conservative: 
$$\frac{\partial c}{\partial t} + \mathbf{u} \cdot \nabla c = \nabla \cdot (D\nabla c) + R$$
 (11-2)

conservative: 
$$\frac{\partial c}{\partial t} + \nabla \cdot (c\mathbf{u}) = \nabla \cdot (D\nabla c) + R$$
 (11-3)

and each is treated slightly differently by the solver algorithms. In these equations D (SI unit: m²/s) is the diffusion coefficient, R (SI unit: mol/(m³·s)) is a production or consumption rate expression, and **u** (SI unit: m/s) is the solvent velocity field. The diffusion process can be anisotropic, in which case D is a tensor.

If the conservative formulation is expanded using the chain rule, then one of the terms from the convection part,  $c\nabla \cdot \mathbf{u}$ , would equal zero for an incompressible fluid and would result in the non-conservative formulation above. This is in fact the default formulation in this interface and ensures that nonphysical source terms cannot come from the solution of a flow field.



To switch between the two formulations, click the **Show** button ( $\blacktriangleright_{\overline{\infty}}$ ) and select **Advanced Physics Options**. See Show Advanced Physics Options for information.

# Solving a Diffusion Equation Only

Remove the convection term from Equation 11-2 and Equation 11-3 by clearing the **Convection** check box in the **Transport Mechanisms** section for The Transport of Diluted Species Interface. The equation then becomes

$$\frac{\partial c}{\partial t} = \nabla \cdot (D \nabla c) + R$$

# The Transport of Diluted Species Interface

Mass transfer is an important part of chemical engineering because this is the field that considers the conversion of one type of substance into another. A lot of this occurs through chemical reactions, although separation and other unit operations are an important part. You can use the Transport of Diluted Species interface to model transport of a diluted species in chemical systems by convection and diffusion.

In the Transport of Diluted Species interface, Fick's law describes the diffusive transport in the flux vector. Fick's law is adequate when the diffusing species is dilute with respect to a solvent. Assuming a binary mixture of solute A in solvent B, concentrations of up to 10 mol% of A can be considered dilute.



Other optional modules have an extension of the physics for modeling multicomponent convection, diffusion, and migration (electrokinetic flow).

The **Transport of Diluted Species** interface (**SP**), found under the **Chemical Species Transport** branch (**SPP**) in the **Model Wizard**, has the equations, boundary conditions, and rate expression terms for modeling mass transport of diluted species in mixtures, solutions, and solids, solving for the species concentration. This interface is applicable for solutions (either fluid or solid) where the transported species have concentrations at least one order of magnitude less than the solvent. The settings for this physics interface can be chosen so as to simulate chemical species transport through diffusion (Fick's law) and convection (when coupled to fluid flow).

The interface supports simulation of transport by convection and diffusion in 1D, 2D, and 3D as well as for axisymmetric models in 1D and 2D. The dependent variable is the molar concentration, c.

When this interface is added, these default nodes are also added to the Model Builder— Convection and Diffusion, No Flux, and Initial Values. Right-click the Transport of Diluted **Species** node to add other features with appropriate boundary conditions and rate expression terms.



g

Tīb

- Effective Diffusivity in Porous Materials: Model Library path COMSOL_Multiphysics/Diffusion/effective_diffusivity
- Thin-Layer Diffusion: Model Library path COMSOL_Multiphysics/ Diffusion/thin_layer_diffusion

#### INTERFACE IDENTIFIER

The interface identifier is a text string that can be used to reference the respective physics interface if appropriate. Such situations could occur when coupling this interface to another physics interface, or when trying to identify and use variables defined by this physics interface, which is used to reach the fields and variables in expressions, for example. It can be changed to any unique string in the **Identifier** field.

The default identifier (for the first interface in the model) is chds.

#### DOMAIN SELECTION

The default setting is to include **All domains** in the model to define the dependent variables and the equations. To choose specific domains, select **Manual** from the **Selection** list.

There may be a domain in the model that is not described by mass transfer, such as a reactor's solid wall. In this case, remove that domain selection from here.

#### TRANSPORT MECHANISMS

Control which of the following transport mechanism are to be included in the model:

- Diffusion is always included.
- Convection is active by default. To model using the diffusion equation only, clear the **Convection** check box.



The species are dependent variables, and their names must be unique with respect to all other dependent variables in the model.

#### ADVANCED SETTINGS

To display this section, click the **Show** button (**>**, and select **Advanced Physics Options**. Normally these settings do not need to be changed.Select a **Convective term**— **Non-conservative** or **Conservative**. The conservative formulation should be used for a compressible flow.



Convective Term Formulation

#### DISCRETIZATION

To display this section, click the **Show** button (**)** and select **Discretization**. Select an element order for the **Concentration—Linear** (the default), **Quadratic**, **Cubic**, or **Quartic**. Specify the **Value type when using splitting of complex variables—Real** or **Complex** (the default).

#### CONSISTENT AND INCONSISTENT STABILIZATION

To display these sections, click the **Show** button ( $rac{1}{2}$ ) and select **Stabilization**. Any settings unique to this interface are listed below.

- When the **Crosswind diffusion** check box is selected, the **Lower gradient limit**  $g_{lim}$  (SI unit: mol/m⁴) field defaults to 0.1[mol/m³)/chds.helem, where chds.helem is the local element size.
- For both consistent stabilization methods, select an **Equation residual**. Approximate **residual** is the default setting and it means that derivatives of the diffusion tensor

components are neglected. This setting is usually accurate enough and is faster to compute. If required, select **Full residual** instead.

- Show More Physics Options
  - Domain, Boundary, and Pair Features for the Transport of Diluted Species Interface



• Theory for the Transport of Diluted Species Interface

Domain, Boundary, and Pair Features for the Transport of Diluted Species Interface

The Transport of Diluted Species Interface has these domain, boundary, and pair features available and listed in alphabetical order.

- Concentration
- Dynamic Transport Feature Node
- Flux
- Flux Discontinuity
- Inflow
- Initial Values
- Reactions
- No Flux (the default boundary condition)
- Open Boundary
- Outflow
- Periodic Condition
- Symmetry
- Thin Diffusion Barrier



For axisymmetric models, COMSOL Multiphysics takes the axial symmetry boundaries (at r = 0) into account and automatically adds an **Axial Symmetry** node to the model that is valid on boundaries that represent the symmetry axis.

Q See Also	<ul> <li>Continuity on Interior Boundaries</li> <li>Identity and Contact Pairs</li> <li>Specifying Boundary Conditions for Identity Pairs</li> </ul>
₩ Tip	A boundary pair occurs when the solutions on two separate surfaces within a simulation are related (such as when two components in an assembly are touching)

To locate and search all the documentation, in COMSOL, select **Help>Documentation** from the main menu and either enter a search term or look under a specific module in the documentation tree.

# Dynamic Transport Feature Node

This node is dynamic in that it is dependent on the transport mechanisms that have been chosen in the **Transport of Diluted Species** interface (convection and diffusion), and includes only the input fields required by the activated transport mechanisms. It has all the equations defining the transport of diluted species as well as inputs for the material properties. The name of the node also changes the activated transport mechanisms, and can be one of the following:

• Diffusion

<mark>т</mark>р

• Convection and Diffusion

#### DOMAIN SELECTION

From the **Selection** list, choose the domains to define material properties and other parameters that govern the transport equations.



If there is more than one type of domain, with different material properties, it may be necessary to deselect these domains. These are then defined in an additional **Convection and Diffusion** node.

#### MODEL INPUTS

If transport by convection is active the velocity field of the solvent needs to be specified as a model input.

Select the source of the Velocity field u:

- Select User defined to enter values or expressions for the velocity components (SI unit: m/s) in the fields or table that appears below the drop-down menu. This input option is always available.
- Select the velocity field solved by a fluid flow physics interface that has also been added to the model. These physics interfaces have their own tags or Interface Identifier, and they are available to choose in the Velocity field drop-down menu, if they are also active in the domains being defined here. This lists the variable names related to the fluid flow physics interface in the table underneath the drop-down menu.

#### COORDINATE SYSTEM SELECTION

The **Global coordinate system** is selected by default. The **Coordinate system** list contains any additional coordinate systems that the model includes (except boundary coordinate systems). The coordinate system is used for interpreting directions for an anisotropic diffusion coefficient.

#### DIFFUSION

Enter the **Diffusion coefficient**  $D_c$  (SI unit: m²/s), which can be a scalar value for isotropic diffusion or a tensor describing anisotropic diffusion. Select the appropriate tensor type that describes the diffusion transport, and then enter the values in the corresponding field.

### Reactions

Use the **Reactions** node to account for the consumption or production of species. Define the rate expression as required, which display on the right-hand side of the species transport equations in the **Convection and Diffusion** node. In other words, these two nodes are integrated.

#### DOMAIN SELECTION

From the **Selection** list, choose the domains to define rate expression that govern the source term in the transport equations.



If there is more than one type of domain, with subsequent and different reactions occurring within them, it may be necessary to remove these domains from the selection. These are then defined in an additional **Reactions** node.

#### REACTIONS

Add a rate expression,  $R_c$  (SI unit: mol/(m³·s)), for the species to be solved for. Enter a value or expression in the field.

# Initial Values

The **Initial Values** node adds the initial values for the concentration of each species to be specified. These serve as an initial guess for a stationary solver or as an initial condition for a transient simulation.

#### DOMAIN SELECTION

From the Selection list, choose the domains to define an initial value.



If there is more than one type of domain, each with different initial values defined, it may be necessary to remove these domains from the selection. These are then defined in an additional **Initial Values** node.

#### INITIAL VALUES

Enter a value or expression for the initial value of the concentration c, in the **Concentration** field. The default value is 0 mol/m³.

#### Concentration

The **Concentration** boundary node adds a boundary condition for the species concentration. For example, a  $c = c_0$  condition specifies the concentration of species c.

#### **BOUNDARY SELECTION**

From the **Selection** list, choose the boundaries to apply the concentration boundary condition.

#### PAIR SELECTION

If **Concentration** is selected from the **Pairs** menu, choose the pair to define. An identity pair has to be created first. Ctrl-click to deselect.

#### CONCENTRATION

Specify the concentration for each species individually. Select the check box for the **Species** to specify the concentration, and then enter a value or expression in the corresponding field. To use another boundary condition for a specific species, click to clear the check box for that species' concentration.

#### CONSTRAINT SETTINGS

To display this section, click the Show button ( $\succ_{\overline{o}}$ ) and select Advanced Physics Options. Select a Constraint type—Bidirectional, symmetric or Unidirectional. If required, select the Use weak constraints check box.

## Flux

The **Flux** node can be used to specify the total species flux across a boundary. The total flux of species *c* is defined accordingly:

$$-\mathbf{n} \cdot (c\mathbf{u} - D\nabla c) = N_0$$

where  $N_0$  is an arbitrary user-specified flux expression (SI unit: mol/(m²·s)). For example,  $N_0$  can represent a flux into a much larger surrounding environment, a phase change, or a flux due to chemical reactions.

When diffusion is the only transport mechanism present, the flux condition is extended to include a mass transfer term to describe flux into a surrounding environment:

$$-\mathbf{n} \cdot (-D\nabla c) = N_0 + k_c(c_b - c)$$

where  $k_c$  is a mass transfer coefficient (SI unit: m/s), and  $c_b$  is the concentration (SI unit: mol/m³) in the surroundings of the modeled system (the bulk concentration). The mass transfer coefficient is to be specified, often given by boundary-layer theory.

#### **BOUNDARY SELECTION**

From the Selection list, choose the boundaries to apply a flux boundary condition.

#### INWARD FLUX

Specify the flux of each species individually. Select the check box for the **Species** to specify the flux, and enter a value or expression in the corresponding field. To use another boundary condition for a specific species, click to clear the check box for that species' mass fraction.

# Umportant

Use a minus sign appropriately when specifying a flux leaving the system.

## Inflow

The **Inflow** node adds a boundary condition for an inflow boundary, where the concentration of all species  $c = c_0$  is specified. This condition is similar to the **Concentration** feature, except the concentrations of all species must be specified.

#### **BOUNDARY SELECTION**

From the **Selection** list, choose the boundaries to apply an inflow boundary condition.

#### CONCENTRATION

Enter a value or expression for the concentration of each species (SI unit:  $mol/m^3$ ).

#### CONSTRAINT SETTINGS

To display this section, click the Show button ( $r_{\odot}$ ) and select Advanced Physics Options. Select a Constraint type—Bidirectional, symmetric or Unidirectional. If required, select the Use weak constraints check box.

## No Flux

The **No Flux** node, which is the default boundary condition on exterior boundaries, represents boundaries where no mass flows in or out of this boundary, such that the total flux is zero:

$$-\mathbf{n} \cdot (c\mathbf{u} - D\nabla c) = N_0$$

#### **BOUNDARY SELECTION**

From the Selection list, choose the boundaries to apply a no-flux boundary condition.

#### NO FLUX

Select **Apply for all species** to specify that the boundary is completely impervious for all species. If **Apply for...** is selected, click to select the check box for the species to specify the condition.

Outflow



In models where only diffusion occurs, this boundary condition is not available.

Set the **Outflow** condition at outlets where species are transported out of the model domain by a fluid flow. It is assumed that convection is the dominating transport mechanism across the outflow boundary, and therefore that diffusive transport can be ignored, that is:

#### $\mathbf{n} \cdot (-D\nabla c) = 0$

#### **BOUNDARY SELECTION**

From the Selection list, choose the boundaries to apply an outflow boundary condition.

#### Symmetry

The **Symmetry** node can be used to represent boundaries where the concentration of species is symmetric, that is, where there is no mass flux in the normal direction across the boundary.

This boundary condition is identical to that of the **No Flux** feature, but applies to all species and cannot be applied to individual species.

#### BOUNDARY SELECTION

From the Selection list, choose the boundaries to apply a symmetry condition.

The **Flux Discontinuity** node represents a discontinuity in the mass flux across an interior boundary:

$$-\mathbf{n} \cdot (\mathbf{N}_{d} - \mathbf{N}_{u}) = N_{0} \qquad \mathbf{N} = (c\mathbf{u} - D\nabla c)$$

where the value  $N_0$  (SI unit: mol/(m²·s)) specifies the jump in flux evaluated the boundary. This boundary condition is only available on interior boundaries.

#### **BOUNDARY SELECTION**

From the **Selection** list, choose the interior boundaries to apply a flux discontinuity boundary condition.

#### PAIR SELECTION

If **Flux Discontinuity** is selected from the **Pairs** menu, choose the pair to define. An identity pair has to be created first. Ctrl-click to deselect.

## FLUX DISCONTINUITY

Specify the jump in species mass flux.



Use a positive value for increasing flux when going from the downside to the upside of the boundary. The boundary normal points in the direction from the downside to the upside of an interior boundary and can be plotted for visualization.

Select the check boxes for the species to specify a flux discontinuity, and enter a value or expression for the mass flux jump in the corresponding field. To use a different boundary condition for a specific species, click to clear the check box for that species' flux discontinuity.

## Periodic Condition

The **Periodic Condition** node can be used to define periodicity or antiperiodicity between two boundaries. The feature can be activated on more than two boundaries, in which case the feature tries to identify two separate surfaces that can each consist of several connected boundaries. For more complex geometries it might be necessary to use the **Destination Selection** subnode. With this subnode the boundaries that constitute the source and destination surfaces can be manually specified. To add the subnode, right-click the **Periodic Condition** node and select **Destination Selection**.

#### **BOUNDARY SELECTION**

From the Selection list, choose the boundaries to apply a periodic condition.

#### PERIODIC CONDITION

Select a Type of periodicity—Continuity or Antiperiodicity.

Select a **Constraint type—Bidirectional, symmetric** or **Unidirectional**. If required, select the **Use weak constraints** check box.

• Periodic Condition



B

Tib

- Destination Selection
- Using Periodic Boundary Conditions
- Periodic Boundary Condition Example

# Open Boundary

Use the **Open Boundary** node to set up mass transport across boundaries where both convective inflow and outflow can occur. Use this boundary condition to specify an exterior species concentration on parts of the boundary where fluid flows into the domain. A condition equivalent to the **Outflow** feature applies to parts of the boundary where fluid flows out of the domain.

The direction of the flow across the boundary is typically calculated by a **Fluid Flow** branch interface and is provided as a model input to the Transport of Diluted Species interface.

#### BOUNDARY SELECTION

From the Selection list, choose the boundaries to apply the open boundary condition.

#### EXTERIOR CONCENTRATION

Enter a value or expression for the **Exterior concentration**  $c_{0,c}$  (SI unit: mol/m³).

# Thin Diffusion Barrier

Use the **Thin Diffusion Barrier** boundary condition to model a thin layer through which mass is transported by diffusion only. To set up the node, specify the layer thickness and a diffusion coefficient for each transported species.

#### **BOUNDARY SELECTION**

From the Selection list, choose the boundaries to apply the thin diffusion barrier.

#### PAIR SELECTION

When **Thin Diffusion Barrier** is selected from the **Pairs** menu, choose the **Pairs** to define. An identity pair has to be created first. Ctrl-click to deselect.



A No Flux node is added by default. Right-click to add other pair nodes.

#### THIN DIFFUSION BARRIER

Enter a Layer thickness  $d_s$  (SI unit: m). The default is 0.005 m.

Enter a **Diffusion coefficient**  $D_{s,c}$  (SI unit: mol/(m³·s)). The default is 0.

# 12

# The Fluid Flow Branch

In this chapter:

- Theory for the Laminar Flow Interface
- The Laminar Flow Interface

# Theory for the Laminar Flow Interface

The Laminar Flow Interface theory is described in this section:

- General Single-Phase Flow Theory
- Compressible Flow
- The Mach Number Limit
- Incompressible Flow
- The Reynolds Number
- Numerical Stability-Stabilization Techniques for the Fluid Flow Interfaces
- · Pseudo Time Stepping for Laminar Flow Models
- The Projection Method for the Navier-Stokes Equations
- The Boussinesq Approximation
- Theory for the Slip Wall Boundary Condition
- Theory for the Sliding Wall Boundary Condition
- Prescribing Inlet and Outlet Conditions
- Theory for the Pressure, No Viscous Stress Boundary Condition
- Theory for the Normal Stress Boundary Condition
- Discontinuous Galerkin Formulation
- Particle Tracing in Fluid Flow
- · References for the Single-Phase Flow, Laminar Flow Interfaces



The Laminar Flow interface has many shared features that are only available with some modules. For the theory relating to the advanced features, see the individual module documentation.

# General Single-Phase Flow Theory

The single-phase fluid-flow interfaces are based on the Navier-Stokes equations, which in their most general form read

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = \mathbf{0} \tag{12-1}$$

$$\rho \frac{\partial \mathbf{u}}{\partial t} + \rho(\mathbf{u} \cdot \nabla)\mathbf{u} = \nabla \cdot [-p\mathbf{I} + \tau] + \mathbf{F}$$
(12-2)

$$\rho C_p \left( \frac{\partial T}{\partial t} + (\mathbf{u} \cdot \nabla) T \right) = -(\nabla \cdot \mathbf{q}) + \tau \cdot \mathbf{S} - \frac{T}{\rho} \frac{\partial \rho}{\partial T} \bigg|_p \left( \frac{\partial p}{\partial t} + (\mathbf{u} \cdot \nabla) p \right) + Q \quad (12-3)$$

where

- $\rho$  is the density (SI unit: kg/m³)
- **u** is the velocity vector (SI unit: m/s)
- *p* is pressure (SI unit: Pa)
- $\tau$  is the viscous stress tensor (SI unit: Pa)
- **F** is the volume force vector (SI unit:  $N/m^3$ )
- $C_p$  is the specific heat capacity at constant pressure (SI unit: J/(kg·K))
- *T* is the absolute temperature (SI unit: K)
- **q** is the heat flux vector (SI unit:  $W/m^2$ )
- Q contains the heat sources (SI unit: W/m³)
- **S** is the strain-rate tensor:

$$\mathbf{S} = \frac{1}{2} (\nabla \mathbf{u} + (\nabla \mathbf{u})^T)$$

The operation ":" denotes a contraction between tensors defined by

$$\mathbf{a}:\mathbf{b} = \sum_{n} \sum_{m} a_{nm} b_{nm} \tag{12-4}$$

This is sometimes referred to as the double dot product.

Equation 12-1 is the continuity equation and represents the conservation of mass. Equation 12-2 is a vector equation and represents the conservation of momentum. Equation 12-3 describes the conservation of energy, formulated in terms of temperature. This is an intuitive formulation that facilitates boundary condition specification.

To close the equation system Equation 12-1 through Equation 12-3, some constitutive relations are needed. A common relation is derived by assuming that the

fluid is Newtonian. Together with Stokes' assumption, the viscous stress tensor becomes:

$$\tau = 2\mu \mathbf{S} - \frac{2}{3}\mu (\nabla \cdot \mathbf{u})\mathbf{I}$$
(12-5)

The dynamic viscosity  $\mu$  (SI unit: Pa·s) is allowed to depend on the thermodynamic state but not on the velocity field. All gases and many liquids can be considered Newtonian. Examples of non-Newtonian fluids are honey, mud, blood, liquid metals, and most polymer solutions.

When you have the CFD Module or the Microfluidics Module, you can model flows of non-Newtonian fluids using the predefined power law and Carreau models, which describes the dynamic viscosity for non-Newtonian fluids.

The Heat Transfer Module treats all fluids as Newtonian according to Equation 12-5.

Other commonly used constitutive relations are Fourier's law of heat conduction and the ideal gas law.

In theory, the same equations describe laminar as well as turbulent flows. In practice, however, the mesh resolution required to simulate turbulence with the Laminar Flow interface makes such an approach impractical.

There are several books where derivations of the Navier-Stokes equations and detailed explanations of concepts such as Newtonian fluids and the Stokes assumption are found. See, for example, the classical text by Batchelor (Ref. 1) and the more recent work by Panton (Ref. 2).

Many applications describe isothermal flows where Equation 12-3 is decoupled from Equation 12-1 and Equation 12-2.

If you have the Heat Transfer Module, the temperature equation is described in the section The Heat Equation found in the Heat Transfer Theory chapter.



2

See Also

<mark>т</mark>р

The Navier-Stokes equations solved by default in all single-phase flow interfaces are the compressible formulation of the continuity:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0 \tag{12-6}$$

and the momentum equations:

$$\rho \frac{\partial \mathbf{u}}{\partial t} + \rho \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \nabla \cdot \left( \mu (\nabla \mathbf{u} + (\nabla \mathbf{u})^T) - \frac{2}{3} \mu (\nabla \cdot \mathbf{u}) \mathbf{I} \right) + \mathbf{F}$$
(12-7)

These equations are applicable for incompressible as well as compressible flows where the density varies.

#### The Mach Number Limit

An important dimensionless number in fluid dynamics is the Mach number, Ma, defined by

Ma = 
$$\frac{|\mathbf{u}|}{a}$$

where a is the speed of sound. A flow is formally incompressible when Ma = 0. This is theoretically achieved by letting the speed of sound tend to infinity. The Navier-Stokes equations then have the numerical property that a disturbance anywhere in the computational domain is instantaneously spread to the entire domain. This results in a parabolic equation system.

The fully compressible Navier-Stokes equations, Equation 12-1 through Equation 12-3, have a finite speed of sound and hence a Mach number larger than zero. This has no numerical significance as long as the Mach number is well below one. However, when the Mach number approaches unity, the equations turn from parabolic to hyperbolic. When this happens, the numerical properties of the equation change, one of several implications being that the boundary conditions used for incompressible Navier-Stokes equations become invalid. The compressible formulation of the laminar and turbulent interfaces uses the same boundary conditions as the incompressible interfaces, which implies that the compressible interfaces cannot be used for flows with Mach number larger than or equal to one.

The practical Mach number limit is lower than one, however. The first reason for this is that the sound wave transport term that has been neglected in the heat equation.

This term becomes important already at moderate Mach numbers. The second reason is that already at moderate Mach number, the fully compressible Navier-Stokes equations start to display very sharp gradients. To handle these gradients, special numerical techniques are needed. It is impossible to give an exact limit where the low Mach number regime ends and the moderate Mach number regime begins, but a rule of thumb is that the Mach number effects start to appear at Ma = 0.3. For this reason the compressible formulation is referred to as *compressible flow (Ma<0.3)* in COMSOL.

# <mark>∎</mark> Tip

The CFD Module includes physics interfaces for modeling high Mach number compressible flows.

## Incompressible Flow

When the temperature variations in a flow are small, a single-phase fluid can often be assumed incompressible; that is,  $\rho$  is constant or nearly constant. This is the case for all liquids under normal conditions and also for gases at low velocities. For constant  $\rho$ , Equation 12-6 reduces to

$$\rho \nabla \cdot \mathbf{u} = 0 \tag{12-8}$$

and Equation 12-7 becomes

$$\rho \frac{\partial \mathbf{u}}{\partial t} + \rho(\mathbf{u} \cdot \nabla)\mathbf{u} = \nabla \cdot [-p\mathbf{I} + \mu(\nabla \mathbf{u} + (\nabla \mathbf{u})^{T})] + \mathbf{F}$$
(12-9)

### The Reynolds Number

Fundamental to the analysis of fluid flow is the Reynolds number:

Re= 
$$\frac{\rho UL}{\mu}$$

where U denotes a velocity scale, and L denotes a representative length. The Reynolds number represents the ratio between inertial and viscous forces. At low Reynolds numbers, viscous forces dominate and tend to damp out all disturbances, which leads to laminar flow. At high Reynolds numbers, the damping in the system is very low giving small disturbances the possibility to grow by nonlinear interactions. If the Reynolds number is high enough, the fluid flow field eventually ends up in a chaotic state called turbulence. The Navier-Stokes interface automatically calculates the local cell Reynolds number  $\operatorname{Re}^{c} = \rho |\mathbf{u}| h/(2\mu)$  using the element length *h* for *L* and the magnitude of the velocity vector *u* for the velocity scale *U*. The cell Reynolds number is a predefined quantity available for visualization and evaluation (typically it is available as: spf.cellRe).

# Numerical Stability—Stabilization Techniques for the Fluid Flow Interfaces

The momentum equations (Equation 12-7 and Equation 12-9) are (nonlinear) convection-diffusion equations. Such equations are unstable if discretized using the Galerkin finite element method. Stabilized finite element methods are therefore necessary in order to obtain physical solutions. The stabilization settings are found in the main fluid-flow features. To display this section, click the **Show** button ( $rac{1}{20}$ ) and select **Stabilization**.

There are three types of stabilization methods available for Navier-Stokes—*streamline diffusion*, *crosswind diffusion*, and *isotropic diffusion*. Streamline diffusion (GLS) and crosswind diffusion are consistent stabilization methods, whereas isotropic diffusion is an inconsistent stabilization method.

For optimal functionality, the exact weak formulations and constants of GLS and crosswind diffusion depend on the order of the basis functions (elements). The values of constants of GLS and crosswind diffusion follow Ref. 3 and Ref. 4.

In the COMSOL Multiphysics Reference Guide:

• Stabilization Techniques



- Numerical Stabilization
- Preconditioners for Iterative Solvers
- Isotropic Diffusion

#### STREAMLINE DIFFUSION

For strongly coupled systems of equations, the streamline diffusion must be applied to the whole system of equations, not only to each equation separately. These ideas were first explored by Hughes and Mallet (Ref. 5) and were later extended to Galerkin least-squares (GLS) applied to the Navier-Stokes equations (Ref. 6), which is the form

that COMSOL Multiphysics supports. The time-scale tensor is the diagonal tensor presented in Ref. 7.

Streamline diffusion is active by default because it is necessary when convection is the dominating part of the flow.

The unstabilized incompressible Navier-Stokes equations are subject to the Babuska-Brezzi condition, which states that the basis functions for the pressure must be of lower order than the basis functions for the velocity. If the incompressible Navier-Stokes equations are stabilized by GLS, it is possible to use equal-order interpolation. Hence, streamline diffusion is necessary when using first-order elements. This applies also if the model is solved using geometric multigrid (either as a solver or as a preconditioner) and at least one multigrid hierarchy level uses linear Lagrange elements.

#### CROSSWIND DIFFUSION

Crosswind diffusion can also be formulated for systems of equations, and when applied to the Navier-Stokes equations it becomes a shock-capturing operator. COMSOL supports the formulation in Ref. 6 with shock capturing viscosity taken from Ref. 8.

Incompressible flows do not contain shock waves, but crosswind diffusion is still useful for introducing extra diffusion in sharp boundary layers and shear layers that otherwise would require a very dense mesh to resolve.

The tuning parameter,  $C_k$ , controls the amount of crosswind diffusion introduced in the model. The recommended range for low Mach number flows and incompressible flows is  $0 < C_k < 1.0$  ( $C_k = 0$  means no diffusion at all). The value must not depend on space or time.

Crosswind diffusion is active by default as it makes it easier to obtain a solution even if the problem is fully resolved by the mesh.



Crosswind diffusion also enables the iterative solvers to use inexpensive presmoothers such as SSOR. If crosswind diffusion is deactivated, any SSOR solver preconditioners must be changed to the Vanka preconditioner.

#### ISOTROPIC DIFFUSION

Isotropic diffusion adds diffusion to the momentum equations of the Navier-Stokes equations The stability of the continuity equation is not improved.

A stationary formulation has per definition no time derivatives and Equation 12-9 reduces to:

$$\rho(\mathbf{u} \cdot \nabla)\mathbf{u} = \nabla \cdot [-p\mathbf{I} + \mu(\nabla \mathbf{u} + (\nabla \mathbf{u})^{T})] + \mathbf{F}$$
(12-10)

Solving Equation 12-10 requires a starting guess that is close enough to the final solution. If no such guess is at hand, the fully transient problem can be solved instead. This is, however, a rather costly approach in terms of computational time. An intermediate approach is to add a fictitious time derivative to Equation 12-10:

$$\rho \frac{\mathbf{u} - \operatorname{nojac}(\mathbf{u})}{\Delta \tilde{t}} + \rho(\mathbf{u} \cdot \nabla)\mathbf{u} = \nabla \cdot [-p\mathbf{I} + \mu(\nabla \mathbf{u} + (\nabla \mathbf{u})^{T})] + \mathbf{F}$$

where  $\Delta \tilde{t}$  is a *pseudo time step*. Since **u**-nojac(**u**) is always zero, this term does not affect the final solution. It does, however, affect the discrete equation system and effectively transforms a nonlinear iteration into a time step of size  $\Delta \tilde{t}$ .

Pseudo time stepping is not active per default. However, the pseudo time step  $\Delta t$  can be chosen individually for each element based on the local CFL number:

$$\Delta \tilde{t} = \text{CFL}_{\text{loc}} \frac{h}{|\mathbf{u}|}$$

where h is the mesh cell size. A small CFL number means a small time step. It is hence practical to start with a small CFL number and gradually increase it as the solution approaches steady state. If the automatic expression for CFL_{loc} is

$$1.3^{\min(\text{niterCMP}, 9)} +$$
  
if(niterCMP > 20, 9 · 1.3^{min(niterCMP - 20, 9)}, 0) + (12-11)  
if(niterCMP > 40, 90 · 1.3^{min(niterCMP - 40, 9)}, 0)

The variable niterCMP is the nonlinear iteration number. It is equal to one for the first nonlinear iteration.  $CFL_{loc}$  starts at 1.3 and increases with 30% each iteration until it reaches  $1.3^9 \approx 10.6$ . It remains there until iteration 20 where it starts to increase unit it reaches approximately 106. A final increase after iteration 40 then takes it to 1060.

The continuity equation has a time derivative only in the incompressible case and it can then be written as

$$\frac{\partial \rho}{\partial p} \frac{\partial p}{\partial t}$$

A pseudo time derivative can be written as

$$\frac{\partial \rho p - \operatorname{nojac}(p)}{\partial p} \frac{\Delta \tilde{t}}{\Delta \tilde{t}}$$

For incompressible flow, the following approximation is used:

$$\frac{\partial \rho}{\partial p} \approx \frac{0.1\rho}{1[\text{atm}]}$$

while for compressible flows

$$\frac{\partial \rho}{\partial p} \approx \mathrm{if}\left(\frac{\partial \rho}{\partial p} = 0, \frac{0.1\rho}{1[\mathrm{atm}]}, \frac{\partial \rho}{\partial p}\right)$$

Equation 12-11 can for some advanced flows increase CFL_{loc} too slow or too quickly. CFL_{loc} can then be prescribed manually.

# The Projection Method for the Navier-Stokes Equations

A well-known approach to solve the Navier-Stokes equations is the pressure-correction method. This type of method is a so-called segregated method, and it generally requires far less memory than the COMSOL Multiphysics default formulation. Several variants of the original version have been developed (see Ref. 11, for example). COMSOL Multiphysics uses incremental pressure-correction schemes.



This formulation is only available for time-dependent problems and requires the time discrete solver. It is available for Laminar Flow and Turbulent Flow, k- $\varepsilon$  interfaces.

This method reformulates the Navier-Stokes equations so that it is possible to solve for one variable at a time in sequence. Let **u** and *p* be the velocity and pressure variables and  $\mathbf{u}_c$  and  $p_c$  the corrected velocity and pressure variables, respectively. The pressure-correction algorithm solves the Navier-Stokes equations using the following steps:

I Solve in sequence for all **u** components following equation:

$$\rho \frac{\partial \mathbf{u}}{\partial t} + \rho \mathbf{u}_{c}^{n} \cdot \nabla \mathbf{u}^{n+1} = -\nabla p^{n} + \nabla \cdot \left( \mu (\nabla \mathbf{u}^{n+1} + (\nabla \mathbf{u}^{n+1})^{T}) - \frac{2}{3} \mu (\nabla \cdot \mathbf{u}^{n+1}) \mathbf{I} \right) + \mathbf{F}$$

where the superscript index stands for the time-step index, and  $\frac{\partial \mathbf{u}}{\partial t}$  is discretized using a BDF method up to the second order where  $\mathbf{u}$  values from previous time steps are replaced by  $\mathbf{u}_{c}$  values. At the first order it is discretized it reads:

$$\frac{\mathbf{u}^{n+1} - \mathbf{u}_{c}^{n}}{\text{timestep}}$$

**2** Solve Poisson's equation to adjust the pressure:

timestep 
$$\Delta(p^{n+1} - p^n) = \frac{\partial \rho}{\partial t} - \nabla \cdot \rho \mathbf{u}^{n+1}$$
 (12-12)

**3** Update the corrected velocity:

$$\mathbf{u}_{c}^{n+1} = \mathbf{u}^{n+1} - \frac{\text{timestep}}{\rho} \nabla(p^{n+1} - p^{n})$$

Note

For incompressible flows, the  $\frac{2}{3}\mu(\nabla \cdot \mathbf{u}^{n+1})\mathbf{I}$  term in Equation 12-11 and  $\frac{\partial \rho}{\partial t}$  term in Equation 12-12 are suppressed.

Due to this specific discretization, this algorithm is only available with the time discrete solver.

Because velocity components and pressure are solved in a segregated way, boundary conditions might have a different implementation or might not be available with the projection method. In this case, this is mentioned in the documentation for each boundary condition.

When the projection method is used for turbulent flows or multiphysics couplings, the same algorithm is used for the velocity and pressure variables. Extra steps are needed to solve the other variables. By default the equation form used for these variables is the time-dependent form, and the time derivative is automatically discretized using a second-order BDF method.

# The Boussinesq Approximation

The Boussinesq approximation is a way to treat some simple cases of buoyant flows without having to use a compressible formulation of the Navier-Stokes equations.

The Boussinesq approximation assumes that variations in density have no effect on the flow field except that they give rise to buoyant forces. The density is taken to be a reference value,  $\rho_0$ , except in the body force term, which is set to

$$\mathbf{F} = (\rho_0 + \Delta \rho) \mathbf{g} \tag{12-13}$$

where **g** is the gravity vector. Enter an expression for Equation 12-13 in the Volume force fields in the Volume Force feature; however, further simplifications are often possible. Because **g** can be written in terms of a potential,  $\Phi$ , it is possible to write Equation 12-13 as:

$$\mathbf{F} = -\nabla(\rho_0 \Phi) + \Delta \rho \mathbf{g}$$

The first part can be canceled out by splitting the true pressure, p, as a sum of a hydrodynamic component, P, and a hydrostatic component,  $-\rho_0\Phi$ . Then write Equation 12-8 and Equation 12-9 in terms of the hydrodynamic pressure  $P = p + \rho_0\Phi$ :

$$\rho \nabla \cdot \mathbf{u} = \mathbf{0} \tag{12-14}$$

$$\rho_0 \frac{\partial \mathbf{u}}{\partial t} + (\rho_0 \mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla P + \nabla \cdot (\mu (\nabla \mathbf{u} + (\nabla \mathbf{u})^{\mathrm{T}})) + \mathbf{g} \Delta \rho$$
(12-15)

To obtain the Boussinesq approximation in this form, enter the expression for  $\mathbf{g}\Delta\rho$  for the Volume Force feature.

In practice, the shift from p to P can be ignored except where the pressure appears in boundary conditions. The pressure that is specified at boundaries is the hydrodynamic pressure in this case. For example, on a vertical outflow or inflow boundary, the hydrodynamic pressure is typically a constant, while the true pressure is a function of the vertical coordinate.

The system that Equation 12-14 and Equation 12-15 form has its limitations. The main assumption is that the density fluctuations must be small; that is,  $\Delta \rho / \rho_0 \ll 1$ . There are also some more subtle constraints that, for example, makes the Boussinesq approximation unsuitable for systems of very large dimensions. An excellent discussion of the Boussinesq approximation and its limitations appears in Chapter 14 of Ref. 9.

C See Also

See Volume Force for the node settings.

The Slip condition assumes that there are no viscous effects at the slip wall and hence, no boundary layer develops. From a modeling point of view, this may be a reasonable approximation if the important effect of the wall is to prevent fluid from leaving the domain. Mathematically, the constraint can be formulated as:

$$\mathbf{u} \cdot \mathbf{n} = 0, \qquad (-p\mathbf{I} + \mu(\nabla \mathbf{u} + (\nabla \mathbf{u})^{\mathrm{T}}))\mathbf{n} = \mathbf{0}$$

The no penetration will take precedence over the Neumann part of the condition and the above expression is therefore equivalent to

$$\label{eq:matrix} \begin{split} \mathbf{u}\cdot\mathbf{n} &= \mathbf{0}, \qquad \mathbf{K} - (\mathbf{K}\cdot\mathbf{n})\mathbf{n} = \mathbf{0} \\ \mathbf{K} &= \boldsymbol{\mu} (\nabla \mathbf{u} + (\nabla \mathbf{u})^{\mathrm{T}})\mathbf{n} \end{split}$$

expressing that there is no flow across the boundary and no viscous stress in the tangential direction.



Wall for the node settings.

2

See Also

The Sliding Wall boundary condition is appropriate if the wall behaves like a conveyor belt; that is, the surface is sliding in its tangential direction. The wall does not have to actually move in the coordinate system.

In 2D, the tangential direction is unambiguously defined by the direction of the boundary, but the situation becomes more complicated in 3D. For this reason, this boundary condition has slightly different definitions in the different space dimensions.

	For 2D and 2D axisymmetric models, the velocity is given as a scalar $U_{\rm w}$ and the condition prescribes
2D 2D Axi	$\mathbf{u} \cdot \mathbf{n} = 0, \qquad \mathbf{u} \cdot \mathbf{t} = U_{w}$
	where $\mathbf{t} = (n_y - n_x)$ for 2D and $\mathbf{t} = (n_z - n_r)$ for axial symmetry.

SD 3D	For 3D models, the velocity is set equal to a given vector $\mathbf{u}_{w}$ projected onto the boundary plane:
	$\mathbf{u} = \frac{\mathbf{u}_{w} - (\mathbf{n} \cdot \mathbf{u}_{w})\mathbf{n}}{\ \mathbf{u}_{w} - (\mathbf{n} \cdot \mathbf{u}_{w})\mathbf{n}\ }\ \mathbf{u}_{w}\ $
	The normalization makes $\mathbf{u}$ have the same magnitude as $\mathbf{u}_w$ even if $\mathbf{u}_w$ is not exactly parallel to the wall.

C See Also

1

2D

Wall for the node settings.

# Prescribing Inlet and Outlet Conditions

Navier-Stokes equations can show a large variety of numerical behaviors, ranging from almost completely elliptic to almost completely hyperbolic. This has implications when it comes to prescribing admissible boundary conditions. There is also a discrepancy between mathematically valid boundary conditions and practically useful boundary conditions.

#### INLET CONDITIONS

An inlet requires specification of the velocity field components. The most robust way to do this is to prescribe a velocity field.

A common alternative to prescribing the complete velocity field is to prescribe a pressure, in which case the normal velocity component will be specified indirectly via the continuity equation. The pressure can either be specified pointwise, which is mathematically an over-constraining but a numerically robust formulation. Alternatively, the pressure can be specified via a stress condition:

$$-p + \mu \frac{\partial u_n}{\partial n} = F_n \tag{12-16}$$

where  $\partial u_n/\partial n$  is the normal derivative of the normal velocity field component. Equation 12-16 is mathematically more correct compared to specifying the pressure pointwise, but can on the same time not guarantee that p obtains the desired value.

#### OUTLET CONDITIONS

The most common approach is to prescribe a pressure on the outlet. As in the case of inlets, the pressure can either be specified pointwise or via a stress condition.

Specifying the pressure only is however mathematically not sufficient unless the Reynolds number is infinity. In practice, it can suffice if the Reynolds number is high enough. Otherwise, the pressure boundary condition must be supplemented by conditions on the tangential velocity components. This is often achieved by prescribing vanishing tangential stress:

$$\mu \frac{\partial u_t}{\partial n} = 0$$

where  $\partial u_t / \partial n$  is the normal derivative of the tangential velocity field. It is also possible to prescribe  $u_t$  to be zero. The latter option should be used with care since it can have a significant effect on the upstream solution.

The elliptic characteristic of the Navier-Stokes equations permit mathematically a complete velocity field to be specified on an outlet. This can however difficult to apply in practice. The reason being that it is hard to specify the outlet velocities so that they at each point are consistent with the interior solution. The adjustment to the specified velocity will then occur across an outlet boundary layer. The thickness of this boundary

layer will depend on the Reynolds number: the higher the Reynolds number, the thinner the boundary layer.

C See Also Inlet and Outlet for the node settings.

## Theory for the Pressure, No Viscous Stress Boundary Condition

The Pressure, No Viscous Stress boundary condition specifies vanishing viscous stress along with a Dirichlet condition on the pressure:

$$\left(\mu(\nabla \mathbf{u} + (\nabla \mathbf{u})^T) - \frac{2}{3}\mu(\nabla \cdot \mathbf{u})\mathbf{I}\right)\mathbf{n} = \mathbf{0}, \qquad p = p_0$$
$$\mu(\nabla \mathbf{u} + (\nabla \mathbf{u})^T)\mathbf{n} = \mathbf{0}, \qquad p = p_0$$

using the compressible and the incompressible formulation, respectively.

This boundary condition is physically equivalent to a boundary that is adjacent to a large container (inlets) or exiting into a large container (outlets). It is numerically stable and admits total control of the pressure level along the entire boundary; however, it can give artifacts on the boundary if the viscous stresses just downstream from an inlet or inside the outlet are not zero. In such situations there are two choices. Either move the boundary farther away to a location where the artifacts do not matter or use a another stress type boundary condition present in the Boundary Stress feature.

While the Pressure, no viscous stress boundary condition is numerically more robust than the Normal stress condition (which also specifies the pressure), it is also theoretically an over-constraint of the flow (Ref. 2). This theoretical "flaw" is often ignored since it in most cases has no practical implication.

C See Also

Inlet and Outlet for the node settings.

The total stress on the boundary is set equal to a stress vector of magnitude  $f_0$ , oriented in the negative normal direction:

$$\left(-p\mathbf{I} + \left(\mu(\nabla \mathbf{u} + (\nabla \mathbf{u})^T) - \frac{2}{3}\mu(\nabla \cdot \mathbf{u})\mathbf{I}\right)\right)\mathbf{n} = -f_0\mathbf{n}$$
$$\left(-p\mathbf{I} + \mu(\nabla \mathbf{u} + (\nabla \mathbf{u})^T)\right)\mathbf{n} = -f_0\mathbf{n}$$

using the compressible and the incompressible formulation, respectively.

This implies that the total stress in the tangential direction is zero. This boundary condition implicitly sets a constraint on the pressure that for 2D flows is

$$p = 2\mu \frac{\partial u_n}{\partial n} + f_0 \tag{12-17}$$

If  $\partial u_n / \partial n$  is small, Equation 12-17 states that  $p \approx f_0$ .

The Normal Stress condition is the mathematically correct version of the Pressure, No Viscous Stress condition (Ref. 2), but it is numerically less stable.



Inlet, Outlet, Open Boundary, and Boundary Stress for the individual node settings.

# Discontinuous Galerkin Formulation

Some boundary conditions are implemented using a discontinuous Galerkin formulation. These boundary conditions include

- Wall Slip
- Periodic Flow Condition
- Flow Continuity

The formulation used in the fluid flow interfaces in COMSOL is the Symmetric Interior Penalty Method (SIPG). The SIPG method can be regarded as fulfilling the boundary conditions in an integral sense rather than pointwise. More information on SIPG can be found in Ref. 12.

In particular, the SIPG formulation includes a penalty parameter that must be large enough for the formulation to be coercive. The higher the value, the more exactly the boundary condition is fulfilled, but a too high value results in an ill-conditioned equation system. The penalty parameter in COMSOL is implemented according to Ref. 13.

## Particle Tracing in Fluid Flow

# <mark>т</mark>р

The Particle Tracing Module is available to assist with these types of modeling problems.

It is possible to do particle tracing with COMSOL Multiphysics provided that the impact of the particles on the flow field is negligible. It is then possible to first compute the flow field, then, as an analysis step, calculate the motion of particles. The motion of a particle is defined by Newton's second law

$$m\frac{d^2\mathbf{x}}{dt^2} = \mathbf{F}\left(t, \mathbf{x}, \frac{d\mathbf{x}}{dt}\right)$$

where **x** is the position of the particle, *m* the particle mass, and **F** is the sum of all forces acting on the particle. Examples of forces acting on a particle in a fluid are the drag force, the buoyancy force, and the gravity force. The drag force represents the force that a fluid exerts on a particle due to a difference in velocity between the fluid and the particle. It includes the viscous drag, the added mass, and the Basset history term. Several empirical expression have been suggested for the drag force. One of those is the one proposed by Khan and Richardson (Ref. 10). That expression is valid for spherical particles for a wide range of particle Reynolds numbers. The Reynolds particle number is defined as

$$\operatorname{Re}_{p} = \frac{|\mathbf{u} - \mathbf{u}_{p}| 2r\rho}{\mu}$$

where **u** is the velocity of the fluid,  $\mathbf{u}_p$  the particle velocity, *r* the particle radius,  $\rho$  the fluid density, and  $\mu$  the fluid dynamic viscosity. The empirical expression for the drag force according to Khan and Richardson is

$$\mathbf{F} = \pi r^2 \rho |\mathbf{u} - \mathbf{u}_p| (\mathbf{u} - \mathbf{u}_p) [1.84 \operatorname{Re}_p^{-0.31} + 0.293 \operatorname{Re}_p^{0.06}]^{3.45}$$



The model Flow Past a Cylinder (Model Library path COMSOL_Multiphysics/Fluid_Dynamics/cylinder_flow) demonstrates how to add and set up particle tracing in a plot group using the Particle Tracing with Mass node. It uses the predefined Khan-Richardson model for the drag force and neglects gravity and buoyancy forces.

References for the Single-Phase Flow, Laminar Flow Interfaces

1. G.K. Batchelor, *An Introduction To Fluid Dynamics*, Cambridge University Press, 1967.

2. R.L. Panton, Incompressible Flow, 2nd ed., John Wiley & Sons, 1996.

3. I. Harari and T.J.R. Hughes, "What are *C* and *h*? Inequalities for the Analysis and Design of Finite Element Methods," *Comp. Meth. Appl. Mech. Engrg*, vol. 97, pp. 157–192, 1992.

4. Y. Bazilevs, V.M. Calo, T.E. Tezduyar, and T.J.R. Hughes, "*YZ*β Discontinuity Capturing for Advection-dominated Processes with Application to Arterial Drug Delivery," *Int.J.Num. Meth. Fluids*, vol. 54, pp. 593–608, 2007.

 T.J.R. Hughes and M. Mallet, "A New Finite Element Formulation for Computational Fluid Dynamics: III. The Generalized Streamline Operator for Multidimensional Advective-Diffusive System," *Comp. Meth. Appl. Mech. Engrg*, vol. 58, pp. 305–328, 1986.

6. G. Hauke and T.J.R. Hughes, "A Unified Approach to Compressible and Incompressible Flows," *Comp. Meth. Appl. Mech. Engrg*, vol. 113, pp. 389–395, 1994.

7. G. Hauke, "Simple Stabilizing Matrices for the Computation of Compressible Flows in Primitive Variables," *Comp. Meth. Appl. Mech. Engrg*, vol. 190, pp. 6881–6893, 2001.

8. A. Soulaïmani and M. Fortin, "Finite Element Solution of Compressible Viscous Flows Using Conservative Variables," *Comp. Meth. Appl. Mech. Engrg*, vol. 118, pp. 319–350, 2001.

9. D.J. Tritton, Physical Fluid Dynamics, 2nd ed., Oxford University Press, 1988.

10. J.M. Coulson and J.F. Richardson, "Particle Technology and Separation Processes," *Chemical Engineering, Volume 2*, Butterworth-Heinemann, 2002.

11. J.L. Guermond, P. Minev, and J. Shen, "An overview of projection methods for incompressible flows," *Comp. Meth. Appl. Mech. Engrg*, vol. 195, pp. 6011–6045, 2006.

12. B. Rivière, *Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations*, SIAM, 2008.

13. Y. Epshteyn and B. Rivière, "Estimation of penalty parameters for symmetric interior penalty Galerkin methods", *Journal of Computational and Applied Mathematics*, Vol. 206, pp. 843–872, 2007.

# The Laminar Flow Interface

The Laminar Flow interface ( $\gtrless$ ), found under the Single-Phase Flow branch ( $\gtrless$ ) in the Model Wizard, has the equations, boundary conditions, and volume forces for modeling freely moving fluids using the Navier-Stokes equations, solving for the velocity field and the pressure. The main feature is Fluid Properties, which adds the Navier-Stokes equations and provides an interface for defining the fluid material and its properties.

- Model
- Flow Past a Cylinder: Model Library path COMSOL_Multiphysics/ Fluid_Dynamics/cylinder_flow
- Terminal Falling Velocity of a Sand Grain: Model Library path COMSOL_Multiphysics/Fluid_Dynamics/falling_sand

When this interface is added, these default nodes are also added to the **Model Builder**— **Fluid Properties**, **Wall** (the default boundary condition is **No slip**), and **Initial Values**. Right-click the **Laminar Flow** node to add other features that implement, for example, boundary conditions and volume forces.

## INTERFACE IDENTIFIER

The interface identifier is a text string that can be used to reference the respective physics interface if appropriate. Such situations could occur when coupling this interface to another physics interface, or when trying to identify and use variables defined by this physics interface, which is used to reach the fields and variables in expressions, for example. It can be changed to any unique string in the **Identifier** field.

The default identifier (for the first interface in the model) is spf.

#### DOMAIN SELECTION

The default setting is to include **All domains** in the model to define the fluid pressure and velocity and the Navier-Stokes equations that describe those fields. To choose specific domains, select **Manual** from the **Selection** list.

#### PHYSICAL MODEL

Control the properties of the **Laminar Flow** interface, which control the overall type of fluid flow model.

#### Compressibility

By default the interface uses the **Compressible flow (Ma<0.3)** formulation of the Navier-Stokes equations. Select **Incompressible flow** to use the incompressible (constant density) formulation.

#### DEPENDENT VARIABLES

This interface defines these dependent variables (fields)—Velocity field  $\mathbf{u}$  (SI unit: m/s) and Pressure p (SI unit: Pa).

If required, edit the field, component, and dependent variable names. Editing the name of a scalar dependent variable changes both its field name and the dependent variable name. If a new field name coincides with the name of another field of the same type, the fields will share degrees of freedom and dependent variable names. A new field name must not coincide with the name of a field of another type, or with a component name belonging to some other field. Component names must be unique within a model except when two fields share a common field name.

#### ADVANCED SETTINGS

To display this section, click the **Show** button ( $rac{1}{20}$ ) and select **Advanced Physics Options**. Normally these settings do not need to be changed.

Select the Use pseudo time stepping for stationary equation form check box to add pseudo time derivatives to the equation when the Stationary equation form is used. When selected, also choose a CFL number expression—Automatic (the default) or Manual. Automatic calculates the local CFL number (from the Courant–Friedrichs–Lewy condition) from a built-in expression. If Manual is selected, enter a Local CFL number CFL_{loc}.

C See Also The Projection Method for the Navier-Stokes Equations and Pseudo Time Stepping for Laminar Flow Models

#### DISCRETIZATION

To display this section, click the **Show** button ( $rac{1}{20}$ ) and select **Discretization**. It controls the discretization (the element types used in the finite element formulation). From the

**Discretization of fluids** list select the element order for the velocity components and the pressure: **PI+PI** (the default), **P2+PI**, or **P3+P2**.

- **PI+PI** (the default) means linear elements for both the velocity components and the pressure field. This is the default element order for the Laminar Flow and Turbulent Flow flow interfaces. Linear elements are computationally cheaper than higher-order elements and are also less prone to introducing spurious oscillations, thereby improving the numerical robustness.
- **P2+P1** means second-order elements for the velocity components and linear elements for the pressure field. This is the default for the Creeping Flow interface because second-order elements work well for low flow velocities.
- **P3+P2** means third-order elements for the velocity components and second-order elements for the pressure field. This can add additional accuracy but it also adds additional degrees of freedom compared to P2+P1 elements.

Specify the Value type when using splitting of complex variables—Real or Complex (the default).

- Show More Physics Options
- Domain, Boundary, Point, and Pair Features for the Single-Phase Flow Interfaces
- Theory for the Laminar Flow Interface

Domain, Boundary, Point, and Pair Features for the Single-Phase Flow Interfaces

The domain, boundary, point, and pair features are described in this section and listed in alphabetical order.



2

See Also

The theory about most boundary conditions is found in P.M. Gresho and R.L. Sani, *Incompressible Flow and the Finite Element Method*, *Volume 2: Isothermal Laminar Flow*, John Wiley & Sons, 2000.

- Boundary Stress
- Flow Continuity
- Fluid Properties

- Initial Values
- Inlet
- Open Boundary
- Outlet
- Periodic Flow Condition
- Pressure Point Constraint
- Symmetry
- Volume Force
- Wall



For 2D axisymmetric models, COMSOL Multiphysics takes the axial symmetry boundaries (at r = 0) into account and automatically adds an **Axial Symmetry** feature to the model that is valid on the axial symmetry boundaries only.

# Fluid Properties

The **Fluid Properties** feature adds the momentum equations solved by the interface, except for volume forces which are added by the Volume Force feature. The node also provides an interface for defining the material properties of the fluid.

#### DOMAIN SELECTION

From the Selection list, choose the domains to apply the fluid properties.

#### MODEL INPUTS

Edit input variables to the fluid-flow equations if required. For fluid flow, these are typically introduced when a material requiring inputs has been applied.

#### FLUID PROPERTIES

#### Density

The default **Density**  $\rho$  (SI unit: kg/m³) uses the value **From material**. Select **User defined** to enter a different value or expression.

#### Dynamic Viscosity

The default **Dynamic viscosity**  $\mu$  (SI unit: Pa·s) uses the value **From material** and describes the relationship between the shear rate and the shear stresses in a fluid.

Intuitively, water and air have a low viscosity, and substances often described as thick (such as oil) have a higher viscosity.

• Select **User defined** to define a different value or expression. Using a built-in variable for the shear rate magnitude, spf.sr, makes it possible to define arbitrary expressions of the dynamics viscosity as a function of the shear rate.

#### Volume Force

The **Volume Force** feature specifies the volume force  $\mathbf{F}$  on the right-hand side of the incompressible flow equation. Use it, for example, to incorporate the effects of gravity in a model.

$$\rho \frac{\partial \mathbf{u}}{\partial t} + \rho(\mathbf{u} \cdot \nabla)\mathbf{u} = \nabla \cdot [-p\mathbf{I} + \mu(\nabla \mathbf{u} + (\nabla \mathbf{u})^{T})] + \mathbf{F}$$

If several volume force features are added to the same domain, then the sum of all contributions are added to the momentum equations.

#### DOMAIN SELECTION

From the Selection list, choose the domains where the volume force acts on the fluid.

#### **VOLUME FORCE**

Enter the components of the Volume force  $\mathbf{F}$  (SI unit: N/m³).



The Boussinesq Approximation

## Initial Values

The **Initial Values** feature adds initial values for the velocity field and the pressure that can serve as an initial condition for a transient simulation or as an initial guess for a nonlinear solver.

#### DOMAIN SELECTION

From the **Selection** list, choose the domains to define initial values.

#### INITIAL VALUES

Enter values or expressions for the initial value of the **Velocity field u** (SI unit: m/s) and for the **Pressure** p (SI unit: Pa). The default values are 0.

#### Wall

The **Wall** feature includes a set of boundary conditions describing the fluid flow condition at a wall.

- No Slip (the default for laminar flow)
- Slip
- Sliding Wall
- · Moving Wall
- Leaking Wall
  - Theory for the Slip Wall Boundary Condition
  - Theory for the Sliding Wall Boundary Condition

2 See Also

• The Moving Mesh Interface

#### **BOUNDARY SELECTION**

From the Selection list, choose the boundaries that represent solid walls.

#### PAIR SELECTION

If **Wall** is selected from the **Pairs** menu, choose the pair to define. An identity pair has to be created first. Ctrl-click to deselect.

#### BOUNDARY CONDITION

Select a **Boundary condition** for the wall. The boundary conditions available vary by interface.

#### No Slip

**No slip** is the default boundary condition for a stationary solid wall. The condition prescribes  $\mathbf{u} = 0$ , that is, that the fluid at the wall is not moving.

Slip

The **Slip** condition combines a no-penetration condition,  $\mathbf{u} \cdot \mathbf{n} = 0$ . It hence implicitly assumes that there are no viscous effects at the slip wall and hence, no boundary layer

develops. From a modeling point of view, this may be a reasonable approximation if the important effect of the wall is to prevent fluid from leaving the domain.

#### Sliding Wall

ø

2D

1

3D

The **Sliding wall** boundary condition is appropriate if the wall behaves like a conveyor belt; that is, the surface is sliding in its tangential direction. The wall does not have to actually move in the coordinate system.

In 2D, the tangential direction is unambiguously defined by the direction of the boundary, but the situation becomes more complicated in 3D. For this reason, this boundary condition has slightly different definitions in the different space dimensions. Enter the components of the **Velocity of the tangentially moving wall**  $U_{\rm w}$  (SI unit: m/s).

Enter the components of the **Velocity of the sliding wall \mathbf{u}_w** (SI unit: m/s). If the velocity vector entered is not in the plane of the wall, COMSOL projects it onto the tangential direction. Its magnitude is adjusted to be the same as the magnitude of the vector entered.

### Moving Wall

If the wall moves, so must the fluid. Hence, this boundary condition prescribes  $\mathbf{u} = \mathbf{u}_{w}$ . Enter the components of the **Velocity of moving wall \mathbf{u}_{w}** (SI unit: m/s).

# () Important

Specifying this boundary condition does not automatically cause the associated wall to move. An additional **Moving Mesh** interface needs to be added to physically track the wall movement in the spatial reference frame.

#### Leaking Wall

Use this boundary condition to simulate a wall where fluid is leaking into or leaving through a perforated wall  $\mathbf{u} = \mathbf{u}_l$ . Enter the components of the **Fluid velocity**  $\mathbf{u}_l$  (SI unit: m/s).

## CONSTRAINT SETTINGS

To display this section, click the **Show** button (**>**, and select **Advanced Physics Options**. Select a **Constraint type—Bidirectional, symmetric** or **Unidirectional** for the following wall boundary conditions: No slip, Moving wall, and Leaking wall. The other types of wall boundary conditions with constraints use unidirectional constraints only. Select

the **Use weak constraints** check box (available for all boundary conditions except Sliding wall, which does not add any constraints) to use weak constraints and create dependent variables for the corresponding Lagrange multipliers.

#### Inlet

The **Inlet** node includes a set of boundary conditions describing the fluid flow condition at an inlet. The **Velocity** boundary condition is the default.



In most cases the inlet boundary conditions appear, some of them slightly modified, in the Outlet type as well. This means that there is nothing in the mathematical formulations to prevent a fluid from leaving the domain through boundaries where the **Inlet** type is specified.

- Velocity (the default)
- Pressure, No Viscous Stress
- Normal Stress



- Theory for the Pressure, No Viscous Stress Boundary Condition
- Theory for the Normal Stress Boundary Condition

#### BOUNDARY SELECTION

From the **Selection** list, choose the boundaries that represent inlets. The boundary conditional available is based on interface.

#### BOUNDARY CONDITION

Select a **Boundary condition** for the inlet. After selecting a **Boundary Condition** from the list, a section with the same name displays underneath. For example, if **Velocity** is selected, a **Velocity** section displays where further settings are defined for the velocity.

#### VELOCITY

Select **Normal inflow velocity** (the default) to specify a normal inflow velocity magnitude  $\mathbf{u} = -\mathbf{n}U_0$  where  $\mathbf{n}$  is the boundary normal pointing out of the domain. Enter the velocity magnitude  $U_0$  (SI unit: m/s).

If **Velocity field** is selected, it sets the velocity equal to a given velocity vector  $\mathbf{u}_0$  when  $\mathbf{u} = \mathbf{u}_0$ . Enter the velocity components  $\mathbf{u}_0$  (SI unit: m/s) to set the velocity equal to a given velocity vector.



This section displays when **Velocity** is selected as the **Boundary condition**. The option is available for the **Inlet** and **Outlet** boundary features.

#### PRESSURE, NO VISCOUS STRESS

The **Pressure**, **no viscous stress** boundary condition specifies vanishing viscous stress along with a Dirichlet condition on the pressure. Enter the **Pressure**  $p_0$  (SI unit: Pa) at the boundary.



This section displays when **Pressure, no viscous stress** is selected as the **Boundary condition**. The option is available for the **Inlet** and **Outlet** boundary features. Depending on the pressure field in the rest of the domain, an inlet boundary with this condition can become an outlet boundary.

#### NORMAL STRESS

Enter the magnitude of Normal stress  $f_0$  (SI unit: N/m²). Implicitly specifies that  $p \approx f_0$ .



This section displays when **Normal Stress** is selected as the **Boundary condition**. The option is available for the **Inlet**, **Outlet**, **Open Boundary**, and **Boundary Stress** features.

#### CONSTRAINT SETTINGS

To display this section, click the Show button ( $r_{\overline{\infty}}$ ) and select Advanced Physics Options. Select a Constraint type—Bidirectional, symmetric or Unidirectional. Select the Use weak constraints check box as required.

Outlet

The **Outlet** feature includes a set of boundary conditions describing fluid flow conditions at an outlet. The **Pressure**, **no viscous stress** boundary condition is the

default. Other options are based on individual licenses. Selecting appropriate outlet conditions for the Navier-Stokes equations is not a trivial task. Generally, if there is something interesting happening at an outflow boundary, extend the computational domain to include this phenomenon.

All of the formulations for the **Outlet** type are also available, possibly slightly modified, in other boundary types as well. This means that there is nothing in the mathematical formulations to prevent a fluid from entering the domain through boundaries where the **Outlet** boundary type is specified.

- Pressure, No Viscous Stress (the default)
- Velocity

₩ Tip

- Normal Stress
- Pressure
- No Viscous Stress



The Pressure, No Viscous Stress, Velocity, and Normal Stress boundary conditions are described for the **Inlet** node.

#### **BOUNDARY SELECTION**

From the Selection list, choose the boundaries that represent outlets.

#### **BOUNDARY CONDITION**

Select a **Boundary condition** for the outlet. **Pressure, no viscous stress** is the default. The boundary conditional available is based on interface.

#### PRESSURE

This boundary condition prescribes only a Dirichlet condition for the pressure  $p = p_0$ .

Enter the **Pressure**  $p_0$  (SI unit: Pa) at the boundary. While this boundary condition is flexible and seldom produces artifacts on the boundary (compared to Pressure, No Viscous Stress), it can be numerically unstable. Theoretically, the stability is guaranteed by using streamline diffusion for a flow with a cell Reynolds number  $\text{Re}^c = \rho |\mathbf{u}| h/(2\mu) >>1$  (*h* is the local mesh element size). It does however work well in most other situations as well.

#### CONSTRAINT SETTINGS

To display this section, click the **Show** button (**>**, and select **Advanced Physics Options**. Select a **Constraint type—Bidirectional, symmetric** or **Unidirectional**. Select the **Use weak constraints** check box to use weak constraints and create dependent variables for the corresponding Lagrange multipliers.

#### Symmetry

The **Symmetry** node adds a boundary condition that describes symmetry boundaries in a fluid flow simulation. The boundary condition for symmetry boundaries prescribes no penetration and vanishing shear stresses. The boundary condition is a combination of a Dirichelet condition and a Neumann condition:

$$\mathbf{u} \cdot \mathbf{n} = \mathbf{0}, \qquad \left(-p\mathbf{I} + \left(\mu(\nabla \mathbf{u} + (\nabla \mathbf{u})^T) - \frac{2}{3}\mu(\nabla \cdot \mathbf{u})\mathbf{I}\right)\right)\mathbf{n} = \mathbf{0}$$
$$\mathbf{u} \cdot \mathbf{n} = \mathbf{0}, \qquad (-p\mathbf{I} + \eta(\nabla \mathbf{u} + (\nabla \mathbf{u})^T))\mathbf{n} = \mathbf{0}$$

for the compressible and the incompressible formulation respectively. The Dirichlet condition takes precedence over the Neumann condition, and the above equations are equivalent to the following equation for both the compressible and incompressible formulation:

$$\label{eq:kappa} \begin{split} \mathbf{u}\cdot\mathbf{n} &= \mathbf{0}, \qquad \mathbf{K} - (\mathbf{K}\cdot\mathbf{n})\mathbf{n} = \mathbf{0}\\ \mathbf{K} &= \boldsymbol{\mu}(\nabla\mathbf{u} + (\nabla\mathbf{u})^T)\mathbf{n} \end{split}$$

#### **BOUNDARY SELECTION**

From the Selection list, choose the boundaries that are symmetry boundaries.



For 2D axial symmetry, a boundary condition does not need to be defined. For the symmetry axis at r = 0, the software automatically provides a condition that prescribes  $u_r = 0$  and vanishing stresses in the z direction and adds an **Axial Symmetry** feature that implements this condition on the axial symmetry boundaries only.

# Open Boundary

The **Open Boundary** node adds boundary conditions that describe boundaries that are open to large volumes of fluid. Fluid can both enter and leave the domain on boundaries with this type of condition.

Inlet
Outlet
See Also
Pressure Point Constraint

#### **BOUNDARY SELECTION**

From the Selection list, choose the boundaries that are open boundaries.

#### BOUNDARY CONDITIONS

Select a **Boundary condition** for the open boundaries—**Normal stress** (the default) or **No viscous stress**. If **Normal stress**  $f_0$  (SI unit: N/m²) is selected, enter a value or expression for the boundary condition.

#### No Viscous Stress

If **No viscous stress** is selected, which is also available for the **Outlet** feature, it prescribes vanishing viscous stress:

$$\left(\mu(\nabla \mathbf{u} + (\nabla \mathbf{u})^T) - \frac{2}{3}\mu(\nabla \cdot \mathbf{u})\mathbf{I}\right)\mathbf{n} = \mathbf{0}$$

 $\mu(\nabla \mathbf{u} + (\nabla \mathbf{u})^T)\mathbf{n} = \mathbf{0}$ 

using the compressible and the incompressible formulation respectively.

This condition can be useful in some situations because it does not impose any constraint on the pressure. A typical example is a model with volume forces that give rise to pressure gradients that are hard to prescribe in advance. To make the model numerically stable, combine this boundary condition with a point constraint on the pressure.

<mark>т</mark>р



This boundary condition is not available if the **Use memory-efficient form** check box is selected (click the **Show** button ()) and select **Advanced Physics Options>Advanced Settings** to display the section) on any single-phase flow interface settings window.

## Boundary Stress

The **Boundary Stress** node adds a boundary condition that represents a very general class of conditions also known as *traction boundary conditions*.



#### **BOUNDARY SELECTION**

From the Selection list, choose the boundaries to apply boundary stress.

#### **BOUNDARY CONDITION**

Select a Boundary condition for the boundary stress—General stress (the default), Normal stress, or Normal stress, normal flow.

#### Normal Stress

If Normal stress  $f_0$  (SI unit: N/m²) is selected, enter a value or expression.

#### General Stress

If **General stress** is selected, enter the components of the **Stress F** (SI unit:  $N/m^2$ ). The total stress on the boundary is set equal to a given stress **F**:

$$\left(-p\mathbf{I} + \left(\mu(\nabla \mathbf{u} + (\nabla \mathbf{u})^T) - \frac{2}{3}\mu(\nabla \cdot \mathbf{u})\mathbf{I}\right)\right)\mathbf{n} = \mathbf{F}$$
$$(-p\mathbf{I} + \mu(\nabla \mathbf{u} + (\nabla \mathbf{u})^T))\mathbf{n} = \mathbf{F}$$

using the compressible and the incompressible formulation respectively.

This boundary condition implicitly sets a constraint on the pressure that for 2D flows is

$$p = 2\mu \frac{\partial u_n}{\partial n} - \mathbf{n} \cdot \mathbf{F}$$
(12-18)

If  $\partial u_n / \partial n$  is small, Equation 12-18 states that  $p \approx -\mathbf{n} \cdot \mathbf{F}$ .

#### Normal Stress, Normal Flow

If Normal stress, normal flow is selected, enter the magnitude of the Normal stress  $f_0$  (SI unit: N/m²).

In addition to the stress condition set in the **Normal stress** condition, this condition also prescribes that there must be no tangential velocities on the boundary:

$$\left( -p\mathbf{I} + \left( \mu(\nabla \mathbf{u} + (\nabla \mathbf{u})^T) - \frac{2}{3}\mu(\nabla \cdot \mathbf{u})\mathbf{I} \right) \right) \mathbf{n} = -\mathbf{f}_0 \mathbf{n}, \qquad \mathbf{t} \cdot \mathbf{u} = 0$$
$$(-p\mathbf{I} + \mu(\nabla \mathbf{u} + (\nabla \mathbf{u})^T))\mathbf{n} = -\mathbf{f}_0 \mathbf{n}, \qquad \mathbf{t} \cdot \mathbf{u} = 0$$

using the compressible and the incompressible formulation respectively.

This boundary condition also implicitly sets a constraint on the pressure that for 2D flows is

$$p = 2\eta \frac{\partial u_n}{\partial n} + f_0$$
(12-19)

If  $\partial u_n / \partial n$  is small, Equation 12-19 states that  $p \approx f_0$ .



This boundary condition is not available if the **Use memory-efficient form** check box is selected (click the **Show** button (**>**⁺⁻**)** and select **Advanced Physics Options>Advanced Settings** to display the section) on any single-phase flow interface settings page.

#### CONSTRAINT SETTINGS

To display this section, click the Show button ( $b_{\overline{o}}$ ) and select Advanced Physics Options. Select Use weak constraints as required.

# Periodic Flow Condition

The **Periodic Flow Condition** splits its selection in two groups: one source group and one destination group. Fluid that leaves the domain through one of the destination boundaries enters the domain over the corresponding source boundary. This corresponds to a situation where the geometry is a periodic part of a larger geometry.

If the boundaries are not parallel to each other, the velocity vector is automatically transformed.

# <mark>т</mark>р

If the boundaries are curved, it is recommended to only include two boundaries.

The **Periodic Flow Condition** has no input when the interface property **Compressibility** is set to **Compressible flow (Ma<0.3)**. Typically when a periodic boundary condition is used with a compressible flow the pressure is the same at both boundaries and the flow is driven by a volume force. When **Compressibility** is set to **Incompressible flow**, the boundary condition contains an input field for a **Pressure difference**,  $p_{src} - p_{dst}$ . This pressure difference can, for example, drive the flow in a fully developed channel flow.

To set up a periodic boundary condition select both boundaries in the **Periodic Flow Condition** node. COMSOL automatically assigns one boundary as the source and the other as the destination. To manually set the destination selection, add a **Destination Selection** node to the **Periodic Flow Condition** node. All destination sides must be connected.

#### CONSTRAINT SETTINGS

To display this section, click the Show button ( $\searrow$ ) and select Advanced Physics Options. Select Use weak constraints as required.



This boundary condition is not available if the **Use memory-efficient form** check box is selected (click the **Show** button (**>**⁺⁻) and select **Advanced Physics Options>Advanced Settings** to display the section) on any single-phase flow interface settings page.



Periodic Boundary Conditions

# Flow Continuity

The **Flow Continuity** node is suitable for pairs where the boundaries match; it prescribes that the flow field is continuous across the pair.

A **Wall** subnode is added by default to the **Flow Continuity** node. The **Wall** feature applies to the parts of the pair boundaries where a source boundary lacks a corresponding destination boundary and vice versa. The **Wall** feature can be overridden by any other boundary condition that applies to exterior boundaries. Right-click the **Flow Continuity** node to add additional subfeatures.



• Identity and Contact Pairs

• Specifying Boundary Conditions for Identity Pairs

#### **BOUNDARY SELECTION**

From the Selection list, choose the boundaries for the selected pairs.

#### PAIR SELECTION

When **Flow Continuity** is selected from the **Pairs** menu, choose the pair to define. An identity pair has to be created first. Ctrl-click to deselect.



This boundary condition is not available if the Use memory-efficient form check box is selected (click the Show button ( $\vdash_{\overline{\infty}}$ ) and select Advanced Physics Options>Advanced Settings to display the section) on any single-phase flow interface settings page.

# Pressure Point Constraint

The **Pressure Point Constraint** feature adds a pressure constraint at a point. If it is not possible to specify the pressure level using a boundary condition, the pressure must be set in some other way, for example, by specifying a fixed pressure at a point.

#### POINT SELECTION

From the Selection list, choose the points to use a pressure constraint.

#### PRESSURE CONSTRAINT

Enter a point constraint for the **Pressure**  $p_0$  (SI unit: Pa).

## CONSTRAINT SETTINGS

To display this section, click the **Show** button ( $r_{\overline{\infty}}$ ) and select **Advanced Physics Options**. Select the **Use weak constraints** check box to use weak constraints and create dependent variables for the corresponding Lagrange multipliers.

# 13

# The Heat Transfer Branch

This chapter describes the different types of Heat Transfer interfaces (Heat Transfer in Solids and Heat Transfer in Fluids), and the Joule Heating interface, all found under the **Heat Transfer** branch ( $\frac{11}{100}$ ) in the **Model Wizard**.

In this chapter:

- About the Heat Transfer Interfaces
- Theory for the Heat Transfer Interfaces
- The Heat Transfer Interface
- The Joule Heating Interface

# About the Heat Transfer Interfaces

The Heat Transfer interfaces model heat transfer by conduction and convection. Surface-to-ambient radiation effects around edges and boundaries can also be included. The interfaces are suitable for modeling heat transfer in solids and fluids. The interfaces are available in 1D, 2D, and 3D and for axisymmetric models with cylindrical coordinates in 1D and 2D. The default dependent variable is the temperature, T.

There are **Heat Transfer** interfaces displayed in the Model Builder with the same name but with different icons and default models. After selecting a **Heat Transfer** interface in the Model Wizard, default settings are added under the main node. For example, if **Heat Transfer in Solids** () is selected, a **Heat Transfer** node is added with a default Heat Transfer in Solids model. If **Heat Transfer in Fluids** () is selected, a **Heat Transfer in Fluids** model is added instead, but the parent nodes are both called Heat Transfer. Any interface based on the main Heat Transfer feature has the suffix ht.

🔐 Tip To locate and search all the documentation, in COMSOL, select Help>Documentation from the main menu and either enter a search term or look under a specific module in the documentation tree.

#### Heat Transfer in Solids and Heat Transfer in Fluids

Use the **Heat Transfer in Solids (ht)** (**(**) to model mainly heat transfer in solid materials. A default **Heat Transfer in Solids** model is added, but all functionality for including fluid domains is also available.

Use the **Heat Transfer in Fluids (ht)** (**SS**) to model mainly heat transfer in fluid materials. A default **Heat Transfer in Fluids** model is added, but all functionality for including solid domains is also available.

#### Joule Heating

Select **Joule Heating (jh)** (**)**, found under the **Electromagnetic Heating** subbranch (**)**, to combine all features from the Electric Currents interface with the Heat Transfer interface for modeling Joule heating (also called resistive heating or ohmic heating). See The Joule Heating Interface.

# Theory for the Heat Transfer Interfaces

This section reviews the theory about the heat transfer equations. For more detailed discussions of the fundamentals of heat transfer, see Ref. 1 and Ref. 3.

The Heat Transfer Interface theory is described in this section:

- What is Heat Transfer?
- The Heat Equation
- A Note About Heat Flux
- Heat Flux Variables and Heat Sources
- About the Boundary Conditions for the Heat Transfer Interfaces
- Radiative Heat Transfer in Transparent Media
- Consistent and Inconsistent Stabilization Methods for the Heat Transfer Interfaces
- References for the Heat Transfer Interfaces

## What is Heat Transfer?

Heat transfer is defined as the movement of energy due to a difference in temperature. It is characterized by the following mechanisms:

- Conduction—Heat conduction takes place through different mechanisms in different media. Theoretically it takes place in a gas through collisions of the molecules; in a fluid through oscillations of each molecule in a "cage" formed by its nearest neighbors; in metals mainly by electrons carrying heat and in other solids by molecular motion which in crystals take the form of lattice vibrations known as phonons. Typical for heat conduction is that the heat flux is proportional to the temperature gradient.
- *Convection*—Heat convection (sometimes called heat advection) takes place through the net displacement of a fluid, which transports the heat content in a fluid through the fluid's own velocity. The term convection (especially convective cooling

and convective heating) also refers to the heat dissipation from a solid surface to a fluid, typically described by a heat transfer coefficient.

• *Radiation*—Heat transfer by radiation takes place through the transport of photons. Participating (or semitransparent) media absorb, emit and scatter photons. Opaque surfaces absorb or reflect them.

# The Heat Equation

The fundamental law governing all heat transfer is the first law of thermodynamics, commonly referred to as the principle of conservation of energy. However, internal energy, U, is a rather inconvenient quantity to measure and use in simulations. Therefore, the basic law is usually rewritten in terms of temperature, T. For a fluid, the resulting *heat equation* is:

$$\rho C_p \left( \frac{\partial T}{\partial t} + (\mathbf{u} \cdot \nabla) T \right) = -(\nabla \cdot \mathbf{q}) + \tau \cdot \mathbf{S} - \frac{T}{\rho} \frac{\partial \rho}{\partial T} \bigg|_p \left( \frac{\partial p}{\partial t} + (\mathbf{u} \cdot \nabla) p \right) + Q \quad (13-1)$$

where

- $\rho$  is the density (SI unit: kg/m³)
- $C_{\rm p}$  is the specific heat capacity at constant pressure (SI unit: J/(kg·K))
- *T* is absolute temperature (SI unit: K)
- **u** is the velocity vector (SI unit: m/s)
- **q** is the heat flux by conduction (SI unit:  $W/m^2$ )
- *p* is pressure (SI unit: Pa)
- $\tau$  is the viscous stress tensor (SI unit: Pa)
- **S** is the strain-rate tensor (SI unit: 1/s):

$$\mathbf{S} = \frac{1}{2} (\nabla \mathbf{u} + (\nabla \mathbf{u})^T)$$

• Q contains heat sources other than viscous heating (SI unit: W/m³)

For a detailed discussion of the fundamentals of heat transfer, see Ref. 1.



Specific heat capacity at constant pressure is the amount of energy required to raise one unit of mass of a substance by one degree while maintained at constant pressure. This quantity is also commonly referred to as *specific heat* or *specific heat capacity*.

In deriving Equation 13-1, a number of thermodynamic relations have been used. The equation also assumes that mass is always conserved, which means that density and velocity must be related through:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

The heat transfer interfaces use Fourier's law of heat conduction, which states that the conductive heat flux,  $\mathbf{q}$ , is proportional to the temperature gradient:

$$q_i = -k \frac{\partial T}{\partial x_i} \tag{13-2}$$

where k is the thermal conductivity (SI unit: W/(m·K)). In a solid, the thermal conductivity can be anisotropic (that is, it has different values in different directions). Then k becomes a tensor

$$k = \begin{cases} k_{xx} k_{xy} k_{xz} \\ k_{yx} k_{yy} k_{yz} \\ k_{zx} k_{zy} k_{zz} \end{cases}$$

and the conductive heat flux is given by

$$q_i = -\sum_j k_{ij} \frac{\partial T}{\partial x_j}$$

The second term on the right of Equation 13-1 represents viscous heating of a fluid. An analogous term arises from the internal viscous damping of a solid. The operation ":" is a contraction and can in this case be written on the following form:

$$\mathbf{a}:\mathbf{b} = \sum_{n} \sum_{m} a_{nm} b_{nm}$$

The third term represents pressure work and is responsible for the heating of a fluid under adiabatic compression and for some thermoacoustic effects. It is generally small for low Mach number flows. A similar term can be included to account for thermoelastic effects in solids.

Inserting Equation 13-2 into Equation 13-1, reordering the terms and ignoring viscous heating and pressure work puts the heat equation into a more familiar form:

$$\rho C_p \frac{\partial T}{\partial t} + \rho C_p \mathbf{u} \cdot \nabla T = \nabla \cdot (k \nabla T) + Q$$

The Heat Transfer interface with the Heat Transfer in Fluids feature solves this equation for the temperature, T. If the velocity is set to zero, the equation governing pure conductive heat transfer is obtained:

$$\rho C_p \frac{\partial T}{\partial t} + \nabla \cdot (-k \nabla T) = Q$$

# A Note About Heat Flux

The concept of heat flux is not as simple as it might first appear. The reason is that heat is not a conserved property. The conserved property is instead the total energy. There is hence heat flux and energy flux which are similar, but not identical.

This section briefly describes the theory for the variables for *Total heat flux* and *Total energy flux*. The approximations made do not affect the computational results, only variables available for results analysis and visualization.

#### TOTAL ENERGY FLUX

The total energy flux for a fluid is equal to (Ref. 4, chapter 3.5)

$$\rho \mathbf{u}(H_0 + \Psi) - k\nabla T + \tau \cdot \mathbf{u} + q_r \tag{13-3}$$

Above,  $H_0$  is the total enthalpy

$$H_0 = H + \frac{1}{2}(\mathbf{u} \cdot \mathbf{u})$$

where in turn H is the enthalpy. In Equation 13-3  $\tau$  is the viscous stress tensor and  $q_r$  is the radiative heat flux.  $\Psi$  in Equation 13-3 is the force potential. It can be formulated in some special cases, for example, for gravitational effects (Chapter 1.4 in Ref. 4), but it is in general rather difficult to derive. Potential energy is therefore often excluded and the total energy flux is approximated by

$$\rho \mathbf{u} \left( H + \frac{1}{2} (\mathbf{u} \cdot \mathbf{u}) \right) - k \nabla T + \tau \cdot \mathbf{u} + q_{\mathrm{r}}$$
(13-4)

For a simple compressible fluid, the enthalpy, H, has the form (Ref. 5)

$$H = H_{\text{ref}} + \int_{T_{\text{ref}}}^{T} C_p dT + \int_{p_{\text{ref}}}^{p} \frac{1}{\rho} \left( 1 + \frac{T}{\rho} \left( \frac{\partial \rho}{\partial T} \right) \Big|_p \right) dp$$
(13-5)

where p is the absolute pressure. The reference enthalpy,  $H_{ref}$ , is the enthalpy at reference temperature,  $T_{ref}$ , and reference pressure,  $p_{ref}$ . In COMSOL,  $T_{ref}$  is 298.15 K and  $p_{ref}$  is one atmosphere. In theory, any value can be assigned to  $H_{ref}$  (Ref. 7), but for practical reasons, it is given a positive value according to the following approximations

- Solid materials and ideal gases:  $H_{ref} = C_{p, ref}T_{ref}$
- Gas/liquid:  $H_{ref} = (C_{p, ref} / \gamma_{ref}) T_{ref} + p_{ref} / \rho_{ref}$

where subscript "ref" indicates that the property is evaluated at the reference state.

The two integrals in Equation 13-5 are sometimes referred to as the *sensible enthalpy* (Ref. 7). These are evaluated in COMSOL by numerical integration. The second integral is only included for gas/liquid since it is commonly much smaller than the first integral for solids and it is identically zero for ideal gases.

For the evaluation of H to work, it is important that the dependence of  $C_p$ ,  $\rho$  and  $\gamma$  on the temperature are prescribed either via model input or as a function of the temperature variable. If  $C_p$ ,  $\rho$  or  $\gamma$  depend on the pressure, the dependency must be prescribed either via model input or by using the variable pA which is the variable for the absolute pressure.

#### HEAT FLUX

Note

The total heat flux vector is defined as (Ref. 6):

$$\rho \mathbf{u} U - k \nabla T + q_{\mathrm{r}} \tag{13-6}$$

where U is the internal energy. It is related to the enthalpy via

$$H = U + \frac{p}{\rho} \tag{13-7}$$

What is the difference between Equation 13-4 and Equation 13-7? As an example, consider a channel with fully developed incompressible flow with all properties of the fluid independent of pressure and temperature. The walls are assumed to be insulated. Assume that the viscous heating is neglected. This is a common approximation for low-speed flows.

There will be a pressure drop along the channel that drives the flow. Since there is no viscous heating and the walls are isolated, Equation 13-5 will give that  $H_{in}>H_{out}$ . Since everything else is constant, Equation 13-4 shows that the energy flux into the channel is higher than the energy flux out of the channel. On the other hand  $U_{in}=U_{out}$ , so the heat flux into the channel is equal to the heat flux going out of the channel.

If the viscous heating on the other hand is included, then  $H_{in}=H_{out}$  (first law of thermodynamics) and  $U_{in}<U_{out}$  (since work has been converted to heat).

# Heat Flux Variables and Heat Sources

This section lists some predefined variables that are available to compute heat fluxes and sources. All the variable names start with the physics interface prefix. By default the Heat Transfer interface prefix is ht. As an example, the variable named tflux can be analyzed using ht.tflux (as long as the physics interface prefix is ht).

VARIABLE	NAME	GEOMETRIC ENTITY LEVEL
tflux	Total heat flux	domains, boundaries
dflux	Conductive heat flux	domains, boundaries
turbflux	Turbulent heat flux	domains, boundaries
aflux	Convective heat flux	domain, boundaries
trlflux	Translation heat flux	domains, boundaries
teflux	Total energy flux	domains, boundaries
ccflux_u ccflux_d ccflux_z	Convective out-of-plane heat flux	out-of-plane domains (ID and 2D)
rflux_u rflux_d rflux_z	Radiative out-of-plane heat flux	out-of-plane domains (1D and 2D), boundaries
q0_u q0_d q0_z	Out-of-plane inward heat flux	out-of-plane domains (ID and 2D)

TABLE 13-1: HEAT FLUX VARIABLES

TABLE 13-1: HEAT FLUX VARIABLES

VARIABLE	NAME	GEOMETRIC ENTITY LEVEL
ntflux	Total normal heat flux	boundaries
ndflux	Normal conductive heat flux	boundaries
naflux	Normal convective heat flux	boundaries
ntrlflux	Normal translational heat flux	boundaries
nteflux	Normal total energy flux	boundaries
ccflux	Convective heat flux	boundaries
Qtot	Domain heat source	domains
Qbtot	Boundary heat source	boundaries
Ql	Line heat source	edges
Qp	Point heat source	points

#### DOMAIN HEAT FLUXES

On domains the heat fluxes are vector quantities. Their definition can vary depending on the active features and selected properties.

Total Heat Flux

On domains the total heat flux, tflux, corresponds to the conductive and convective heat flux. For accuracy reasons the radiative heat flux is not included.

<mark>т</mark>р

See Radiative Heat Flux to evaluate the radiative heat flux.

For solid domains, for example heat transfer in solids and biological tissue domains, the total heat flux is defined by:

$$tflux = trlflux + dflux$$

For fluid domains (for example, heat transfer in fluids), the total heat flux is defined by:

$$tflux = aflux + dflux$$

Conductive Heat Flux

The conductive heat flux variable, dflux is evaluated using the temperature gradient and the effective thermal conductivity:

dflux = 
$$-k_{\text{eff}} \nabla T$$

When out-of-plane property is activated (1D and 2D only) the conductive heat flux is defined by

dflux = 
$$-d_z k_{eff} \nabla T$$

in 2D ( $d_z$  is the domain thickness)

dflux = 
$$-A_c k_{eff} \nabla T$$

in 1D ( $A_c$  is the cross-section area)

In the general case  $k_{\text{eff}}$  is the thermal conductivity, k.

For heat transfer in fluids with turbulent flow  $k_{\text{eff}} = k + k_T$  where  $k_T$  is the turbulent thermal conductivity.

For heat transfer in porous media,  $k_{\text{eff}} = k_{\text{eq}}$  where  $k_{\text{eq}}$  is the equivalent conductivity defined in the Porous Matrix feature.

Turbulent Heat Flux

The turbulent heat flux variable turbflux enables to access the part of the conductive heat flux that is due to the turbulence.

turbflux = 
$$-k_T \nabla T$$

Convective Heat Flux

The conductive heat flux variable aflux is defined using the internal energy:

aflux = 
$$\rho \mathbf{u} E$$

When out-of-plane property is activated (1D and 2D only) the convective heat flux is defined as

aflux = 
$$d_z \rho \mathbf{u} E$$

in 2D ( $d_z$  is the domain thickness)

aflux = 
$$A_c \rho \mathbf{u} E$$

in 1D ( $A_c$  is the cross-section area)

*E* is the internal energy defined by:

- $E = C_p T$  for solid domains,
- $E = C_D T / \gamma$  for ideal gas fluid domains,

•  $E = H - p/\rho$  for other fluid domains.

H is the enthalpy defined by:

- $H = C_p T$  for solid domains,
- $H = C_p T + p/\rho$  for ideal gas fluid domains,
- $H = C_p T / \gamma + p / \rho$  for other fluid domains.

#### Translational Heat Flux

Similar to convective heat flux but defined for solid domains with translation. The variable name is trlflux.

Total Energy Flux

The total energy flux, teflux, is defined when viscous heating is enabled:

teflux = 
$$\rho \mathbf{u} H_0$$
 + dflux +  $\tau \cdot \mathbf{u}$ 

where the total enthalpy,  $H_0$ , is defined as:

$$H_0 = H + \frac{\mathbf{u} \cdot \mathbf{u}}{2}$$

Radiative Heat Flux

In participating media, the radiative heat flux,  $q_r$ , is not available for analysis on domains because it is much more accurate to evaluate

$$Q_r = \nabla \cdot q_r$$

the radiative heat source.

#### **OUT-OF-PLANE DOMAIN FLUXES**

When out-of-plane property is activated (1D and 2D only), out-of-plane domain fluxes are defined. If there are no out-of-plane features, they are evaluated to zero.

Convective Out-of-Plane Heat Flux

The convective out-of-plane heat flux, ceflux, is generated by the **Out-of-Plane** Convective Cooling feature.

In 2D:

upside: ccflux_u = 
$$h_u(T_{ext, u} - T)$$

downside: ccflux_d = 
$$h_d(T_{ext, d} - T)$$

In 1D:

$$\operatorname{ccflux}_z = h_z(T_{\operatorname{ext},z} - T)$$

Radiative Out-of-Plane Heat Flux

The radiative out-of-plane heat flux, rflux, is generated by the **Out-of-Plane Radiation** feature.

In 2D:

upside: rflux_u = 
$$\varepsilon_u \sigma(T_{\text{amb}, u}^4 - T^4)$$

downside: rflux_d = 
$$\varepsilon_d \sigma (T_{\text{amb}, d}^4 - T^4)$$

In 1D:

$$\operatorname{rflux}_z = \varepsilon_z \sigma(T_{\operatorname{amb}, z}^4 - T^4)$$

Out-of-Plane Inward Heat Flux

The convective out-of-plane heat flux, q0, is generated by the **Out-of-Plane Heat Flux** feature.

In 2D:

upside: 
$$q0_u = h_u(T_{\text{ext}, u} - T)$$
  
downside:  $q0_d = h_d(T_{\text{ext}, d} - T)$ 

In 1D:

$$q0_z = h_z(T_{\text{ext},z} - T)$$

#### **BOUNDARY HEAT FLUXES**

All the domain heat fluxes (vector quantity) are also available as boundary heat fluxes. The boundary heat fluxes are then equal to the mean value of the adjacent domains. In addition normal boundary heat fluxes (scalar quantity) are available on boundaries.

Total Normal Heat Flux The variable ntflux is defined by:

 $ntflux = mean(tflux) \cdot \mathbf{n}$ 

Normal Conductive Heat Flux The variable ndflux is defined by:

 $ndflux = mean(dflux) \cdot n$ 

Normal Convective Heat Flux The variable naflux is defined by:

naflux = mean(aflux)  $\cdot$  **n** 

Normal Translational Heat Flux The variable ntrlflux is defined by:

 $ntrlflux = mean(trlflux) \cdot \mathbf{n}$ 

Normal Total Energy Flux The variable nteflux is defined by:

 $nteflux = mean(teflux) \cdot \mathbf{n}$ 

Radiative Heat Flux

On boundaries the radiative heat flux, rflux, is a scalar quantity defined as:

rflux = 
$$\varepsilon \sigma (T_{amb}^4 - T^4) + \varepsilon \sigma (G - T^4) + q_w$$

where the terms respectively account for surface-to-ambient radiative flux, surface-to-surface radiative flux and radiation in participating net flux.

Convective Heat Flux

Convective heat flux, ccflux, is defined as the contribution from **Convective Cooling** boundary condition:

$$\operatorname{ccflux} = h(T_{ext} - T)$$

When out-of-plane property is activated (1D and 2D only) the convective cooling heat flux is defined as

in 2D ( $d_z$  is the domain thickness):

$$\operatorname{ccflux} = d_z h(T_{\operatorname{ext}} - T)$$

in 1D ( $A_c$  is the cross section area):

$$\operatorname{ccflux} = A_c h(T_{\operatorname{ext}} - T)$$

#### DOMAIN HEAT SOURCES

The sum of the domain heat sources added by different features are available in one variable,  $Q_{\text{tot}}$  (SI unit: W/m³). This variable Qtot is the sum of:

- Q which is the heat source added by Heat Source and Electromagnetic Heat Source features.
- Q_{met} which is the heat source added by the **Bioheat** feature.



The out-of-plane contributions (convective cooling, heat flux, and radiation), and the blood contribution in **Bioheat** are considered flux so that they are not added to  $Q_{\text{tot}}$ .

#### **BOUNDARY HEAT SOURCES**

The sum of the boundary heat sources added by different boundary conditions is available in one variable,  $Q_{\rm h \ tot}$  (SI unit: W/m²). This variable Qbtot is the sum of:

- $Q_{\rm b}$  which is the boundary heat source added by Boundary heat Source, Electrochemical reaction heat flux and Reaction heat flux boundary conditions.
- $Q_{sh}$  which is the boundary heat source added by Boundary Electromagnetic Heat Source boundary condition.
- $Q_{\rm s}$ : which is the boundary heat source added by Layer heat source subfeature of Highly conductive layer.

#### LINE AND POINT HEAT SOURCES

The sum of the line heat sources is available in a variable called Q1 (SI unit: W/m).

The sum of the point heat sources is available in a variable called Qp (SI unit: W).



In 2D axisymmetric models, the SI unit for the variable Qp is W/m.

#### TEMPERATURE AND HEAT FLUX BOUNDARY CONDITIONS

The heat equation accepts two basic types of boundary conditions: *specified temperature* and *specified heat flux*. The former is of a constraint type and prescribes the temperature at a boundary:

$$T = T_0$$
 on  $\partial \Omega$ 

while the latter specifies the inward heat flux

$$-\mathbf{n} \cdot \mathbf{q} = q_0 \qquad \text{on } \partial \Omega$$

where

- **q** is the conductive heat flux vector (SI unit:  $W/m^2$ ) where **q** =  $-k\nabla T$ .
- **n** is the normal vector of the boundary.
- $q_0$  is inward heat flux (SI unit: W/m²), normal to the boundary.

The inward heat flux,  $q_0$ , is often a sum of contributions from different heat transfer processes (for example, radiation and convection). The special case  $q_0 = 0$  is called *thermal insulation*.

A common type of heat flux boundary conditions are those where  $q_0 = h \cdot (T_{inf} - T)$ , where  $T_{inf}$  is the temperature far away from the modeled domain and the heat transfer coefficient, h, represents all the physics occurring between the boundary and "far away." It can include almost anything, but the most common situation is that h represents the effect of an exterior fluid cooling or heating the surface of solid, a phenomenon often referred to as convective cooling or heating.

#### OVERRIDING MECHANISM FOR HEAT TRANSFER BOUNDARY CONDITIONS

Many boundary conditions are available in heat transfer. Some of them can be associated (for example, Heat Flux and Highly Conductive Layer). Others cannot be associated (for example, Heat Flux and Thermal Insulation).

Several categories of boundary condition exist in heat transfer. Table 13-2 gives the overriding rules for these groups.

- · Temperature, Convective Outflow, Open Boundary, Inflow Heat Flux
- Thermal Insulation, Symmetry, Periodic Heat Condition
- Highly Conductive Layer

- Heat Flux, Convective Cooling, Electrochemical Reaction Heat Flux, Reaction
  Heat Flux
- Boundary Heat Source, Radiation Group
- Surface-to-Surface Radiation, Re-radiating Surface, Prescribed Radiosity, Surface-to-Ambient Radiation
- · Opaque Surface, Incident Intensity, Continuity on interior boundaries
- Thin Thermally Resistive Layers

A\B	I	2	3	4	5	6	7	8
I-Temperature	х	Х	Х					Х
2-Thermal Insulation	х	Х				Х		
3-Highly Conductive Layer	х		х					
4-Heat Flux	х	Х						
5-Boundary heat source								
6-Surface-to-surface radiation		х				х		
7-Opaque Surface							х	
8-Thin Thermally Resistive Layer	х							х

TABLE 13-2: OVERRIDING RULES FOR HEAT TRANSFER BOUNDARY CONDITIONS

When there is a boundary condition A above a boundary condition B in the model tree and both conditions apply to the same boundary, use Table 13-2 to determine if A is overridden by B or not:

- Locate the line that corresponds to *A* group (see above the definition of the groups). In the table above only the first member of the group is displayed.
- Locate the column that corresponds to the group of *B*.
- If the corresponding cell is empty *A* and *B* contribute. If it contains an X, *B* overrides A.

\rm 🕕 Important Group 4 and group 5 boundary conditions are always contributing. That means that they never override any other boundary condition. But they might be overridden.

#### Example 1

Consider a boundary where Temperature is applied. Then a Surface-to-surface Radiation boundary condition is applied on the same boundary afterward.

- Temperature belongs to group 1
- Surface-to-surface radiation belongs to group 6.
- The cell on the line of group 1 and the column of group 6 is empty so Temperature and Surface-to-Surface radiation contribute.

#### Example 2

Consider a boundary where Convective Cooling is applied. Then a Symmetry boundary condition is applied on the same boundary afterward.

- Convective Cooling belongs to group 4.
- Symmetry belongs to group 2
- The cell on the line of group 4 and the column of group 2 contains an X so Convective Cooling is overridden by Symmetry.



In Example 2 above, if Symmetry followed by Convective Cooling is added, the boundary conditions contribute.

# Radiative Heat Transfer in Transparent Media

This discussion so far has considered heat transfer by means of conduction and convection. The third mechanism for heat transfer is radiation. Consider an environment with fully transparent or fully opaque objects. Thermal radiation denotes the stream of electromagnetic waves emitted from a body at a certain temperature.

#### DERIVING THE RADIATIVE HEAT FLUX



Figure 13-1: Arriving irradiation (left), leaving radiosity (right).

Consider Figure 13-1. A point  $\overline{x}$  is located on a surface that has an emissivity  $\varepsilon$ , reflectivity  $\rho$ , absorptivity  $\alpha$ , and temperature *T*. Assume the body is opaque, which means that no radiation is transmitted through the body. This is true for most solid bodies.

The total *arriving* radiative flux at  $\overline{x}$  is named the irradiation, G. The total outgoing radiative flux  $\overline{x}$  is named the radiosity, J. The radiosity is the sum of the reflected radiation and the emitted radiation:

$$J = \rho G + \varepsilon \sigma T^4 \tag{13-8}$$

The net inward radiative heat flux, q, is then given the difference between the irradiation and the radiosity:

$$q = G - J \tag{13-9}$$

Using Equation 13-8 and Equation 13-9 J can be eliminated and a general expression is obtained for the net inward heat flux into the opaque body based on G and T.

$$q = (1 - \rho)G - \varepsilon \sigma T^4 \tag{13-10}$$

Most opaque bodies also behave as ideal gray bodies, meaning that the absorptivity and emissivity are equal, and the reflectivity is therefore given from the following relation:

$$\alpha = \varepsilon = 1 - \rho \tag{13-11}$$

Thus, for ideal gray bodies, q is given by:

$$q = \varepsilon (G - \sigma T^4) \tag{13-12}$$

This is the equation used as a radiation boundary condition.

#### RADIATION TYPES

It is common to differentiate between two types of radiative heat transfer: *surface-to-ambient* radiation and *surface-to-surface* radiation. Equation 13-12 holds for both radiation types, but the irradiation term, G, is different for each of them. The Heat Transfer interface supports radiation.

#### SURFACE-TO-AMBIENT RADIATION

Surface-to-ambient radiation assumes the following:

- The ambient surroundings in view of the surface have a constant temperature,  $T_{\rm amb}$ .
- The ambient surroundings behave as a blackbody. This means that the emissivity and absorptivity are equal to 1, and zero reflectivity.

These assumptions allows the irradiation to be explicitly expressed as

$$G = \sigma T_{\rm amb}^4 \tag{13-13}$$

Inserting Equation 13-13 into Equation 13-12 results in the net inward heat flux for surface-to-ambient radiation

$$q = \varepsilon \sigma (T_{\rm amb}^4 - T^4) \tag{13-14}$$

For boundaries where a surface-to-ambient radiation is specified, COMSOL Multiphysics adds this term to the right-hand side of Equation 13-14.

# Consistent and Inconsistent Stabilization Methods for the Heat Transfer Interfaces

Several of the Heat Transfer interfaces have this advanced option to set the stabilization method parameters. Below is some information pertaining to these options.

To display this section, click the Show button ( $b_{\overline{a}}$ ) and select Stabilization.



- Show Stabilization
- Stabilization Techniques and Numerical Stabilization in the COMSOL Multiphysics Reference Guide

#### CONSISTENT STABILIZATION

This section contains two consistent stabilization methods: streamline diffusion and crosswind diffusion. These are consistent stabilization methods, which means that they do not perturb the original transport equation.

The consistent stabilization methods take effect for fluids and for solids with Translational Motion. A stabilization method is active when the corresponding check box is selected.

#### Streamline Diffusion

Streamline diffusion is active by default and should remain active for optimal performance for heat transfer in fluids or other applications that include a convective or translational term.

#### Crosswind Diffusion

The crosswind diffusion provides extra diffusion in the region of sharp gradients. The added diffusion is orthogonal to the streamline diffusion, so streamline diffusion and crosswind diffusion can be used simultaneously.

When **Crosswind diffusion** is selected, enter a **Lower gradient limit**  $\mathbf{g}_{\text{lim}}$  (SI unit: K/m). The default is 0.01[K]/jh.helem. The variable  $\mathbf{g}_{\text{lim}}$  is needed because both Equation 13-15 and Equation 13-16 contain terms of the form  $1/|\nabla T|$ , which become singular if  $\nabla T = 0$ . Hence, all occurrences of  $1/|\nabla T|$  are replaced by  $1/\max(|\nabla T|, g_{\text{lim}})$  where  $g_{\text{lim}}$  is a measure of a small gradient.

The method in the Heat Transfer interfaces adds the following contribution to the weak formulation (see Codina in Ref. 2):

$$-\sum_{e=1}^{N_{el}} \int_{\Omega^{e}} \frac{1}{2} \max\left(0, C^{e} - \frac{2k}{h|\boldsymbol{\beta}|}\right) \frac{h|\boldsymbol{R}|}{|\nabla T|} \hat{\nabla T} \left(I - \frac{\mathbf{u} \otimes \mathbf{u}}{|\mathbf{u}|^{2}}\right) \nabla T d\Omega$$
(13-15)

where *R* is the PDE residual, *T* is the test function for *T*, *h* is the element size, and  $\beta$  is defined as

$$\beta = \begin{cases} \frac{\rho C_p(\mathbf{u} \cdot \nabla T)}{|\nabla T|^2} \nabla T & \text{if } \nabla T \neq 0 \\ 0 & \text{if } \nabla T = 0 \end{cases}$$
(13-16)

#### INCONSISTENT STABILIZATION

This section contains one inconsistent stabilization method: isotropic diffusion. Adding isotropic diffusion is equivalent to adding a term to the physical diffusion coefficient. This means that the original problem is not solved, which is why isotropic diffusion is an inconsistent stabilization method. Still, the added diffusion definitely dampens the effects of oscillations, but try to minimize the use of isotropic diffusion.

By default there is no isotropic diffusion. To add isotropic diffusion, select the **Isotropic diffusion** check box. The field for the tuning parameter  $\delta_{id}$  then becomes available. The default value is 0.25; increase or decrease the value of  $\delta_{id}$  to increase or decrease the amount of isotropic stabilization.

#### References for the Heat Transfer Interfaces

1. F.P. Incropera and D.P. DeWitt, *Fundamentals of Heat and Mass Transfer*, 4th ed., John Wiley & Sons, 1996.

2. R. Codina, "Comparison of Some Finite Element Methods for Solving the Diffusion-Convection-Reaction Equation," *Comp. Meth.Appl. Mech. Engrg*, vol. 156, pp. 185–210, 1998.

3. A. Bejan, Heat Transfer, Wiley, 1993.

4. G.K. Batchelor, *An Introduction to Fluid Dynamics*, Cambridge University Press, 2000.

5. R.L. Panton, Incompressible Flow, 2nd ed., John Wiley & Sons, 1996.

6. M. Kaviany, Principles of Convective Heat Transfer, 2nd ed., Springer, 2001.

7. T. Poinsot and D. Veynante, *Theoretical and Numerical Combustion*, Second Edition, Edwards, 2005.

# The Heat Transfer Interface

The **Heat Transfer (ht)** interface is available in many forms and each one has the equations, boundary conditions, and sources for modeling conductive and convective heat transfer, and solving for the temperature.

When this interface is added, default nodes are added to the **Model Builder** based on the selection made in the **Model Wizard—Heat Transfer in Solids** or **Heat Transfer in Fluids**, **Thermal Insulation** (the default boundary condition), and **Initial Values**.Right-click the **Heat Transfer** node to add other features that implement, for example, boundary conditions and sources.

#### INTERFACE IDENTIFIER

The interface identifier is a text string that can be used to reference the respective physics interface if appropriate. Such situations could occur when coupling this interface to another physics interface, or when trying to identify and use variables defined by this physics interface, which is used to reach the fields and variables in expressions, for example. It can be changed to any unique string in the **Identifier** field.

The default identifier (for the first interface in the model) is ht.



About the Heat Transfer Interfaces

#### DOMAIN SELECTION

The default setting is to include **All domains** in the model to define heat transfer and a temperature field. To choose specific domains, select **Manual** from the **Selection** list.

#### PHYSICAL MODEL

Select a Default model— Heat transfer in solids or Heat transfer in fluids.

#### DEPENDENT VARIABLES

The **Heat Transfer** interface has a dependent variable for the **Temperature** *T*. The dependent variable names can be changed. Editing the name of a scalar dependent variable changes both its field name and the dependent variable name. If a new field name coincides with the name of another field of the same type, the fields will share

degrees of freedom and dependent variable names. A new field name must not coincide with the name of a field of another type, or with a component name belonging to some other field.

#### ADVANCED SETTINGS

To display this section, click the **Show** button ( $rac{1}{20}$ ) and select **Advanced Physics Options**. Normally these settings do not need to be changed.

#### DISCRETIZATION

To display this section, click the Show button ( $b_{\overline{a}}$ ) and select Discretization.

Select a Temperature—Quadratic (the default), Linear, Cubic, or Quartic. Select an element order for the Surface Radiosity—Linear (the default), Quadratic, Cubic, or Quartic. Specify the Value type when using splitting of complex variables—Real (the default) or Complex.

#### CONSISTENT AND INCONSISTENT STABILIZATION

To display this section, click the **Show** button ( $rac{1}{50}$ ) and select **Stabilization**. The **Streamline diffusion** check box is selected by default and should remain selected for optimal performance for heat transfer in fluids or other applications that include a convective or translational term. **Crosswind diffusion** provides extra diffusion in the region of sharp gradients. The added diffusion is orthogonal to the streamline diffusion, so streamline diffusion and crosswind diffusion can be used simultaneously.

If Crosswind diffusion is selected, enter a Lower gradient limit  $g_{lim}$  (SI unit: K/m). The default is 0.01[K]/ht.helem.

- Show More Physics Options
- Domain, Boundary, Edge, Point, and Pair Features for the Heat Transfer Interfaces



- Show Stabilization
- Consistent and Inconsistent Stabilization Methods for the Heat Transfer Interfaces
- Theory for the Heat Transfer Interfaces

# Domain, Boundary, Edge, Point, and Pair Features for the Heat Transfer Interfaces

The Heat Transfer Interface has these domain, boundary, edge, point, and pair conditions available (listed in alphabetical order):

- Boundary Heat Source
- Continuity on Interior Boundary
- Continuity
- Heat Flux
- Heat Source
- Heat Transfer in Fluids
- Heat Transfer in Solids
- Initial Values
- Line Heat Source
- Outflow
- Pair Boundary Heat Source
- Pair Thin Thermally Resistive Layer
- Periodic Heat Condition
- Point Heat Source
- Reaction Heat Flux
- Surface-to-Ambient Radiation
- Symmetry
- Temperature
- Thermal Insulation (the default boundary condition)
- Thin Thermally Resistive Layer
- Translational Motion



For axisymmetric models, COMSOL Multiphysics takes the axial symmetry boundaries into account and automatically adds an **Axial Symmetry** node to the model that is valid on the axial symmetry boundaries only.

To locate and search all the documentation, in COMSOL, select **Help>Documentation** from the main menu and either enter a search term or look under a specific module in the documentation tree.

# Heat Transfer in Solids

The **Heat Transfer in Solids** model uses the heat equation version in Equation 13-17 as the mathematical model for heat transfer in solids:

$$\rho C_p \frac{\partial T}{\partial t} - \nabla \cdot (k \nabla T) = Q \qquad (13-17)$$

For a steady-state problem the temperature does not change with time and the first term disappears. It has these material properties: density  $\rho$ , heat capacity  $C_p$ , thermal conductivity k (a scalar or a tensor if the thermal conductivity is anisotropic), and Q, which is the heat source (or sink)—one or more heat sources can be added separately.

When parts of the model (for example, a heat source) are moving, right-click the **Heat Transfer in Solids** node to add a Translational Motion feature to take this into account.

#### DOMAIN SELECTION



2D Heat Transfer Benchmark with Convective Cooling: Model Library path COMSOL_Multiphysics/Heat_Transfer/heat_convection_2d

From the **Selection** list, choose the domains to define the heat transfer. The default is to use all domains.

#### MODEL INPUTS

This section contains fields and values that are inputs to expressions that define material properties. If such user-defined materials are added, the model inputs appear here. Initially, this section is empty.

#### COORDINATE SYSTEM SELECTION

The **Global coordinate system** is selected by default. The **Coordinate system** list contains any additional coordinate systems that the model includes (except boundary coordinate systems). The coordinate system is used for interpreting directions of orthotropic and anisotropic thermal conductivity.

#### HEAT CONDUCTION

The default setting is to use the **Thermal conductivity** k (SI unit: W/(m·K)) **From material**. If **User defined** is selected, choose **Isotropic**, **Diagonal**, **Symmetric**, or **Anisotropic** based on the characteristics of the thermal conductivity, and enter another value or expression.

The thermal conductivity describes the relationship between the heat flux vector  $\mathbf{q}$  and the temperature gradient  $\nabla T$  as in  $\mathbf{q} = -k\nabla T$ , which is Fourier's law of heat conduction. Enter this quantity as power per length and temperature.

The components of a thermal conductivity k in the case that it is a tensor  $(k_{xx}, k_{yy})$ , and so on) are available as ht.kxx, ht.kyy, and so on (using the default Heat Transfer interface identifier ht). The single scalar mean effective thermal conductivity ht.kmean is the mean value of the diagonal elements  $k_{xx}$ ,  $k_{yy}$ , and  $k_{zz}$ .

#### THERMODYNAMICS

The default **Density**  $\rho$  (SI unit: kg/m³) and **Heat capacity at constant pressure**  $C_{\rm p}$  (SI unit: J/(kg·K)) use values **From material**. Select **User defined** to enter other values or expressions. The heat capacity at constant pressure describes the amount of heat energy required to produce a unit temperature change in a unit mass.



Axisymmetric Transient Heat Transfer: Model Library path COMSOL_Multiphysics/Heat_Transfer/heat_transient_axi

# Translational Motion

The **Translational Motion** node provides movement by translation to model heat transfer in solids. It adds the following contribution to the right-hand side of Equation 13-17:

 $-\rho C_{p} \mathbf{u} \cdot \nabla T$ 

The contribution describes the effect of a moving coordinate system that is required to model, for example, a moving heat source.



Special care must be taken at boundaries where  $\mathbf{n} \cdot \mathbf{u} \neq 0$ . The Heat Flux boundary condition does not, for example, work at boundaries where  $\mathbf{n} \cdot \mathbf{u} < 0$ .

#### DOMAIN SELECTION

From the Selection list, choose the domains to prescribe a translational motion.



By default, the selection is the same as for the **Heat Transfer in Solids** node that it is attached to, but it is possible to use more than one **Heat Translation** subnode, each covering a subset of the **Heat Transfer in Solids** node's selection.

#### TRANSLATIONAL MOTION

Enter component values for x, y, and z (in 3D) for the **Velocity field u**_{trans} (SI unit: m/s).

# Heat Transfer in Fluids

The **Heat Transfer in Fluids** model uses the following version of the heat equation as the mathematical model for heat transfer in fluids:

$$\rho C_p \frac{\partial T}{\partial t} + \rho C_p \mathbf{u} \cdot \nabla T = \nabla \cdot (k \nabla T) + Q$$
(13-18)

For a steady-state problem the temperature does not change with time and the first term disappears. It has these material properties:

- The density  $(\rho)$
- The fluid heat capacity at constant pressure  $(C_p)$ —describes the amount of heat energy required to produce a unit temperature change in a unit mass
- The fluid thermal conductivity (*k*)—a scalar or a tensor if the thermal conductivity is anisotropic

- The fluid velocity field (**u**)—can be an analytic expression or a velocity field from a fluid-flow interface
- The heat source (or sink) (Q)—one or more heat sources can be added separately

Also, the *ratio of specific heats*  $\gamma$  is defined. It is the ratio of heat capacity at constant pressure,  $C_p$ , to heat capacity at constant volume,  $C_v$ . When using the ideal gas law to describe a fluid, specifying  $\gamma$  is enough to evaluate  $C_p$ . For common diatomic gases such as air,  $\gamma = 1.4$  is the standard value. Most liquids have  $\gamma = 1.1$  while water has  $\gamma = 1.0$ .  $\gamma$  is used in the streamline stabilization and in the variables for heat fluxes and total energy fluxes.



Heat Transfer by Free Convection: Model Library path COMSOL_Multiphysics/Multiphysics/free_convection

#### DOMAIN SELECTION

From the Selection list, choose the domains to define the heat transfer.

#### MODEL INPUTS

This section has fields and values that are inputs to expressions that define material properties. If such user-defined property groups are added, the model inputs appear here.

There are also two standard model inputs—**Absolute pressure** and **Velocity field**. The absolute pressure is used in some predefined quantities that include the enthalpy (the energy flux, for example).

#### Absolute Pressure

Enter the **Absolute pressure**  $p_A$  (SI unit: Pa). The default is atmosphere pressure, 1 atm (101,325 Pa).

This section controls both the variable as well as any property value (reference pressures) used when solving for pressure. There are usually two ways of calculating the pressure when describing fluid flow, and mass and heat transfer. Solve for the absolute pressure or a pressure (often denoted gauge pressure) that relates back to the absolute pressure through a reference pressure.

Using one or the other usually depends on the system and the equations being solved for. For example, in a straight incompressible flow problem, the pressure drop over the modeled domain is probably many orders of magnitude less than atmospheric pressure, which, if included, reduces the chances for stability and convergence during the solving process for this variable. In other cases, the absolute pressure may be required to be solved for, such as where pressure is a part of an expression for gas volume or diffusion coefficients.

The absolute pressure model input is controlled by both a drop-down list and a check box within this section. Use the **User defined** option to manually define the absolute pressure in a system. This is the default setting.

The pressure variables solved for by a fluid-flow interface can also be used, which is selected from the list as, for example, **Pressure spf/fp**. Selecting a pressure variable also activates a check box for defining the reference pressure, where 1[atm] (l atmosphere) is the default value. This makes it possible to use a system-based (gauge) pressure as the pressure variable while automatically including the reference pressure in places where it is required, such as for gas flow governed by the gas law. While this check box maintains control over the pressure variable and instances where absolute pressure is required within this respective physics interface, it may not with physics interfaces that being coupled to. In such models, check the coupling between any interfaces using the same variable.

#### Velocity Field

From the **Velocity field** list, select an existing velocity field in the model (for example, **Velocity field (spf/fp1)** from a Laminar Flow interface) or select **User defined** to enter values or expressions for the components of the **Velocity field** (SI unit: m/s).

#### COORDINATE SYSTEM SELECTION

The **Global coordinate system** is selected by default. The **Coordinate system** list contains any additional coordinate systems that the model includes (except boundary coordinate systems). The coordinate system is used for interpreting directions of orthotropic and anisotropic thermal conductivity.

#### HEAT CONDUCTION

The default **Thermal conductivity** k (SI unit:  $W/(m \cdot K)$ ) is taken **From material**. If **User defined** is selected, choose **Isotropic**, **Diagonal**, **Symmetric**, or **Anisotropic** based on the characteristics of the thermal conductivity, and enter another value or expression.

The thermal conductivity describes the relationship between the heat flux vector  $\mathbf{q}$  and the temperature gradient  $\nabla T$  as in  $\mathbf{q} = -k\nabla T$  which is Fourier's law of heat conduction. Enter this quantity as power per length and temperature.

#### THERMODYNAMICS

The default **Density**  $\rho$  (SI unit: kg/m³), **Heat capacity at constant pressure**  $C_P$  (SI unit: J/(kg·K)), and **Ratio of specific heats**  $\gamma$ (unitless) for a general gas or liquid use values **From material**. Select **User defined** to enter other values or expressions.

# Heat Source

The **Heat Source** describes heat generation within the domain. Express heating and cooling with positive and negative values, respectively. Add one or more nodes as required—all heat sources within a domain contribute to the total heat source. Specify the heat source as the heat per volume in the domain, as linear heat source, or as a total heat source (power).

#### DOMAIN SELECTION

From the Selection list, choose the domains to add the heat source.

#### HEAT SOURCE

Click the General source, Linear source, or Total power button.



For the **Heat Transfer in Porous Media** interface, and for the Batteries & Fuel Cells Module, Corrosion Module, or Electrodeposition Module, when **General Source** is selected, heat sources from the electrochemical current distribution interfaces are also made available in the list under Heat Source. Choose the appropriate one or **User defined** to defined your own.

- If General source is selected, enter a value for the distributed heat source Q (SI unit: W/m³).
- If **Total power** is selected, enter the total power (total heat source)  $P_{\text{tot}}$  (SI unit: W).
- If Linear source  $(Q = q_s \cdot T)$  is selected, enter the Production/absorption coefficient  $q_s$  (SI unit: W/(m³·K)).

The advantage of writing the source in this form is that it can be stabilized by the streamline diffusion. The theory covers  $q_s$  that is independent of the temperature, but some stability can be gained as long as  $q_s$  is only weakly dependent on the temperature.

8

Тib

# COL See Also

# Initial Values

The **Initial Values** node adds an initial value for the temperature that can serve as an initial condition for a transient simulation or as an initial guess for a nonlinear solver. Right-click to add additional **Initial Values** nodes.

#### DOMAIN SELECTION

From the Selection list, choose the domains to define an initial value.

#### INITIAL VALUES

Enter a value or expression for the initial value of the **Temperature** T (SI unit: K). The default value is approximately room temperature, 293.15 K (20 °C).

## Temperature

Use the **Temperature** node to specify the temperature somewhere in the geometry; for example, on boundaries.

#### **BOUNDARY SELECTION**

From the Selection list, choose the boundaries to apply a temperature.

#### TEMPERATURE

The equation for this condition is  $T = T_0$  where  $T_0$  is the prescribed temperature on the boundary. Enter the value or expression for the **Temperature**  $T_0$  (SI unit: K). The default is 293.15 K.

#### CONSTRAINT SETTINGS

To display this section, click the Show button ( $r_{\overline{\infty}}$ ) and select Advanced Physics Options. By default Classic constraints is selected. If required, select the Use weak constraints check box.

Use **Discontinuous Galerkin constraints** as an alternative to the **Classic constraints** when it does not work satisfactorily. This option is especially useful to prevent oscillations on inlet boundaries where convection dominates.

Unlike the **Classic constraints**, these constraints do not enforce the temperature on the boundary extremities. This is relevant on fluid inlets where the temperature may not be enforced on the walls at the inlet extremities.

# Thermal Insulation

The **Thermal Insulation** node is the default boundary condition for all heat transfer interfaces. This boundary condition means that there is no heat flux across the boundary:

$$\mathbf{n} \cdot (k \nabla T) = 0$$

This condition specifies where the domain is well insulated. Intuitively this equation says that the temperature gradient across the boundary must be zero. For this to be true, the temperature on one side of the boundary must equal the temperature on the other side. Because there is no temperature difference across the boundary, heat cannot transfer across it.

An interesting numerical check for convergence is the numerical evaluation of the thermal insulation condition along the boundary. Another check is to plot the temperature field as a contour plot. Ideally the contour lines are perpendicular to any insulated boundary.

#### **BOUNDARY SELECTION**



The default **Thermal Insulation** feature does not require any user input. If required, add more features by right-clicking the **Heat Transfer** node and selecting the boundaries to apply the thermal insulation.

#### Outflow

The **Outflow** node provides a suitable boundary condition for convection-dominated heat transfer at outlet boundaries. In a model with convective heat transfer, this condition states that the only heat transfer over a boundary is by convection. The temperature gradient in the normal direction is zero, and there is no radiation. This is usually a good approximation of the conditions at an outlet boundary in a heat transfer model with fluid flow.

#### **BOUNDARY SELECTION**

The **Outflow** node does not usually require any user input. If required, select the boundaries that are convection-dominated outlet boundaries.

#### Symmetry

The **Symmetry** node provides a boundary condition for symmetry boundaries. This boundary condition is similar to an insulation condition, and it means that there is no heat flux across the boundary.

#### **BOUNDARY SELECTION**



In most cases, the **Symmetry** node does not require any user input. If required, define the symmetry boundaries.

# Heat Flux

Use the **Heat Flux** node to add heat flux across boundaries. A positive heat flux adds heat to the domain. This feature is not applicable to inlet boundaries.

#### **BOUNDARY SELECTION**

From the Selection list, choose the boundaries to add the heat flux contribution.

#### PAIR SELECTION

If **Heat Flux** is selected from the **Pairs** menu, choose the pair to define. An identity pair has to be created first. Ctrl-click to deselect.

#### HEAT FLUX

Click one of the General inward heat flux, Inward heat flux, or Total heat flux buttons.

- If General inward heat flux  $q_0$  (SI unit: W/m²) is selected, it adds to the total flux across the selected boundaries. Enter a value for  $q_0$  to represent a heat flux that enters the domain. For example, any electric heater is well represented by this condition, and its geometry can be omitted.
- If **Inward heat flux** is selected, enter the **Heat transfer coefficient** h (SI unit: W/ (m²·K)). The default is 0. Also enter an **External temperature**  $T_{\text{ext}}$  (SI unit: K). The

default is 293.15 K. The value depends on the geometry and the ambient flow conditions. Inward heat flux is defined by this equation:

$$q_0 = h(T_{\text{ext}} - T)$$

For a thorough introduction about how to calculate heat transfer coefficients, see Incropera and DeWitt in Ref. 1.

• If **Total heat flux** is selected, enter the total heat flux  $q_{tot}$  (SI unit: W) for the total heat flux across the boundaries where the **Heat Flux** node is active.

# Surface-to-Ambient Radiation

Use the **Surface-to-Ambient Radiation** boundary condition to add surface-to-ambient radiation to boundaries. The net inward heat flux from surface-to-ambient radiation is

$$q = \varepsilon \sigma (T_{\rm amb}^4 - T^4)$$

where  $\varepsilon$  is the surface emissivity,  $\sigma$  is the Stefan-Boltzmann constant (a predefined physical constant), and  $T_{\text{amb}}$  is the ambient temperature.

#### **BOUNDARY SELECTION**

From the **Selection** list, choose the boundaries to add surface-to-ambient radiation contribution.

#### SURFACE-TO-AMBIENT RADIATION

The default **Surface emissivity** e (a dimensionless number between 0 and 1) is taken **From material**. An emissivity of 0 means that the surface emits no radiation at all and an emissivity of 1 means that it is a perfect blackbody.

Enter an Ambient temperature  $T_{\text{amb}}$  (SI unit: K). The default is 293.15 K.

# Periodic Heat Condition

Use the **Periodic Heat Condition** node to add a periodic heat condition to boundaries. Right-click the node to add a **Destination Selection** feature.

#### **BOUNDARY SELECTION**

From the Selection list, choose the boundaries to add a periodic heat condition.

- Periodic Condition
  Destination Selection
  Using Periodic Boundary Conditions
  - Periodic Boundary Condition Example

#### Boundary Heat Source

The **Boundary Heat Source** node models a heat source (or heat sink) that is embedded in the boundary.

#### **BOUNDARY SELECTION**

From the Selection list, choose the boundaries to apply the heat source.

#### **BOUNDARY HEAT SOURCE**

Click the General source or Total boundary power button.

- If General source is selected, enter the boundary heat source  $Q_b$  (SI unit: W/m²). A positive  $Q_b$  is heating and a negative  $Q_b$  is cooling. The default is 0.
- If **Total boundary power** is selected, enter the total power (total heat source) *P*_{b,tot} (SI unit: W).

# Pair Boundary Heat Source

The **Pair Boundary Heat Source** node models a heat source (or heat sink) that is embedded in the boundary. It also prescribes that the temperature field is continuous across the pair.

#### **BOUNDARY SELECTION**

From the **Selection** list, choose the boundaries to apply the heat source.

#### PAIR SELECTION

When **Pair Boundary Heat Source** is selected from the **Pairs** menu, choose the pair to define. An identity pair has to be created first. Ctrl-click to deselect.

#### **BOUNDARY HEAT SOURCE**

Click the General source or Total boundary power button.

- If General source is selected, enter the boundary heat source  $Q_b$  (SI unit: W/m²). A positive  $Q_b$  is heating and a negative  $Q_b$  is cooling. The default is 0.
- If **Total boundary power** is selected, enter the total power (total heat source)  $P_{b,tot}$  (SI unit: W).

#### Continuity

The **Continuity** node can be added to pairs. It prescribes that the temperature field is continuous across the pair. **Continuity** is only suitable for pairs where the boundaries match.

#### **BOUNDARY SELECTION**

The selection list in this section shows the boundaries for the selected pairs.

#### PAIR SELECTION

When **Continuity** is selected from the **Pairs** menu, choose the pair to define. An identity pair has to be created first. Ctrl-click to deselect.



• Identity and Contact Pairs

• Specifying Boundary Conditions for Identity Pairs

# Pair Thin Thermally Resistive Layer

Use the **Pair Thin Thermally Resistive Layer** node to define the thickness and thermal conductivity of a resistive material located on boundaries. It can be added to pairs.

The heat flux across the Pair Thin Thermally Resistive Layer is defined by

$$-\mathbf{n}_{d} \cdot (-k_{d} \nabla T_{d}) = -k_{s} \frac{T_{u} - T_{d}}{d_{s}}$$
$$-\mathbf{n}_{u} \cdot (-k_{u} \nabla T_{u}) = -k_{s} \frac{T_{d} - T_{u}}{d_{s}}$$

where u and d subscript refer respectively to the upside and the downside of the pair.

#### **BOUNDARY SELECTION**

The selection list in this section shows the boundaries for the selected pairs.

#### PAIR SELECTION

When **Pair Thin Thermally Resistive Layer** is selected from the **Pairs** menu, choose the pair to define. An identity pair has to be created first. Ctrl-click to deselect.

#### PAIR THIN THERMALLY RESISTIVE LAYER

Enter a value or expression for the **Layer thickness**  $d_s$  (SI unit: m).

The default is to use the **Thermal conductivity**  $k_s$  (SI unit: W/(m·K)) **From material**. Select **User defined** to enter another value or expression.

## Thin Thermally Resistive Layer

Use the **Thin Thermally Resistive Layer** node to define the thickness and thermal conductivity of a resistive material located on boundaries.

The heat flux across the Thin Thermally Resistive Layer is defined by

$$-\mathbf{n}_{d} \cdot (-k_{d} \nabla T_{d}) = -k_{s} \frac{T_{u} - T_{d}}{d_{s}}$$
$$-\mathbf{n}_{u} \cdot (-k_{u} \nabla T_{u}) = -k_{s} \frac{T_{d} - T_{u}}{d_{s}}$$

where u and d subscript refer respectively to the upside and the downside of the slit.

#### **BOUNDARY SELECTION**

From the Selection list, choose the boundaries to add a thermally resistive layer.

#### MODEL INPUTS

The temperature model input used to evaluate the material properties is equal to the mean temperature on interior boundaries.

#### THIN THERMALLY RESISTIVE LAYER

Enter a value or expression for the **Layer thickness**  $d_s$  (SI unit: m).

The default is to use the **Thermal conductivity**  $k_s$  (SI unit: W/(m·K)) **From material**. Select **User defined** to enter another value or expression.

# Line Heat Source

The **Line Heat Source** node models a heat source (or sink) that is so thin that it has no thickness in the model geometry. Select this feature from the **Edges** menu.

The **Line Heat** Source node is available in 3D only because a line in 2D is a boundary and a domain in 1D.

In theory, the temperature in a line source in 3D is plus or minus infinity (to compensate for the fact that the heat source does not have any volume). The finite element discretization used in COMSOL returns a finite temperature distribution along the line, but that distribution must be interpreted in a weak sense.

#### EDGE SELECTION

From the **Selection** list, choose the edges to apply the heat source.

#### LINE HEAT SOURCE

Click the **General source** or **Total power** button.

- If **General source** is selected, enter a value for the distributed heat source,  $Q_l$ , in unit power per unit length (SI unit: W/m). Positive  $Q_l$  is heating while a negative  $Q_l$  is cooling.
- If **Total power** is selected, enter the total power (total heat source)  $P_{l,tot}$  (SI unit: W)

## Point Heat Source

The **Point Heat Source** node models a heat source (or sink) that is so small that it can be considered to have no spatial extension. Select this feature from the **Points** menu.

The **Point Heat Source** is available in 2D and 3D. It is not available in 1D since points are boundaries (possibly internal boundaries) there. In theory, the temperature in a point source in 2D or 3D is plus or minus

infinity (to compensate for the fact that the heat source does not have a spatial extension). The finite element discretization used in COMSOL returns a finite value, but that value must be interpreted in a weak sense.



Ø.

2D

1

3D

#### POINT SELECTION

From the **Selection** list, choose the points to apply the heat source.

#### POINT HEAT SOURCE

Enter the quantity  $Q_p$  in unit power (SI unit: W). Positive  $Q_p$  is heating while a negative  $Q_p$  is cooling.

# Continuity on Interior Boundary

The **Continuity on Interior Boundary** node enables intensity conservation across internal boundaries. It is the default boundary condition for all internal boundaries.

#### **BOUNDARY SELECTION**

From the **Selection** list, choose the boundaries to activate the continuity on interior boundaries.

#### PAIR SELECTION

If **Continuity on Interior Boundary** is selected from the **Pairs** menu, choose the pair to define. An identity pair has to be created first. Ctrl-click to deselect.

Reaction Heat Flux



The **Reaction Heat Flux** feature is available only with the Plasma Module and is documented in the *Plasma Module User's Guide*.

# The Joule Heating Interface

The Joule Heating interface (), found under the Heat Transfer>Electromagnetic Heating branch () in the Model Wizard, combines all feature from the Electric Currents interface with the Heat Transfer interface for modeling *Joule heating* (*resistive heating* or *ohmic heating*). The interface is available in 2D, axisymmetric 2D, and 3D and has the equations, boundary conditions, and sources for modeling Joule heating, solving for the temperature and the electric potential. The interaction is coupled in both directions:

- The resistive heating appears as a heat source in the default **Electromagnetic Heat Source** node.
- The default setting is to use the value for the electrical conductivity  $\sigma$  from the material. By selecting **Linearized resistivity** from the  $\sigma$  list, the following temperature-dependent expression describes the electrical conductivity:  $1/(\rho_0(1 + \alpha(T T_{ref}))))$ , where *T* is the dependent variable for temperature from the heat transfer part, which automatically appears as a model input. By default, the values for  $\rho_0$  (resistivity at reference temperature),  $\alpha$  (temperature coefficient), and  $T_{ref}$  (reference temperature) are taken from the material. These settings are built into the Joule Heating Model node, which is the central feature in the Joule Heating interface.

# 

Joule Heating of a Microactuator—Distributed Parameter Version: Model Library path COMSOL_Multiphysics/Tutorial_Models/ thermal_actuator_jh_distributed

When this interface is added, these default nodes are also added to the **Model Builder**— Joule Heating Model, Electromagnetic Heat Source, Boundary Electromagnetic Heat Source, Thermal Insulation and Electric Insulation (the default boundary conditions), and Initial Values. Right-click the Joule Heating node to add other features that implement boundary conditions and sources.

Note

Except where described in this section, this interface shares it features with The Electric Currents Interface and The Heat Transfer Interface.

#### INTERFACE IDENTIFIER

The interface identifier is a text string that can be used to reference the respective physics interface if appropriate. Such situations could occur when coupling this interface to another physics interface, or when trying to identify and use variables defined by this physics interface, which is used to reach the fields and variables in expressions, for example. It can be changed to any unique string in the **Identifier** field.

The default identifier (for the first interface in the model) is jh.

#### DOMAIN SELECTION

The default setting is to include **All domains** in the model to define heat transfer and a temperature field. To choose specific domains, select **Manual** from the **Selection** list.

#### PHYSICAL MODEL

If your license includes the Heat Transfer Module, you can extend the physical model with the following options:

- Select the **Out-of-plane heat transfer** check box (2D models only) to include heat transfer out of the plane.
- If your license includes the Heat Transfer Module, you can select the **Surface-to-surface radiation** check box to include surface-to-surface radiation as part of the heat transfer. This adds a **Radiation Settings** section. See the **Physical Model** section in The Heat Transfer Interface for details.
- If your license includes the Heat Transfer Module, you can select the Radiation in participating media check box to include radiation in participating media as part of the heat transfer. This adds a Participating media Settings section. See the Physical Model section in The Heat Transfer Interface for details.
- If your license includes the AC/DC Module, MEMS Module, or Plasma Module, you can select the **Porous media and mixtures** to include current conservation in mixtures and Archie's law as part of the physical model.
- If your license includes the Heat Transfer Module, you can select the Heat Transfer in biological tissue check box to enable the Biological Tissue feature. See the Physical Model section in The Bioheat Transfer Interface for details.

#### RADIATION SETTINGS



This section is available when the **Surface-to-surface radiation** check box is selected. See **Radiation Settings** as described for The Heat Transfer Interface.

#### PARTICIPATING MEDIA SETTINGS



2D

This section is available when the **Radiation in participating media** check box is selected. See **Participating Media Settings** as described for The Heat Transfer Interface.

#### OUT-OF-PLANE THICKNESS

Enter a default value for the **Out-of-plane thickness** d (SI unit: m). The default value of 1 is typically not representative for a thin dielectric medium, for example. Instead it describes a unit thickness that makes the 2D equation identical to the equation used for 3D models. See also Change Thickness (Out-of-Plane) (described for the **Electrostatics** interface).

#### TERMINAL SWEEP SETTINGS

This section is only available if your license includes the AC/DC Module, MEMS Module, or Plasma Module.

Enter a **Reference impedance**  $Z_{ref}$  (SI unit: W). The default is 50 W.

Select the **Activate terminal sweep** check box to switch on the sweep and invoke a parametric sweep over the terminals. Enter a **Sweep parameter name** to assign a specific name to the variable that controls the terminal number solved for during the sweep. The default is PortName. The generated lumped parameters are in the form of capacitance matrix elements. The terminal settings must consistently be of either fixed voltage or fixed charge type.

The lumped parameters are subject to **Touchstone file export**. Enter a file path or **Browse** for a file. Select an **Output format** for the Touchstone export—**Magnitude angle** (the

default), Magnitude (dB) angle, or Real imaginary. Select a Parameter to export—Z (the default), Y, or S.

#### DEPENDENT VARIABLES

The interface has dependent variables for the **Temperature** T and **Electric potential** V. If the license includes the Heat Transfer Module, the **Surface radiosity** J is also included as a dependent variable.

#### DISCRETIZATION

To display this section, click the Show button ( ) and select Discretization. Select Linear, Quadratic (the default), Cubic, or Quartic for the Temperature, Surface radiosity, and Electric potential. Specify the Value type when using splitting of complex variables—Real or Complex.

• Show More Physics Options

• Domain, Boundary, Edge, Point, and Pair Features for the Joule Heating Interface

# Domain, Boundary, Edge, Point, and Pair Features for the Joule Heating Interface

Because The Joule Heating Interface is a multiphysics interface, most features are shared with, and described for, other interfaces. Below are links to the domain, boundary, edge, pair, and point features as indicated and listed in alphabetical order.



2

See Also

To locate and search all the documentation, in COMSOL, select **Help>Documentation** from the main menu and either enter a search term or look under a specific module in the documentation tree.

These are described in this section:

- Boundary Electromagnetic Heat Source
- Electromagnetic Heat Source
- Initial Values
- Joule Heating Model

These features are described for the **Heat Transfer** interface:

- Boundary Heat Source and Pair Boundary Heat Source
- Heat Flux
- Heat Source
- Heat Transfer in Fluids
- Heat Transfer in Solids
- Line Heat Source
- Outflow
- Point Heat Source
- Surface-to-Ambient Radiation
- Symmetry
- Temperature
- Thermal Insulation
- Thin Thermally Resistive Layer and Pair Thin Thermally Resistive Layer

These features are described for the **Electric Currents**, **Electrostatics**, or another interface:

- Boundary Current Source
- Contact Impedance
- Current Conservation
- Current Source
- Distributed Impedance
- Electric Insulation
- Electric Potential
- External Current Density
- Ground
- Line Current Source
- Line Current Source (on Axis)
- Normal Current Density
- Periodic Condition
- Point Current Source

The **Joule Heating Model** node uses the following version of the *heat equation* as the mathematical model for heat transfer in solids:

$$\rho C_p \frac{\partial T}{\partial t} - \nabla \cdot (k \nabla T) = Q$$
(13-19)

with the following material properties:

- $\rho$  is the *density*.
- $C_p$  is the *heat capacity*.
- *k* is the *thermal conductivity* (a scalar or a tensor if the thermal conductivity is anisotropic).
- *Q* is the heat source (or sink). For Joule heating, it comes from the electric current and is added in the **Electromagnetic Heat Source** node.

For a steady-state problem the temperature does not change with time and the first term disappears. In addition, an equation for the electric current is also added.

#### DOMAIN SELECTION

From the Selection list, choose the domains to define the Joule heating.

#### MODEL INPUTS

This section contains fields and values that are inputs to expressions that define material properties. If user-defined property groups are added, the model inputs appear here. By default, this section shows, unavailable, the temperature variable included in the Joule Heating interface.

#### COORDINATE SYSTEM SELECTION

The **Global coordinate system** is selected by default. The **Coordinate system** list contains any additional coordinate systems that the model includes.

#### CONDUCTION CURRENT

The default **Electrical conductivity**  $\sigma$  (SI unit: S/m) is taken **From material.** Select **User defined** to enter a different value or expression or select **Linearized resistivity** to use the following temperature-dependent expression to describe the electrical conductivity:

 $1/(\rho_0(1 + \alpha(T - T_{ref})))$ 

where T is the dependent variable for temperature. By default, the **Reference** temperature  $T_{ref}$  (SI unit: K), **Reference resistivity**  $\rho_0$  (SI unit:  $\Omega \cdot m$ ), and **Resistivity** temperature coefficient  $\alpha$  (SI unit: 1/K) are taken **From material**. Select **User defined** to enter different values or expressions for these properties.

#### ELECTRIC FIELD

Specify the **Constitutive relation** that describes the macroscopic properties of the medium (relating the electric displacement  $\mathbf{D}$  with the electric field  $\mathbf{E}$ ) and the applicable material properties, such as the relative permittivity.

Select an option (the corresponding equation appears underneath the list)—**Relative permittivity, Polarization**, or **Remanent displacement**. Select:

- Select **Relative permittivity** to use the constitutive relation  $\mathbf{D} = \epsilon_0 \epsilon_r \mathbf{E}$  (the default). Then specify  $\epsilon_r$ , the relative permittivity (unitless). The default is to take its value from the material, or select **User defined** to specify a value or expression for the relative permittivity.
- Select **Polarization** to use the constitutive relation  $\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}$ . Then specify  $\mathbf{P}$ , the polarization vector (SI unit: C/m²). Enter its components based on space dimension in the fields under **Polarization**.
- Select **Remanent displacement** to use the constitutive relation  $\mathbf{D} = \epsilon_0 \epsilon_r \mathbf{E} + \mathbf{D}_r$ , where  $\mathbf{D}_r$  (SI unit: C/m²) is the remanent displacement (the displacement when no electric field is present). In this case, specify  $\epsilon_r$ , the relative permittivity, and  $\mathbf{D}_r$ , the remanent displacement. For the relative permittivity, use the list under **Relative permittivity**: Select **From material** (the default) to use the value from the material or select **User defined** to specify a value or expression for the relative permittivity in the field that appears. For the remanent displacement, enter its components based on space dimension in the fields under **Remanent displacement**.

#### HEAT CONDUCTION

The default **Thermal conductivity** k (SI unit: W/(m·K)) uses values **From material**. If **User defined** is selected, choose **Isotropic**, **Diagonal**, **Symmetric**, or **Anisotropic** based on the characteristics of the thermal conductivity and enter another value or expression in the field or matrix.

The thermal conductivity k describes the relationship between the heat flux vector  $\mathbf{q}$  and the temperature gradient  $\nabla T$  as in

$$\mathbf{q} = -k\nabla T$$

which is *Fourier's law of heat conduction*. Enter this quantity as power per length and temperature.

#### THERMODYNAMICS

The default **Heat capacity at constant pressure**  $C_p$  (SI unit: J/(kg·K)) and **Density**  $\rho$  (SI unit: kg/m³) use values **From material**. Select **User defined** to enter other values or expressions.

## Electromagnetic Heat Source

The **Electromagnetic Heat Source** feature is added as a default node. This node represents the source term Q (W/m³) in the heat equation implemented by the Joule Heating Model node; see Equation 13-19. The resistive heating (ohmic heating), due to the electric current is

$$Q = \mathbf{J} \cdot \mathbf{E}$$

where **J** is the current density  $(A/m^2)$  and **E** is the electric field strength (V/m).

#### DOMAIN SELECTION

No user input is required for the default condition. Right-click the node and add additional **Electromagnetic Heat Source** features as required.

# Boundary Electromagnetic Heat Source

The **Boundary Electromagnetic Heat Source** feature maps the electromagnetic surface losses as a heat source on the boundary (SI unit:  $W/m^2$ ) in the heat transfer part of the model. It appears as a default feature.

#### **BOUNDARY SELECTION**

The default includes all boundaries in the model. From the **Selection** list, choose the boundaries to apply the model.

# Initial Values

The **Initial Values** node adds initial values for the temperature T and the electric potential V that can serve as an initial condition for a transient simulation or as an initial guess for a nonlinear solver. If more than one set of initial values needs to be defined, right-click to add additional **Initial Values** nodes.

#### DOMAIN SELECTION

From the Selection list, choose the domains to define initial values.

#### INITIAL VALUES

Enter values or expressions for the initial values of the **Temperature** T and the **Electric potential** V. The default value for the temperature is approximately room temperature, 293.15 K (20° C) and for the electric potential it is 0 V.

# |4

# The Structural Mechanics Branch

This chapter explains how to use the Solid Mechanics interface, found under the **Structural Mechanics** branch (=) in the Model Wizard, to simulate and analyze applications involving solid mechanics. The interface is used for stress analysis and general solid mechanics simulation.

The optional Structural Mechanics Module contains physics interfaces and models that allow for extended, specialized analyses of structural and solid mechanics problems.

In this chapter:

- Solid Mechanics Geometry and Structural Mechanics Physics Symbols
- The Solid Mechanics Interface
- Theory for the Solid Mechanics Interface

# Solid Mechanics Geometry and Structural Mechanics Physics Symbols

The Solid Mechanics interface in the Structural Mechanics Module is available for these space dimensions, which are described in this section:

- 3D Solid Geometry
- 2D Geometry (plane stress and plane strain)
- Axisymmetric Geometry

There are also physics symbols available with structural mechanics features as described in these sections:

- · Physics Symbols for Boundary Conditions
- About Coordinate Systems and Physics Symbols
- Displaying Physics Symbols in the Graphics Window—An Example

#### 3D Solid Geometry

The degrees of freedom (dependent variables) in 3D are the global displacements u, v, and w in the global x, y, and z directions, respectively, and the pressure help variable (used only if a nearly incompressible material is selected).



Figure 14-1: Loads and constraints applied to a 3D solid using the Solid Mechanics interface.

#### PLANE STRESS

The plane stress variant of the 2D interface is useful for analyzing thin in-plane loaded plates. For a state of plane stress, the out-of-plane components of the stress tensor are zero.



Figure 14-2: Plane stress models plates where the loads are only in the plane; it does not include any out-of-plane stress components.

The 2D interface for plane stress allows loads in the x and y directions, and it assumes that these are constant throughout the material's thickness, which can vary with x and y. The plane stress condition prevails in a thin flat plate in the xy-plane loaded only in its own plane and without any z direction restraint.

#### PLANE STRAIN

The plane strain variant of the 2D interface that assumes that all out-of-plane strain components of the total strain  $\varepsilon_z$ ,  $\varepsilon_{vz}$ , and  $\varepsilon_{xz}$  are zero.



Figure 14-3: A geometry suitable for plane strain analysis.

Loads in the x and y directions are allowed. The loads are assumed to be constant throughout the thickness of the material, but the thickness can vary with x and y. The

plane strain condition prevails in geometries, whose extent is large in the *z* direction compared to in the *x* and *y* directions, or when the *z* displacement is in some way restricted. One example is a long tunnel along the *z*-axis where it is sufficient to study a unit-depth slice in the *xy*-plane.

# Axisymmetric Geometry

The axisymmetric variant of the **Solid Mechanics** interface uses cylindrical coordinates r,  $\phi$  (phi), and z. Loads are independent of  $\phi$ , and the axisymmetric variant of the interface allows loads only in the r and z directions.

The 2D axisymmetric geometry is viewed as the intersection between the original axially symmetric 3D solid and the half plane  $\varphi = 0$ ,  $r \ge 0$ . Therefore the geometry is drawn only in the half plane  $r \ge 0$  and recover the original 3D solid by rotating the 2D geometry about the *z*-axis.



Figure 14-4: Rotating a 2D geometry to recover a 3D solid.

Physics Symbols for Boundary Conditions

To display the physics symbols, select **Options>Preferences>Graphics** from the Main menu and select the **Show physics symbols** check box to display the boundary condition symbols listed in Table 14-1. These symbols are available with the applicable structural mechanics features.

TABLE 14-1: STRUCTURAL MECHANICS BOUNDARY CONDITION PHYSICS SYMBOLS

SYMBOL	SYMBOL NAME	DISPLAYED BY FEATURE	NOTES
2	Added Mass 1	Added Mass	
4	Antisymmetry ¹	Antisymmetry	
€	Body Load 1	Body Load	

SYMBOL	SYMBOL NAME	DISPLAYED BY FEATURE	NOTES
1	3D Coordinate System		Green indicates the Y direction, blue indicates the Z direction, and red indicates the X direction.
L	2D Coordinate System		Green indicates the Y direction and red indicates the X direction.
Π	Distributed Force	Boundary Load Face Load Edge Load	Can be displayed together with the Distributed Moment symbol, depending on the values given in the feature.
ሞ	Damping ¹	Spring Foundation	Can be displayed together with the Spring symbol, depending on the values given in the feature.
20	Distributed Moment ¹	Boundary Load Face Load Edge Load	Can be displayed together with the Distributed Force symbol, depending on the values given in the feature.
77772	Fixed Constraint	Fixed Constraint	
*	No Rotation ¹	No Rotation	
٨	Pinned ¹	Pinned	
+	Point Force	Point Load	Can be displayed together with the Point Moment symbol, depending on the values given in the feature.
à	Point Mass 1	Point Mass	
	Point Moment ¹	Point Load	Can be displayed together with the Point Force symbol, depending on the values given in the feature.
+	Prescribed Displacement	Prescribed Displacement	
l <u>a</u> *	Prescribed Velocity ¹	Prescribed Velocity	
Z	Rigid Connector 1	Rigid Connector	
a	Roller	Roller	

TABLE 14-1: STRUCTURAL MECHANICS BOUNDARY CONDITION PHYSICS SYMBOLS

SYMBOL	SYMBOL NAME	DISPLAYED BY FEATURE	NOTES
~	Spring ¹	Spring Foundation Thin Elastic Layer	Can be displayed together with the Damping symbol, depending on the values given in the feature.
ተ	Symmetry	Symmetry	
¹ Requires the Structural Mechanics Module			

TABLE 14-1: STRUCTURAL MECHANICS BOUNDARY CONDITION PHYSICS SYMBOLS

# About Coordinate Systems and Physics Symbols

Physics symbols connected to a feature for which input can be given in different coordinate systems are shown together with a coordinate system symbol. This symbol is either a triad or a single arrow. The triad is shown if data are to be entered using vector components, as for a force. The single arrow is displayed when a scalar value, having an implied direction, is given. An example of the latter case is a pressure.

In both cases, the coordinate directions describe the direction in which a positive value acts. The coordinate direction symbols do not change with the values actually entered for the data.

Physics symbols are displayed even if no data values have been entered in the feature.



For cases when physics symbol display is dependent on values actually given in the feature, it may be necessary to move to another feature before the display is actually updated on the screen.

Displaying Physics Symbols in the Graphics Window—An Example

- I Select **Options>Preferences>Graphics** from the Main menu and select the **Show physics symbols** check box. Click **OK**.
- **2** Add a physics interface, for example, **Solid Mechanics**, from the **Structural Mechanics** branch of the **Model Wizard**.



The physics symbols also display for any multiphysics interface that includes Structural Mechanics feature nodes.

- **3** Add any of the feature nodes listed in Table 14-1 to the interface. Availability is based on license and interface.
- **4** When adding the boundary, edge, or point (a geometric entity) to the **Selection** list in the feature settings window, the symbol displays in the **Graphics** window. See Figure 14-5.



Figure 14-5: Example of the Boundary Load physics symbols as displayed in the COMSOL Multiphysics Model Library model Deformation of a Feeder Clamp.

5 After assigning the boundary condition to a geometric entity, to display the symbol, click the top level physics interface node and view it in the **Graphics** window. See Figure 14-6.



Figure 14-6: Example of Roller and Boundary Load physics symbols as displayed in the COMSOL Multiphysics Model Library model Tapered Membrane End Load.

# The Solid Mechanics Interface

The **Solid Mechanics** interface ( $\clubsuit$ ), found under the **Structural Mechanics** branch ( $\clubsuit$ ) in the **Model Wizard**, has the equations and features for stress analysis and general linear solid mechanics, solving for the displacements. The **Linear Elastic Material** is the default material, which adds a linear elastic equation for the displacements and has a settings window to define the elastic material properties.

When this interface is added, these default nodes are also added to the **Model Builder**— **Linear Elastic Material**, **Free** (a boundary condition where boundaries are free, with no loads or constraints), and **Initial Values**. Right-click the **Solid Mechanics** node to add nodes that implement other solid mechanics features.

- Stresses in a Pulley: Model Library path COMSOL_Multiphysics/ Structural_Mechanics/stresses_in_pulley
- Eigenvalue Analysis of a Crankshaft: Model Library path COMSOL_Multiphysics/Structural_Mechanics/crankshaft

#### INTERFACE IDENTIFIER

Model

The interface identifier is a text string that can be used to reference the respective physics interface if appropriate. Such situations could occur when coupling this interface to another physics interface, or when trying to identify and use variables defined by this physics interface, which is used to reach the fields and variables in expressions, for example. It can be changed to any unique string in the **Identifier** field.

The default identifier (for the first interface in the model) is solid.

#### DOMAIN SELECTION

The default setting is to include **All domains** in the model to define the displacements and the equations that describe the solid mechanics. To choose specific domains, select **Manual** from the **Selection** list.

#### 2D APPROXIMATION

From the **2D** approximation list select **Plane stress** or **Plane strain** (the default). For more information see the theory section.

When modeling using plane stress, the **Solid Mechanics** interface solves for the out-of-plane strain,  $e_z$ , in addition to the displacement field **u**.

#### THICKNESS

Enter a value or expression for the **Thickness** d (SI unit: m).

The default value of 1 m is suitable for plane strain models, where it represents a a unit-depth slice, for example. For plane stress models, enter the actual thickness, which should be small compared to the size of the plate for the plane stress assumption to be valid.

In rare cases, use a Change Thickness node to change thickness in parts of the geometry.

#### STRUCTURAL TRANSIENT BEHAVIOR

From the **Structural transient behavior** list, select **Quasi-static** or **Include inertial terms** to treat the elastic behavior as quasi-static (with no mass effects; that is, no second-order time derivatives) or as a mechanical wave in a time-dependent study. The default is to include the inertial terms to model the mechanical wave.

#### REFERENCE POINT FOR MOMENT COMPUTATION

Enter the coordinates for the **Reference point for moment computation**  $\mathbf{x}_{ref}$  (SI unit: m; COMSOL Multiphysics variable refpnt). All summed moments (applied or as reactions) are then computed relative to this reference point.

#### DEPENDENT VARIABLES

The interface uses the global spatial components of the **Displacement field** u as dependent variables. You can change both the field name and the individual component names. If a new field name coincides with the name of another displacement field, the two fields (and the interfaces which define them) will share degrees of freedom and dependent variable component names. You can use this behavior to connect a **Solid Mechanics** interface to a **Shell** directly attached to the



2D

boundaries of the solid domain, or to another **Solid Mechanics** interface sharing a common boundary.

A new field name must not coincide with the name of a field of another type, or with a component name belonging to some other field. Component names must be unique within a model except when two interfaces share a common field name.

#### DISCRETIZATION

To display this section, click the Show button ( $\searrow$ ) and select Discretization. Select a Displacement field—Linear, Quadratic (the default), Cubic, Quartic, or (in 2D) Quintic. Specify the Value type when using splitting of complex variables—Real or Complex (the default).

- Show More Physics Options
- Domain, Boundary, Edge, Point, and Pair Features for the Solid Mechanics Interface



- About the Body, Boundary, Edge, and Point Loads
- Theory for the Solid Mechanics Interface

# Domain, Boundary, Edge, Point, and Pair Features for the Solid Mechanics Interface

The Solid Mechanics Interface has these domain, boundary, edge, point, and pair features listed in alphabetical order. The list also includes subfeatures.

- Antisymmetry
- Body Load
- Boundary Load
- Change Thickness
- Damping
- Edge Load
- Fixed Constraint
- Free
- Initial Values
- Linear Elastic Material
- Periodic Condition

- Point Load
- Prescribed Displacement
- Roller
- Symmetry



If there are subsequent boundary conditions specified on the same geometrical entity, the last one takes precedence.



For 2D axisymmetric models, COMSOL Multiphysics takes the axial symmetry boundaries (at r = 0) into account and automatically adds an **Axial Symmetry** feature to the model that is valid on the axial symmetry boundaries only.

	Continuity on Interior Boundaries
ପ୍	Identity and Contact Pairs
See Also	Specifying Boundary Conditions for Identity Pairs



To locate and search all the documentation, in COMSOL, select **Help>Documentation** from the main menu and either enter a search term or look under a specific module in the documentation tree.

# Linear Elastic Material

The **Linear Elastic Material** feature adds the equations for a linear elastic solid and an interface for defining the elastic material properties. Right-click to add a Damping subnode.

## DOMAIN SELECTION

From the **Selection** list, choose the domains to define a linear elastic solid and compute the displacements, stresses, and strains.

#### MODEL INPUTS

Define model inputs, for example, the temperature field of the material uses a temperature-dependent material property. If no model inputs are required, this section is empty.

#### COORDINATE SYSTEM SELECTION

The **Global coordinate system** is selected by default. The **Coordinate system** list contains any additional coordinate systems that the model includes (except boundary coordinate systems). The coordinate system is used when stresses or strains are presented in a local system.

# LINEAR ELASTIC MATERIAL

Define the Solid model and the linear elastic material properties.

Solid Model

The solid model is linear isotropic elastic.

Specification of Elastic Properties for Isotropic Materials

If **Isotropic** is selected, from the **Specify** list, select a pair of elastic properties for an isotropic material. Select:

- Young's modulus and Poisson's ratio to specify Young's modulus (elastic modulus) E (SI unit: Pa) and Poisson's ratio v (dimensionless). For an isotropic material Young's modulus is the spring stiffness in Hooke's law, which in 1D form is  $\sigma = E\varepsilon$  where  $\sigma$  is the stress and  $\varepsilon$  is the strain. Poisson's ratio defines the normal strain in the perpendicular direction, generated from a normal strain in the other direction and follows the equation $\varepsilon_{\perp} = -\upsilon\varepsilon_{\parallel}$ .
- Young's modulus and shear modulus to specify Young's modulus (elastic modulus) E (SI unit: Pa) and the shear modulus G (SI unit: Pa). For an isotropic material Young's modulus is the spring stiffness in Hooke's law, which in 1D form is  $\sigma = E\varepsilon$  where  $\sigma$  is the stress and  $\varepsilon$  is the strain. The shear modulus is a measure of the solid's resistance to shear deformations.
- Bulk modulus and shear modulus to specify the bulk modulus *K* (SI unit: Pa) and the shear modulus *G* (SI unit: Pa). The bulk modulus is a measure of the solid's resistance to volume changes. The shear modulus is a measure of the solid's resistance to shear deformations.

- Lamé constants to specify the first and second Lamé constants  $\lambda$  (SI unit: Pa) and  $\mu$  (SI unit: Pa).
- Pressure-wave and shear-wave speeds to specify the pressure-wave speed (longitudinal wave speed) c_p (SI unit: m/s) and the shear-wave speed (transverse wave speed) c_s (SI unit: m/s).



This is the wave speed for a solid continuum. In plane stress, for example, the actual speed with which a longitudinal wave travels is lower than the value given.

For each pair of properties, select from the applicable list to use the value **From material** or enter a **User defined** value or expression.



Each of these pairs define the elastic properties and it is possible to convert from one set of properties to another (see Table 14-2).

#### Density

The default **Density**  $\rho$  (SI unit: kg/m³) uses values **From material**. If **User defined** is selected, enter another value or expression.

Change Thickness



Use the **Change Thickness** feature to model domains with a thickness other than the overall thickness defined in the physics interface's **Thickness** section.

#### DOMAIN SELECTION

From the Selection list, choose the domains use a different thickness.

#### CHANGE THICKNESS

Enter a value for the **Thickness** d (SI unit: m). This value replaces the overall thickness for the domains selected above.

# Damping

Right-click the **Linear Elastic Material** node to add a **Damping** node, which is used in time-dependent, eigenfrequency, and frequency domain studies to model undamped or damped problems. The **Damping** node adds Rayleigh damping by default

The time-stepping algorithms also add numerical damping, which is independent of any explicit damping added.

For the generalized alpha time-stepping algorithm it is possible to control the amount of numerical damping added.

#### DOMAIN SELECTION

From the Selection list, choose the domains to add damping.



E

Note

By default, this node inherits the selection from its parent node, and only a selection that is a subset of the parent node's selection can be used.

#### DAMPING SETTINGS

Rayleigh damping is the only available Damping type.

#### Rayleigh Damping

Enter the Mass damping parameter  $\alpha_{dM}$  (SI unit: 1/s) and the Stiffness damping parameter  $\beta_{dK}$  (SI unit: s). The default values are 0 (no damping).

In the Rayleigh damping model, the damping parameter  $\xi$  is expressed in terms of the mass *m* and the stiffness *k* as

$$\xi = \alpha_{\rm dM} m + \beta_{\rm dK} k$$

That is, Rayleigh damping is proportional to a linear combination of the stiffness and mass, There is no direct physical interpretation of the mass damping parameter  $\alpha_{dM}$  (SI unit: 1/s) and the stiffness damping parameter  $\beta_{dM}$  (SI unit: s).

# Initial Values

The **Initial Values** node adds initial values for the displacement field and velocity field that can serve as an initial condition for a transient simulation or as an initial guess for a nonlinear analysis. Right-click to add additional **Initial Values** nodes.

#### DOMAIN SELECTION

From the Selection list, choose the domains to define an initial value.

#### INITIAL VALUES

Enter values or expressions for the initial values of the **Displacement field** u (SI unit: m) (the displacement components u, v, and w in 3D) and **Velocity field**  $\partial u/\partial t$  (SI unit: m/s). The defaults are 0.

# About the Body, Boundary, Edge, and Point Loads

Add force loads acting on all levels of the geometry to The Solid Mechanics Interface. Add a:

- Body Load to domains (to model gravity effects, for example).
- Boundary Load to boundaries (a pressure acting on a boundary, for example).
- Edge Load to edges in 3D (a force distributed along an edge, for example).
- Point Load to points (concentrated forces at points).

# Body Load

Add a Body Load to domains for gravity effects, for example.

#### DOMAIN SELECTION

From the Selection list, choose the domains to define a body load.

#### COORDINATE SYSTEM SELECTION

The **Global coordinate system** is selected by default. The **Coordinate system** list contains any additional coordinate systems that the model includes.

Ø	Select a <b>Load type</b> for 2D models and then enter values or expressions for the components in the matrix:		
	• Load defined as force per unit area $\mathbf{F}_{A}$ (SI unit: N/m ² ). The body load as force per unit volume is then the value of $F$ divided by the thickness.		
2D	- Load defined as force per unit volume ${\bf F}_V(\text{the default})(\text{SI unit: N/m}^3)$		
	• Total force ${\bf F}_{tot}({\rm SI~unit};N).$ COMSOL then divides the total force by the volume of the domains where the body load is active.		
	Select a <b>Load type</b> for 3D models and then enter values or expressions for the components in the matrix:		
	+ Load defined as force per unit volume ${\bm F}_V(\text{the default})~(\text{SI unit: }N/m^3)$		
3D	• Total force ${\bf F}_{tot}({\rm SI}~{\rm unit};{\rm N}).$ COMSOL then divides the total force by the volume of the domains where the load is active.		

# Boundary Load

Add a **Boundary Load** to boundaries for a pressure acting on a boundary, for example.

## BOUNDARY SELECTION

From the Selection list, choose the boundaries to define a load.

#### PAIR SELECTION

If **Boundary Load** is selected from the **Pairs** menu, choose the pair to define. An identity pair has to be created first. Ctrl-click to deselect.

### COORDINATE SYSTEM SELECTION

Specify the coordinate system to use for specifying the load. From the **Coordinate** system list select from:

- Global coordinate system (the default)
- **Boundary System** (a predefined normal-tangential coordinate system)
- Any additional user-defined coordinate systems



After selecting a **Load type**, the **Load** list normally only contains **User defined**. When combining the **Solid Mechanics** interface with, for example, film damping, it is also possible to choose a predefined load from this list.

Select a **Load type** for 2D models and then enter a value or expression in the matrix:

- Load defined as force per unit length  $\mathbf{F}_{L}$  (SI unit: N/m)
- Load defined as force per unit area  $\mathbf{F}_A$  (SI unit: N/m²)
- 2D
- Total force  $\mathbf{F}_{tot}$  (SI unit: N). COMSOL then divides the total force by the area of the surfaces where the load is active.
- **Pressure** *p* (SI unit: Pa), which can represent a pressure or another external pressure. The pressure is positive when directed toward the solid.

Select a **Load type** for 3D models and then enter a value or expression in the matrix:

- Load defined as force per unit area  $\mathbf{F}_{A}$  (SI unit: N/m²)
- 3D
- Total force  $\mathbf{F}_{tot}$  (SI unit: N). COMSOL then divides the total force by the area of the surfaces where the load is active.
- **Pressure** *p* (SI unit: Pa), which can represent a pressure or another external pressure. The pressure is positive when directed toward the solid.

# Edge Load

Add an Edge Load to 3D models for a force distributed along an edge, for example.

#### EDGE SELECTION

From the Selection list, choose the edges to define an edge load.

#### COORDINATE SYSTEM SELECTION

The **Global coordinate system** is selected by default. The **Coordinate system** list contains any additional coordinate systems that the model includes.

#### FORCE

3D

Select a **Load type** for 3D models and then enter values or expressions for the components in the matrix:

- Load defined as force per unit length F_L (SI unit: N/m). When combining the Solid Mechanics interface with, for example, film damping, it is also possible to choose a predefined load from this list.
- Total force  $\mathbf{F}_{tot}$  (SI unit: N). COMSOL then divides the total force by the volume where the load is active.

# Point Load

Add a Point Load to points for concentrated forces at points.

#### POINT SELECTION

From the Selection list, choose the points to define a point load.

#### COORDINATE SYSTEM SELECTION

The **Global coordinate system** is selected by default. The **Coordinate system** list contains any additional coordinate systems that the model includes.

#### FORCE

Enter values or expressions for the components of the **Point load**  $\mathbf{F}_{p}$  (SI unit: N).

#### Free

The **Free** feature is the default boundary condition. It means that there are no constraints and no loads acting on the boundary.

#### **BOUNDARY SELECTION**

From the Selection list, choose the boundaries that are free.

#### PAIR SELECTION

If **Free** is selected from the **Pairs** menu, choose the pair to define. An identity pair has to be created first. Ctrl-click to deselect.

# Fixed Constraint

The **Fixed Constraint** node adds a condition that makes the geometric entity fixed (fully constrained); that is, the displacements are zero in all directions. For domains, this condition is found under **More** on the context menu.

#### DOMAIN, BOUNDARY, EDGE, OR POINT SELECTION

From the **Selection** list, choose, the geometric entity (domains, boundaries, edges, or points) that are fixed.

#### PAIR SELECTION

If **Fixed Constraint** is selected from the **Pairs** menu, choose the pair to define. An identity pair has to be created first. Ctrl-click to deselect.

## CONSTRAINT SETTINGS

To display this section, select click the Show button ( ) and select Advanced Physics Options. Select a Constraint type—Bidirectional, symmetric or Unidirectional. If required, select the Use weak constraints check box.



Using Weak Constraints

# Prescribed Displacement

The **Prescribed Displacement** feature adds a condition where the displacements are prescribed in one or more directions to the geometric entity (domain, boundary, edge, or point).

If a displacement is prescribed in one direction, this leaves the solid free to deform in the other directions. Also define more general displacements as a linear combination of the displacements in each direction.

• If a prescribed displacement is not activated in any direction, this is the same as a **Free** constraint.



• If a zero displacement is applied in all directions, this is the same as a **Fixed Constraint**.

# DOMAIN, BOUNDARY, EDGE, OR POINT SELECTION

From the **Selection** list, choose the geometric entity (domains, boundaries, edges, or points) to prescribe a displacement.

#### PAIR SELECTION

If **Prescribed Displacement** is selected from the **Pairs** menu, choose the pair to define. An identity pair has to be created first. Ctrl-click to deselect.

#### COORDINATE SYSTEM SELECTION

The **Global coordinate system** is selected by default. The **Coordinate system** list contains any additional coordinate systems that the model includes. If you choose another, local coordinate system, the displacement components change accordingly.

#### PRESCRIBED DISPLACEMENT

Define the prescribed displacements using a Standard notation or a General notation.

Standard Notation

Ø.

2D Axi

To define the displacements individually, click the **Standard notation** button (the default).



For 2D axisymmetric models, select one or both of the **Prescribed in r** direction and **Prescribed in z direction** check boxes. Then enter a value or expression for the prescribed displacements  $u_0$  or  $w_0$  (SI unit: m).



For 3D models, select one or more of the **Prescribed in x direction**, **Prescribed in y direction**, and **Prescribed in z direction** check boxes. Then enter a value or expression for the prescribed displacements  $u_0$ ,  $v_0$ , or  $w_0$ (SI unit: m).

#### General Notation

To specify the displacements using a **General notation** that includes any linear combination of displacement components, click the **General notation Hu=R** button. For example, for 2D models, use the relationship

$$H\begin{bmatrix}u\\v\end{bmatrix} = R$$

Enter values in the **H** matrix and **R** vector fields. For the *H* matrix, also select an **Isotropic**, **Diagonal**, **Symmetric**, or **Anisotropic** matrix and enter values as required. For example, to achieve the condition u = v, use the settings

$$H = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}, \qquad R = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

which force the domain to move only diagonally in the xy-plane.

#### CONSTRAINT SETTINGS

To display this section, select click the Show button ( $\bullet_{\overline{\infty}}$ ) and select Advanced Physics Options. Select a Constraint type—Bidirectional, symmetric or Unidirectional. If required, select the Use weak constraints check box.



Using Weak Constraints

#### Symmetry

The **Symmetry** feature adds a boundary condition that represents symmetry in the geometry and in the loads. A symmetry condition is free in the plane and fixed in the out-of-plane direction.

#### **BOUNDARY SELECTION**

From the Selection list, choose the boundaries that are symmetry boundaries.

#### PAIR SELECTION

If **Symmetry** is selected from the **Pairs** menu, choose the pair to define. An identity pair has to be created first. Ctrl-click to deselect.

### CONSTRAINT SETTINGS

To display this section, select click the Show button ( ) and select Advanced Physics Options. Select a Constraint type—Bidirectional, symmetric or Unidirectional. If required, select the Use weak constraints check box.



Using Weak Constraints

# Antisymmetry

The **Antisymmetry** feature adds a boundary condition for an antisymmetry boundary, which must exist in both the geometry and in the loads. An antisymmetry condition is fixed in the plane and free in the out-of-plane direction.



In a geometrically nonlinear analysis, large rotations must not occur at the antisymmetry plane because this causes artificial straining.

# **BOUNDARY SELECTION**

From the **Selection** list, choose the boundaries that are antisymmetry boundaries.

#### PAIR SELECTION

If **Antisymmetry** is selected from the **Pairs** menu, choose the pair to define. An identity pair has to be created first. Ctrl-click to deselect.

#### CONSTRAINT SETTINGS

To display this section, select click the Show button ( $rac{1}{20}$ ) and select Advanced Physics Options. Select a Constraint type—Bidirectional, symmetric or Unidirectional. If required, select the Use weak constraints check box.



Using Weak Constraints

### Roller

The **Roller** node adds a roller constraint as the boundary condition; that is, the displacement is zero in the direction perpendicular (normal) to the boundary, but the boundary is free to move in the tangential direction.

#### **BOUNDARY SELECTION**

From the Selection list, choose the boundaries that have roller constraints.

#### PAIR SELECTION

If **Roller** is selected from the **Pairs** menu, choose the pair to define. An identity pair has to be created first. Ctrl-click to deselect.

#### CONSTRAINT SETTINGS

To display this section, select click the Show button ( ) and select Advanced Physics Options. Select a Constraint type—Bidirectional, symmetric or Unidirectional. If required, select the Use weak constraints check box.



Using Weak Constraints

# Periodic Condition

The **Periodic Condition** feature adds a periodic boundary condition. This periodicity makes  $u_i(x_0) = u_i(x_1)$  for a displacement  $u_i$ . Control the direction that the periodic condition applies to. Right-click the **Periodic Condition** node to add a **Destination Selection** boundary condition. If the source and destination boundaries are rotated

with respect to each other, this transformation is automatically performed, so that corresponding displacement components are connected.

# **BOUNDARY SELECTION**

From the **Selection** list, choose the boundaries to define a periodic boundary condition. The software automatically identifies the boundaries as either source boundaries or destination boundaries.

This works fine for cases like opposing parallel boundaries. In other cases use a **Destination Selection** subnode to control the destination. By default it contains the selection that COMSOL Multiphysics has identified.

In cases where the periodic boundary is split into several boundaries within the geometry, it may be necessary to apply separate periodic conditions to each pair of geometry boundaries.

#### PERIODICITY SETTINGS

Note

Select a **Type of periodicity**—**Continuity** (the default), **Antiperiodicity** or **User defined**. If **User defined** is selected, select the **Periodic in u**, **Periodic in v** (for 3D and 2D models), and **Periodic in w** (for 3D and 2D axisymmetric models) check boxes as required. Then for each selection, choose the **Type of periodicity**—**Continuity** (the default) or **Antiperiodicity**.

- Periodic Condition and Destination Selection
- Using Periodic Boundary Conditions
- Periodic Boundary Condition Example

Perfectly Matched Layers



0

See Also

For information about this feature, see About Infinite Element Domains and Perfectly Matched Layers.

# Theory for the Solid Mechanics Interface

The Solid Mechanics Interface theory is described in this section:

- Material and Spatial Coordinates
- Coordinate Systems
- Lagrangian Formulation
- About Linear Elastic Materials
- Strain-Displacement Relationship
- Stress-Strain Relationship
- Plane Strain and Plane Stress Cases
- Axial Symmetry
- Loads
- Pressure Loads
- Equation Implementation
- Setting up Equations for Different Studies
- Damping Models

# Material and Spatial Coordinates

The Solid Mechanics interface, through its equations, describes the motion and deformation of solid objects in a 2- or 3-dimensional space. In COMSOL's terminology, this physical space is known as the *spatial frame* and positions in the physical space are identified by lowercase *spatial coordinate* variables *x*, *y*, and *z* (or *r*,  $\varphi$ , and *z* in axisymmetric models).

Continuum mechanics theory also makes use of a second set of coordinates, known as *material* (or *reference*) coordinates. These are normally denoted by uppercase variables X, Y, and Z (or R,  $\Phi$ , and Z) and are used to label material particles. Any material particle is uniquely identified by its position in some given initial or reference configuration. As long as the solid stays in this configuration, material and spatial coordinates of every particle coincide and displacements are zero by definition.

When the solid objects deform due to external or internal forces and constraints, each material particle keeps its material coordinates  $\mathbf{X}$  (bold font is used to denote coordinate vectors), while its spatial coordinates change with time and applied forces such that it follows a path

$$\mathbf{x} = \mathbf{x}(\mathbf{X}, t) = \mathbf{X} + \mathbf{u}(\mathbf{X}, t)$$
(14-1)

in space. Because the material coordinates are constant, the current spatial position is uniquely determined by the displacement vector  $\mathbf{u}$ , pointing from the reference position to the current position. The global Cartesian components of this displacement vector in the spatial frame, by default called u, v, and w, are the primary dependent variables in the Solid Mechanics interface.

By default, the Solid Mechanics interface uses the calculated displacement and Equation 14-1 to define the difference between spatial coordinates  $\mathbf{x}$  and material coordinates  $\mathbf{X}$ . This means the material coordinates relate to the original geometry, while the spatial coordinates are solution dependent.

Material coordinate variables X, Y, and Z must be used in coordinate-dependent expressions that refer to positions in the original geometry, for example, for material properties that are supposed to follow the material during deformation. On the other hand, quantities that have a coordinate dependence in physical space, for example, a spatially varying electromagnetic field acting as a force on the solid, must be described using spatial coordinate variables x, y, and z. Any use of the spatial variables will be a source of nonlinearity if a geometrically nonlinear study is performed.

## Coordinate Systems

Force vectors, stress and strain tensors, as well as various material tensors are represented by their components in a specified coordinate system. By default, material properties use the canonical system in the material frame. This is the system whose basis vectors coincide with the X, Y, and Z axes. When the solid deforms, these vectors rotate with the material.

Loads and constraints, on the other hand, are applied in spatial directions, by default in the canonical spatial coordinate system. This system has basis vectors in the x, y, and z directions, which are forever fixed in space. Both the material and spatial default coordinate system are referred to as the *Global coordinate system* in the user interface and are denoted by (G) in the following theory section.

Vector and tensor quantities defined in the global coordinate system on either frame use the frame's coordinate variable names as indices in the tensor component variable names. For example, SXY is the material frame *XY*-plane shear stress, also known as a second Piola-Kirchhoff stress, while sxy is the corresponding spatial frame stress, or Cauchy stress. There are also a few mixed tensors, most notably the deformation gradient FdxY, which has one spatial and one material index because it is used in converting quantities between the material and spatial frames.

It is possible to define any number of user coordinate systems on the material and spatial frames. Most types of coordinate systems are specified only as a rotation of the basis with respect to the canonical basis in an underlying frame. This means that they can be used both in contexts requiring a material system and in contexts requiring a spatial one.

The coordinate system can be selected separately for each added material model, load, and constraint. This is convenient if, for example, an anisotropic material with different orientation in different domains is required. The currently selected coordinate system is known as the *local coordinate system* and is denoted by (L) throughout this text.

# Lagrangian Formulation

The formulation used for structural analysis in COMSOL Multiphysics for both small and finite deformations is total Lagrangian. This means that the computed stress and deformation state is always referred to the material configuration, rather than to current position in space.

Likewise, material properties are always given for material particles and with tensor components referring to a coordinate system based on the material frame. This has the obvious advantage that spatially varying material properties can be evaluated just once for the initial material configuration and do not change as the solid deforms and rotates.

The gradient of the displacement, which occurs frequently in the following theory, is always computed with respect to material coordinates. In 3D:

$$\nabla \mathbf{u} = \begin{bmatrix} \frac{\partial u}{\partial X} & \frac{\partial u}{\partial Y} & \frac{\partial u}{\partial Z} \\ \frac{\partial v}{\partial X} & \frac{\partial v}{\partial Y} & \frac{\partial v}{\partial Z} \\ \frac{\partial w}{\partial X} & \frac{\partial w}{\partial Y} & \frac{\partial w}{\partial Z} \end{bmatrix}$$

# About Linear Elastic Materials

The total strain tensor is written in terms of the displacement gradient

$$\varepsilon = \frac{1}{2} (\nabla \mathbf{u} + \nabla \mathbf{u}^T)$$

or in components as

$$\varepsilon_{mn} = \frac{1}{2} \left( \frac{\partial u_m}{\partial x_n} + \frac{\partial u_n}{\partial x_m} \right)$$
(14-2)

The Duhamel-Hooke's law relates the stress tensor to the strain tensor and temperature:

$$s = s_0 + C : (\varepsilon - \varepsilon_0 - \alpha \theta)$$

where C is the 4th order *elasticity tensor*, ":" stands for the double-dot tensor product (or double contraction),  $s_0$  and  $\varepsilon_0$  are initial stresses and strains,  $\theta = T - T_{ref}$ , and  $\alpha$  is the thermal expansion tensor.

The elastic energy is

$$W_{\rm s} = \frac{1}{2}(\varepsilon - \varepsilon_0 - \alpha\theta) : C : (\varepsilon - \varepsilon_0 - \alpha\theta)$$
(14-3)

or using the tensor components:

$$W_{\rm s} = \sum_{i,j,m,n} \frac{1}{2} {\sf C}^{ijmn} (\varepsilon_{ij} - \varepsilon_{ij}^0 - \alpha_{ij}\theta) (\varepsilon_{mn} - \varepsilon_{mn}^0 - \alpha_{mn}\theta)$$

#### TENSOR VS. MATRIX FORMULATIONS

.

Because of the symmetry, the strain tensor can be written as the following matrix:

$$\begin{bmatrix} \varepsilon_x & \varepsilon_{xy} & \varepsilon_{xz} \\ \varepsilon_{xy} & \varepsilon_y & \varepsilon_{yz} \\ \varepsilon_{xz} & \varepsilon_{yz} & \varepsilon_z \end{bmatrix}$$

Similar representation applies to the stress and the thermal expansion tensors:

$$\begin{bmatrix} s_x & s_{xy} & s_{xz} \\ s_{xy} & s_y & s_{yz} \\ s_{xz} & s_{yz} & s_z \end{bmatrix}, \begin{bmatrix} \alpha_x & \alpha_{xy} & \alpha_{xz} \\ \alpha_{xy} & \alpha_y & \alpha_{yz} \\ \alpha_{xz} & \alpha_{yz} & \alpha_{zz} \end{bmatrix}$$

Due to the symmetry, the elasticity tensor can be completely represented by a symmetric 6-by-6 matrix as:

$$D = \begin{bmatrix} D_{11} \ D_{12} \ D_{13} \ D_{14} \ D_{15} \ D_{16} \\ D_{12} \ D_{22} \ D_{23} \ D_{24} \ D_{25} \ D_{26} \\ D_{13} \ D_{23} \ D_{33} \ D_{34} \ D_{35} \ D_{36} \\ D_{14} \ D_{24} \ D_{34} \ D_{44} \ D_{45} \ D_{46} \\ D_{15} \ D_{25} \ D_{35} \ D_{45} \ D_{55} \ D_{56} \\ D_{16} \ D_{26} \ D_{36} \ D_{46} \ D_{56} \ D_{66} \end{bmatrix} = \begin{bmatrix} c^{1111} \ c^{1122} \ c^{1133} \ c^{2112} \ c^{2223} \ c^{2233} \ c^{2212} \ c^{2223} \ c^{2213} \ c^{2213} \ c^{3313} \ c^{3312} \ c^{3323} \ c^{3313} \ c^{3312} \ c^{3213} \ c^{3213} \ c^{3213} \ c^{3213} \ c^{3213} \ c^{2313} \ c^{23$$

which is the *elasticity matrix*.

## ISOTROPIC MATERIAL AND ELASTIC MODULI

In this case, the elasticity matrix becomes

$$D = \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\nu & \nu & \nu & 0 & 0 & 0\\ \nu & 1-\nu & \nu & 0 & 0 & 0\\ \nu & \nu & 1-\nu & 0 & 0 & 0\\ 0 & 0 & 0 & \frac{1-2\nu}{2} & 0 & 0\\ 0 & 0 & 0 & 0 & \frac{1-2\nu}{2} & 0\\ 0 & 0 & 0 & 0 & 0 & \frac{1-2\nu}{2} \end{bmatrix}$$

and the thermal expansion matrix is:

Different pairs of elastic moduli can be used, and as long as two moduli are defined, the others can be computed according to Table 14-2.

DESCRIPTION	VARIABLE	D(E,v)	D(K,G)	$D(\lambda,\mu)$
Young's modulus	Ε		$\frac{9KG}{3K+G}$	$\mu \frac{3\lambda+2\mu}{\lambda+\mu}$
Poisson's ratio	ν		$\frac{1}{2} \left(1 - \frac{3G}{3K+G}\right)$	$\frac{\lambda}{2(\lambda+\mu)}$
Bulk modulus	K	$\frac{E}{3(1-2\nu)}$		$\lambda + \frac{2\mu}{3}$
Shear modulus	G	$\frac{E}{2(1+\nu)}$		μ
Lamé constant $\lambda$	λ	$\frac{E\nu}{(1+\nu)(1-2\nu)}$	$K - \frac{2G}{3}$	
Lamé constant $\mu$	μ	$\frac{E}{2(1+\nu)}$	G	
Pressure-wave speed	$c_p$		$\sqrt{\frac{K+4G/3}{\rho}}$	
Shear-wave speed	c _s		$\sqrt{G/\rho}$	

TABLE 14-2: EXPRESSIONS FOR THE ELASTIC MODULI.

According to Table 14-2, the elasticity matrix D for isotropic materials is written in terms of Lamé parameters  $\lambda$  and  $\mu$ ,

$$D = \begin{bmatrix} \lambda + 2\mu & \lambda & \lambda & 0 & 0 & 0 \\ \lambda & \lambda + 2\mu & \lambda & 0 & 0 & 0 \\ \lambda & \lambda & \lambda + 2\mu & 0 & 0 & 0 \\ 0 & 0 & 0 & \mu & 0 & 0 \\ 0 & 0 & 0 & 0 & \mu & 0 \\ 0 & 0 & 0 & 0 & 0 & \mu \end{bmatrix}$$

or in terms of the bulk modulus *K* and shear modulus *G*:

$$D = \begin{bmatrix} K + \frac{4G}{3} & K - \frac{2G}{3} & K - \frac{2G}{3} & 0 & 0 \\ K - \frac{2G}{3} & K + \frac{4G}{3} & K - \frac{2G}{3} & 0 & 0 \\ K - \frac{2G}{3} & K - \frac{2G}{3} & K + \frac{4G}{3} & 0 & 0 \\ 0 & 0 & 0 & G & 0 \\ 0 & 0 & 0 & 0 & G & 0 \\ 0 & 0 & 0 & 0 & 0 & G \end{bmatrix}$$

#### ENTROPY AND THERMOELASTICITY

The free energy for the linear thermoelastic material can be written as

$$F = \rho f_0(T) + W_s(\varepsilon, T)$$

where  $W_s(\varepsilon, T)$  is given by Equation 14-3. Hence, the stress can be found as

$$s = \left(\frac{\partial F}{\partial \varepsilon}\right)_T = \left(\frac{\partial W}{\partial \varepsilon}\right)_T = C : (\varepsilon - \varepsilon_0 - \alpha \theta)$$

and the entropy per unit volume can be calculated as

$$-\left(\frac{\partial F}{\partial T}\right)_{\varepsilon} = \rho C_{\rm p} {\rm log}(T/T_0) + S_{\rm elast}$$

where  $T_0$  is a reference temperature, the volumetric heat capacity  $\rho C_P$  can be assumed independent of the temperature (Dulong-Petit law), and

$$S_{\text{elast}} = \alpha : s$$

For an isotropic material, it simplifies into

$$S_{\text{elast}} = \alpha(s_x + s_y + s_z)$$

The heat balance equation can be written as

$$\rho C_p \frac{\partial T}{\partial t} + T \frac{\partial}{\partial t} S_{\text{elast}} = \nabla \cdot (k \nabla T) + Q_h$$

where k are the thermal conductivity matrix, and

$$Q_h = \tau : \dot{\varepsilon}$$

where  $\dot{\epsilon}$  is the strain-rate tensor and the tensor  $\tau$  represents all possible inelastic stresses (for example, a viscous stress).

Using the tensor components, the heat balance can be rewritten as:

$$\rho C_p \frac{\partial T}{\partial t} + \sum_{m,n} T \alpha_{mn} \frac{\partial}{\partial t} s_{mn} = \nabla \cdot (k \nabla T) + Q_h$$
(14-4)

In many cases, the second term can be neglected in the left-hand side of Equation 14-4 because all  $T\alpha_{mn}$  are small. The resulting approximation is often called uncoupled thermoelasticity.

# Strain-Displacement Relationship

The strain conditions at a point are completely defined by the deformation components—u, v, and w in 3D—and their derivatives. The precise relation between strain and deformation depends on the relative magnitude of the displacement.

#### SMALL DISPLACEMENTS

Under the assumption of small displacements, the normal strain components and the shear strain components are related to the deformation as follows:

$$\begin{split} \varepsilon_{x} &= \frac{\partial u}{\partial x} & \varepsilon_{xy} = \frac{\gamma_{xy}}{2} = \frac{1}{2} \left( \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \\ \varepsilon_{y} &= \frac{\partial v}{\partial y} & \varepsilon_{yz} = \frac{\gamma_{yz}}{2} = \frac{1}{2} \left( \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right) \\ \varepsilon_{z} &= \frac{\partial w}{\partial z} & \varepsilon_{xz} = \frac{\gamma_{xz}}{2} = \frac{1}{2} \left( \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right). \end{split}$$
(14-5)

To express the shear strain, use either the tensor form,  $\varepsilon_{xy}$ ,  $\varepsilon_{yz}$ ,  $\varepsilon_{xz}$ , or the engineering form,  $\gamma_{xy}$ ,  $\gamma_{yz}$ ,  $\gamma_{xz}$ .

The symmetric strain tensor  $\varepsilon$  consists of both normal and shear strain components:

$$\varepsilon = \begin{bmatrix} \varepsilon_x & \varepsilon_{xy} & \varepsilon_{xz} \\ \varepsilon_{xy} & \varepsilon_y & \varepsilon_{yz} \\ \varepsilon_{xz} & \varepsilon_{yz} & \varepsilon_z \end{bmatrix}$$

The strain-displacement relationships for the axial symmetry case for small displacements are

$$\varepsilon_r = \frac{\partial u}{\partial r}, \qquad \varepsilon_{\varphi} = \frac{u}{r}, \qquad \varepsilon_z = \frac{\partial w}{\partial z}, \text{ and } \qquad \gamma_{rz} = \frac{\partial u}{\partial z} + \frac{\partial u}{\partial r}$$

#### LARGE DEFORMATIONS

As a start, consider a certain physical particle, initially located at the coordinate **X**. During deformation, this particle follows a path

$$\mathbf{x} = \mathbf{x}(\mathbf{X}, t)$$

For simplicity, assume that undeformed and deformed positions are measured in the same coordinate system. Using the displacement  $\mathbf{u}$ , it is then possible to write

$$\mathbf{x} = \mathbf{X} + \mathbf{u}$$

When studying how an infinitesimal line element  $d\mathbf{X}$  is mapped to the corresponding deformed line element  $d\mathbf{x}$ , the *deformation gradient*, *F*, defined by

$$d\mathbf{x} = \frac{\partial \mathbf{x}}{\partial \mathbf{X}} d\mathbf{X} = F d\mathbf{X}$$

is used.

The deformation gradient contains the complete information about the local straining and rotation of the material. It is a positive definite matrix, as long as material cannot be annihilated. The ratio between current and original volume (or mass density) is

$$\frac{dV}{dV_0} = \frac{\rho_0}{\rho} = \det(F) = J$$

A deformation state where J = 1 is often called incompressible. From the deformation gradient, it is possible to define the right Cauchy-Green tensor as

$$C = F^T F$$

As can be shown by simple insertion, a finite rigid body rotation causes nonzero values of the engineering strain defined by Equation 14-5. This is not in correspondence with the intuitive concept of strain, and it is certainly not useful in a constitutive law. There are several alternative strain definitions in use that do have the desired properties. The *Green-Lagrange strains*,  $\varepsilon$ , is defined as

$$\varepsilon = \frac{1}{2}(C - I) = \frac{1}{2}(F^{T}F - I)$$

Using the displacements, they be also written as

$$\varepsilon_{ij} = \frac{1}{2} \left( \frac{\partial u_i}{\partial X_j} + \frac{\partial u_j}{\partial X_i} + \frac{\partial u_k}{\partial X_i} \cdot \frac{\partial u_k}{\partial X_j} \right)$$
(14-6)

The Green-Lagrange strains are defined with reference to an undeformed geometry. Hence, they represent a Lagrangian description.

The deformation state characterized by finite (or large displacements) but small to moderate strains is sometimes referred to as *geometric nonlinearity* or *nonlinear geometry*. This typically occurs when the main part of the deformations presents a finite rigid body rotation

#### STRAIN RATE AND SPIN

The spatial velocity gradient is defined in components as

$$L_{kl} = \frac{\partial}{\partial x_l} v_k(\mathbf{r}, t)$$

where  $v_k(\mathbf{r}, t)$  is the spatial velocity field. It can be shown that L can be computed in terms of the deformation gradient as

$$L = \frac{dF}{dt}F^{-1}$$

where the material time derivative is used.

The velocity gradient can be decomposed into symmetric and skew-symmetric parts

$$L = L_d + L_w$$

where

$$L_d = \frac{1}{2}(L + L^T)$$

is called the rate of strain tensor, and

and

$$L_w = \frac{1}{2}(L - L^T)$$

is called the *spin tensor*. Both tensors are defined on the spatial frame.

It can be shown that the material time derivative of the Green-Lagrange strain tensor can be related to the rate of strain tensor as

$$\frac{d\varepsilon}{dt} = F^T L_d F$$

The spin tensor  $L_w(x,t)$  accounts for an instantaneous local rigid-body rotation about an axis passing through the point x.

Components of both  $L_d$  and  $L_w$  are available as results and analysis variables under the Solid Mechanics interface.

# Stress-Strain Relationship

The symmetric stress tensor  $\sigma$  describes stress in a material:

$$\sigma = \begin{bmatrix} \sigma_x \ \tau_{xy} \ \tau_{xz} \\ \tau_{yx} \ \sigma_y \ \tau_{yz} \\ \tau_{zx} \ \tau_{zy} \ \sigma_z \end{bmatrix} \qquad \tau_{xy} = \tau_{yx} \qquad \tau_{xz} = \tau_{zx} \qquad \tau_{yz} = \tau_{zy}$$

This tensor consists of three normal stresses  $(\sigma_x, \sigma_y, \sigma_z)$  and six (or, if symmetry is used, three) shear stresses  $(\tau_{xy}, \tau_{yz}, \tau_{xz})$ .

For large deformations and hyperelastic material models there are more than one stress measure:

- Cauchy stress σ (the components are denoted sx, ... in COMSOL Multiphysics) defined as force/deformed area in fixed directions not following the body. Symmetric tensor.
- First Piola-Kirchhoff stress *P* (the components are denoted Px, ... in COMSOL Multiphysics). This is an unsymmetric two-point tensor.
- Second Piola-Kirchhoff stress *S* (the components are denoted Sx, ... in COMSOL Multiphysics). This is a symmetric tensor, for small strains same as Cauchy stress tensor but in directions following the body.

The stresses relate to each other as

$$S = F^{-1}P$$
$$\sigma = J^{-1}PF^{T} = J^{-1}FSF^{T}$$

# Plane Strain and Plane Stress Cases

For a general anisotropic linear elastic material in case of plane stress, COMSOL solves three equations  $s_{i3} = 0$  for  $\varepsilon_{i3}$  with i = 1, 2, 3, and uses the solution instead of Equation 14-2 for these three strain components. Thus, three components  $\varepsilon_{i3}$  are treated as extra degrees of freedom. For isotropy and orthotrophy, only with an extra degree of freedom,  $\varepsilon_{33}$ , is used since all out of plane shear components of both stress and strain are zero. The remaining three strain components are computed as in 3D case according to Equation 14-2.

# Note

For an isotropic material, only the normal out-of-plane component  $\varepsilon_{33}$  needs to be solved for.

In case of plane strain, set  $\varepsilon_{i3} = 0$  for i = 1, 2, 3. The out-of-plane stress components  $s_{i3}$  are results and analysis variables.

# Axial Symmetry

The axially symmetric geometry uses a cylindrical coordinate system. Such a coordinate system is orthogonal but curvilinear, and one can choose between a covariant basis  $\mathbf{e}_1$ ,  $\mathbf{e}_2$ ,  $\mathbf{e}_3$  and a contravariant basis  $\mathbf{e}^1$ ,  $\mathbf{e}^2$ ,  $\mathbf{e}^3$ .

The metric tensor is

$$[g_{ij}] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

in the coordinate system given by  $\mathbf{e}^1, \mathbf{e}^2, \mathbf{e}^3$ , and

$$\left[ g^{ij} \right] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & r^{-2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

in  $e_1, e_2, e_3$ .

The metric tensor plays the role of a unit tensor for a curvilinear coordinate system.

For any vector or tensor *A*, the metric tensor can be used for conversion between covariant, contravariant, and mixed components:

$$A_i^{j} = \sum_m (A_{im}g^{mj})$$
$$A^{ij} = \sum_{m,n} (A_{nm}g^{ni}g^{mj})$$

In both covariant and contravariant basis, the base vector in the azimuthal direction has a nonunit length. To cope with this issue, the so called physical basis vectors of unit length are introduced. These are

$$\mathbf{e}_r = \mathbf{e}_1 = \mathbf{e}^1, \mathbf{e}_{\varphi} = \frac{1}{r}\mathbf{e}_2 = r\mathbf{e}_2, \mathbf{e}_z = \mathbf{e}_3 = \mathbf{e}^3$$

The corresponding components for any vector or tensor are called physical.

For any tensor, the physical components are defined as

$$A_{ij}^{\rm phys} = \sqrt{g_{ii}} \sqrt{g_{jj}} A^{ij}$$

where no summation is done over repeated indices.

#### MIXED COMPONENTS AND PRINCIPAL INVARIANTS

The mixed strain components are given by

$$A_j^i = \sum_m (g^{im} A_{mj})$$

The principal invariants are

$$I_{1}(A) = \operatorname{trace}[A_{i}^{i}] = \sum_{i} A_{i}^{i} = A_{11} + A_{22} \frac{1}{r^{2}} + A_{33}$$
$$I_{2}(A) = \frac{1}{2} \left( (I_{1}(A))^{2} - \sum_{i,j} A_{j}^{i} A_{i}^{j} \right)$$
$$I_{3}(A) = \operatorname{det}[A_{i}^{i}]$$

#### DISPLACEMENTS AND AXIAL SYMMETRY ASSUMPTIONS

The axial symmetry implementation in COMSOL Multiphysics assumes independence of the angle, and also that the torsional component of the displacement is identically zero. The physical components of the radial and axial displacement, u and w, are used as dependent variables for the axially symmetric geometry.

For the linear elastic material, the stress components in coordinate system are

$$s^{ij} = s_0^{ij} + \mathsf{C}^{ijkl}(\varepsilon_{kl} - \alpha_{kl}\theta - \varepsilon_{0kl})$$

where  $\theta = T - T_{ref}$ .

For anisotropic and orthotropic materials, the 4th-order elasticity tensor is defined from D matrix according to:

$s_r$	s _r	ε _r	ε _r	$\alpha_r$
$s_{\phi}$	$s_{\phi}$	εφ	εφ	$\alpha_{\phi}$
$s_{z\phi} =$	$s_{z\phi} + D$	ε _{zφ}	$\varepsilon_{z\phi} = -\theta$	$\alpha_{z\phi}$
$s_{r\phi}$	$s_{r\phi}$	$2\varepsilon_{r\phi}$	$2\varepsilon_{r\phi}$	$2\alpha_{r\phi}$
$s_{\phi z}$	$s_{\varphi z}$	$2\epsilon_{\varphi z}$	$2\epsilon_{\varphi z}$	$2\alpha_{\varphi z}$
$s_{rz}$	s _{rz0}	$2\varepsilon_{rz}$	$2\varepsilon_{rz}$	$2\alpha_{rz}$

The user input D matrix always contains the physical components of the elasticity tensor

$$\mathsf{C}^{\mathrm{phys}}_{ijkl}$$

and the corresponding tensor components are computed internally according to:

$$\mathsf{C}^{ijkl} = \frac{\mathsf{C}^{\text{phys}}_{ijkl}}{\sqrt{g_{ii}}\sqrt{g_{jj}}\sqrt{g_{kk}}\sqrt{g_{ll}}}$$

For an isotropic material:

$$\mathsf{C}^{ijkl} = \lambda g^{ij} g^{kl} + \mu (g^{ik} g^{jl} + g^{il} g^{jk})$$

where  $\lambda$  and  $\mu$  are the first and second Lamé elastic constants.

### Loads

Specify loads as

- Distributed loads. The load is a distributed force in a volume, on a face, or along an edge.
- Total force. The specification of the load is as the total force. The software then divides this value with the area or the volume where the force acts.
- Pressure (boundaries only).





For 2D and axisymmetric models, the boundary loads apply on edges (boundaries).



Table 14-3 shows how to define distributed loads on different geometric entity levels; the entries show the SI unit in parentheses.

GEOMETRIC ENTITY	POINT	EDGE	FACE	DOMAIN
2D	force (N)	force/area (N/m ² ) or force/length (N/m)	Not available	force/volume (N/ m ³ ) or force/area (N/m ² )
Axial symmetry	total force along the circumferential (N)	force/area (N/m ² )	Not available	force/volume (N/ m ³ )
3D	force (N)	force/length (N/ m)	force/area (N/ m ² )	force/volume (N/ m ³ )

TABLE	14-3:	DISTRIBUTED	LOADS

# Pressure Loads

A pressure load is directed inward along the normal of boundary on which it is acting. This load type acts as a source of nonlinearity, since its direction depends on the current direction of the boundary normal. In a linearized context, for example in the frequency domain, the pressure is equivalent to a specified normal stress.



For general cases, if the problem is linear in all other respects, the solution can be made more efficient by forcing the solver to treat the problem as linear. See Stationary Solver in the *COMSOL Multiphysics Reference Guide*.

# Equation Implementation

The COMSOL Multiphysics implementation of the equations in the Solid Mechanics interface is based on the principle of virtual work.

The principle of virtual work states that the sum of virtual work from internal strains is equal to work from external loads.

The total stored energy, *W*, for a linear material from external and internal strains and loads equals:

$$\begin{split} W &= \int_{V} (-\varepsilon : s + \mathbf{u} \cdot \mathbf{F}_{V}) dv \\ &+ \int_{S} (\mathbf{u} \cdot \mathbf{F}_{S}) ds + \int_{L} (\mathbf{u} \cdot \mathbf{F}_{L}) dl + \sum_{p} (\mathbf{U}^{t} \cdot \mathbf{F}_{p}) \end{split}$$

The principle of virtual work states that  $\delta W = 0$  which leads to

$$\int_{V} (-\varepsilon_{\text{test}} : s + \mathbf{u}_{\text{test}} \cdot \mathbf{F}_{V} - \rho \mathbf{u}_{\text{test}} \cdot \mathbf{u}_{tt}) dv$$
$$+ \int_{S} (\mathbf{u}_{\text{test}} \cdot \mathbf{F}_{S}) ds + \int_{L} (\mathbf{u}_{\text{test}} \cdot \mathbf{F}_{L}) dl + \sum_{p} (\mathbf{U}_{\text{test}}^{t} \cdot \mathbf{F}_{p})$$

p

# Setting up Equations for Different Studies

The Solid Mechanics interface supports stationary (static), eigenfrequency, time-dependent (transient), frequency domain, and modal solver study types.

#### STATIONARY STUDIES

COMSOL Multiphysics uses an implementation based on the stress and strain variables. The normal and shear strain variables depend on the displacement derivatives.

Using the tensor strain, stress, and displacement variables, the principle of virtual work is expressed as:

$$\delta W = \int_{V} (-\varepsilon_{\text{test}} : s + \mathbf{u}_{\text{test}} \cdot \mathbf{F}_{V}) dv$$

$$+ \int_{S} (\mathbf{u}_{\text{test}} \cdot \mathbf{F}_{S}) ds + \int_{L} (\mathbf{u}_{\text{test}} \cdot \mathbf{F}_{L}) dl + \sum_{p} (\mathbf{U}_{\text{test}}^{t} \cdot \mathbf{F}_{p})$$

#### TIME-DEPENDENT STUDIES

$$\int_{V} (-\varepsilon_{\text{test}} : (s + \beta_{dM} s_{t}) + \mathbf{u}_{\text{test}} \cdot \mathbf{F}_{V} - \rho \mathbf{u}_{\text{test}} \cdot \mathbf{u}_{tt} - \alpha_{dM} \rho \mathbf{u}_{\text{test}} \cdot \mathbf{u}_{t}) dv$$

$$+ \int_{S} (\mathbf{u}_{\text{test}} \cdot \mathbf{F}_{S}) ds + \int_{L} (\mathbf{u}_{\text{test}} \cdot \mathbf{F}_{L}) dl + \sum_{p} (\mathbf{U}_{\text{test}}^{t} \cdot \mathbf{F}_{p})$$

$$(14-7)$$

where the terms proportional to  $\alpha_{dM}$  and  $\beta_{dK}$  appear if the *Rayleigh damping* is used. For more information about the equation form in case of geometric nonlinearity see

C See Also

#### FREQUENCY-DOMAIN STUDIES

In the frequency domain the frequency response is studied when applying harmonic loads. Harmonic loads are specified using two components:

- The amplitude value,  $F_x$
- The phase,  $F_{xPh}$

To derive the equations for the linear response from harmonic excitation loads

$$\begin{split} F_{x \text{freq}} &= F_{x}(f) \cos \left( \omega t + F_{x \text{Ph}}(f) \frac{\pi}{180} \right) \\ \mathbf{F}_{\text{freq}} &= \begin{bmatrix} F_{x \text{freq}} \\ F_{y \text{freq}} \\ F_{z \text{freq}} \end{bmatrix} \end{split}$$

assume a harmonic response with the same angular frequency as the excitation load

$$u = u_{amp} \cos(\omega t + \phi_u)$$
$$\mathbf{u} = \begin{bmatrix} u \\ v \\ w \end{bmatrix}$$

Also describe this relationship using complex notation

$$u = \operatorname{Re}(u_{\operatorname{amp}}e^{j\phi_{u}}e^{j\omega t}) = \operatorname{Re}(\tilde{u}e^{j\omega t}) \text{ where } \tilde{u} = u_{\operatorname{amp}}e^{j\phi_{u}}$$
$$\mathbf{u} = \operatorname{Re}(\tilde{\mathbf{u}}e^{j\omega t})$$
$$F_{x\operatorname{freq}} = \operatorname{Re}\left(F_{x}(\omega)e^{jF_{x^{p_{h}}}(f)\frac{\pi}{180}}e^{j\omega t}\right) = \operatorname{Re}(\tilde{F}_{x}e^{j\omega t})$$

where

$$\tilde{F}_{x} = F_{x}(f)e^{jF_{xPh}(f)\frac{\pi}{180}}$$
$$\tilde{\mathbf{F}} = \begin{bmatrix} \tilde{F}_{x} \\ \tilde{F}_{y} \\ \tilde{F}_{z} \end{bmatrix}$$

#### EIGENFREQUENCY STUDIES

The eigenfrequency equations are derived by assuming a harmonic displacement field, similar as for the frequency response formulation. The difference is that this study type uses a new variable  $j\omega$  explicitly expressed in the eigenvalue  $j\omega = -\lambda$ . The eigenfrequency f is then derived from  $j\omega$  as

$$f = \left| \frac{\mathrm{Im}(j\omega)}{2\pi} \right|$$

Damped eigenfrequencies can be studied by adding viscous damping terms to the equation. In addition to the eigenfrequency the quality factor, Q, and decay factor,  $\delta$ , for the model can be examined:

$$Q = \frac{\mathrm{Im}(\lambda)}{2\mathrm{Re}(\lambda)}$$
$$\delta = \mathrm{Re}(\lambda)$$

The Solid Mechanics interface offers two predefined damping models: Rayleigh damping and loss factor damping.

#### RAYLEIGH DAMPING

To model damping effects within the material, COMSOL Multiphysics uses *Rayleigh damping*, where two damping coefficients are specified.

The weak contribution due to the alpha-damping is always accounted for as shown in Equation 14-7. The contribution from the beta-damping that shown in Equation 14-7 corresponds to the case of small strains. In case of geometric nonlinearity, it becomes

$$\int_{V} (-\beta_{dM} \nabla \mathbf{u}_{\text{test}} : P_t) dv$$

where P is the first Piola-Kirchhoff stress tensor.

To further clarify the use of the Rayleigh damping, consider a system with a single degree of freedom. The equation of motion for such a system with viscous damping is

$$m\frac{d^2u}{dt^2} + c\frac{du}{dt} + ku = f(t)$$

In the Rayleigh damping model the damping coefficient c can be expressed in terms of the mass m and the stiffness k as

$$c = \alpha_{dM}m + \beta_{dK}k$$

The Rayleigh damping proportional to mass and stiffness is added to the static weak term.

A complication with the Rayleigh damping model is to obtain good values for the damping parameters. A more physical damping measure is the relative damping, the ratio between actual and critical damping, often expressed as a percentage of the critical damping. Commonly used values of relative damping can be found in the literature.

It is possible to transform relative damping to Rayleigh damping parameters. The relative damping,  $\xi$ , for a specified pair of Rayleigh parameters,  $\alpha_{dM}$  and  $\beta_{dK}$ , at a frequency, *f*, is

$$\xi = \frac{1}{2} \left( \frac{\alpha_{dM}}{2\pi f} + \beta_{dK} 2\pi f \right)$$

Using this relationship at two frequencies,  $f_1$  and  $f_2$ , with different relative damping,  $\xi_1$  and  $\xi_2$ , results in an equation system that can be solved for  $\alpha_{dM}$  and  $\beta_{dK}$ :

$$\begin{bmatrix} \frac{1}{4\pi f_1} & \pi f_1 \\ \\ \frac{1}{4\pi f_2} & \pi f_2 \end{bmatrix} \begin{bmatrix} \alpha_{dM} \\ \beta_{dK} \end{bmatrix} = \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix}$$

Using the same relative damping,  $\xi_1 = \xi_2$ , does not result in a constant damping factor inside the interval  $f_1 < f < f_2$ . It can be shown that the damping factor is lower inside the interval, as Figure 14-7 shows.



Figure 14-7: An example of Rayleigh damping.

#### LOSS FACTOR DAMPING

Loss factor damping (sometimes referred to as material or structural damping) can be applied in the frequency domain.

In COMSOL Multiphysics, the loss information appears as a multiplier of the elastic stress in the stress-strain relationship:

$$s = s_0 + (1 + j\eta_s)C : [\varepsilon - \varepsilon_0 - \alpha\theta]$$

where  $\eta_s$  is the loss factor, and *j* is the imaginary unit.

Choose between these loss damping types:

- Isotropic loss damping  $\eta_s$
- Orthotropic loss damping with components of  $\eta_E$ , the loss factor for an orthotropic Young's modulus, and  $\eta_G$ , the loss factor for an orthotropic shear modulus.
- Anisotropic loss damping with an isotropic or symmetric loss damping  $\eta_D$  for the elasticity matrix.

If modeling the damping in the structural analysis via the loss factor, use the following definition for the elastic part of the entropy:

$$S_{\text{elast}} = \alpha : (s - j\eta_s(C:\varepsilon))$$

This is because the entropy is a function of state and thus independent of the strain rate, while the damping represents the rate-dependent effects in the material (for example, viscous or viscoelastic effects). The internal work of such inelastic forces averaged over the time period  $2\pi/\omega$  can be computed as:

$$Q_{h} = \frac{1}{2} \omega \eta_{s} \text{Real}(\varepsilon : \text{Conj}(C : \varepsilon))$$
(14-8)

Equation 14-8 can be used as a heat source for modeling of the heat generation in vibrating structures, when coupled with the frequency-domain analysis for the stresses and strains.

# 15

# Equation-Based Modeling

This chapter describes the use of the mathematics interfaces, found under the **Mathematics** branch ( $\Delta u$ ) in the **Model Wizard**, which are used for equation-based modeling. With those interfaces you can solve various types of PDEs using different formulations. You can also solve ODEs and other global equations.

In this chapter:

- The Mathematics Interfaces
- PDE Interfaces
- Weak Form Modeling
- Using Weak Constraints
- Solving ODEs and DAEs
- The Wall Distance Interface
- Theory for the Wall Distance Interface

# The Mathematics Interfaces

The *mathematics interfaces* are physics interfaces for equation-based modeling. They support several PDE formulation as well as general ways of adding ODEs, algebraic equations, and other global (space-independent) equations. The following mathematics interfaces are found under the Model Wizard's **Mathematics** branch:

- PDE Interfaces. These are interfaces for solving PDEs in different forms:
  - *Coefficient form* for linear or almost linear PDEs, explained in detail in Coefficient Form PDE Interface (c).
  - General form for nonlinear PDEs, explained in detail in General Form PDE Interface (g).
  - *Weak form* using the weak formulation of the PDE for maximum flexibility. See Weak Form Modeling.

All of these PDE interfaces are available in domains and also on boundaries and edges and at points).

- ODE and DAE Interfaces. Use these interfaces to solve space-independent equations that include ordinary differential equations (ODEs), differential-algebraic equations (DAEs), algebraic equations, and transcendental equations, either as global equations or as distributed ODEs/DAEs (on domains, boundaries, edges, or at points). For more information about global equations and ODEs, see Solving ODEs and DAEs.
- *Events Interface.* This is a specialized interface to create solver events. For more information about using events, see The Events Interface.
- *Optimization*. This interface requires an Optimization Module license. See the *Optimization Module User's Guide* for details.
- Sensitivity. This interface is for Sensitivity Analysis.
- *Classical PDEs.* These specialized instances of the coefficient form PDE provide interfaces for a number of Classical PDEs.
- *Moving Interface*. The Level Set interface and the Phase Field interface provide the possibility to track fluid-fluid interfaces or other moving interfaces for multiphase applications, for example. See the Microfluidics Module or the Chemical Reaction Engineering Module documentation as moving interfaces require these modules.
- *Deformed Mesh.* The Deformed Geometry Interface makes it possible to model prescribed deformation of the mesh that represents the model domain. The Moving

Mesh Interface is vital for modeling moving meshes using the ALE (arbitrary Lagrangian-Eulerian) technique in applications such as fluid-structure interaction (FSI).

• *Wall Distance*. This interface, which computes the distance to the boundary (wall), is primarily intended for use in connection to turbulence modeling for fluid flow. See The Wall Distance Interface.

Table 15-1 lists the available interfaces for PDEs, ODEs, and DAEs with their default interface identifiers:

MATHEMATICS INTERFACE	INTERFACE IDENTIFIER
PDE INTERFACES	
Coefficient Form PDE	с
Coefficient Form Boundary PDE	cd
Coefficient Form Edge PDE	ce
Coefficient Form Point PDE	ср
General Form PDE	g
General Form Boundary PDE	gb
General Form Edge PDE	ge
General Form Point PDE	gp
Weak Form PDE	w
Weak Form Boundary PDE	wb
Weak Form Edge PDE	we
Weak Form Point PDE	wp
CLASSICAL PDES	
Convection-Diffusion Equation	cdeq
Heat Equation	hteq
Helmholtz Equation	hzeq
Laplace's Equation	lpeq
Poisson's Equation	poeq
Wave Equation	waeq
ODE AND DAE INTERFACES	
Global ODEs and DAEs	ge
Domain ODEs and DAEs	dode
Boundary ODEs and DAEs	bode

TABLE 15-1: DEFAULT INTERFACE IDENTIFIERS FOR THE MATHEMATICS INTERFACES

TABLE 15-1: DEFAULT INTERFACE IDENTIFIERS FOR THE MATHEMATICS INTERFACES

MATHEMATICS INTERFACE	INTERFACE IDENTIFIER
Edge ODEs and DAEs	eode
Point ODEs and DAEs	pode



# Physics List in COMSOL Multiphysics

# PDE Interfaces

In this section:

- Starting a Model Using a PDE Interface
- Notational Conventions
- Coefficient Form PDE Interface (c) and Coefficient Form PDE
- General Form PDE Interface (g) and General Form PDE
- Initial Values
- Adding Extra Source Terms
- Boundary Conditions for the PDE Interfaces
- Dirichlet Boundary Condition
- Constraint
- Flux/Source
- Zero Flux
- Periodic Condition
- Destination Selection
- Interpreting Boundary Conditions
- Multiple Dependent Variables—Equation Systems
- Solving Time-Dependent Problems
- Solving Eigenvalue Problems
- Interpreting PDE Coefficients
- Classical PDEs
- Bidirectional and Unidirectional Constraints
- PDE Interface Variables
- PDE Coefficients and Boundary Conditions with Time Derivatives
- Element Types and Discretization

# Starting a Model Using a PDE Interface

To create a new model using one of the equation interfaces:

- I In the Model Wizard, select a space dimension on the Select Space Dimension page. Click the Next button ( ➡).
- 2 Expand the **Mathematics>PDE Interfaces** node in the list of physics interfaces and select one of the PDE interface in the list. For PDEs on other geometric entities than domains, expand the **Lower Dimensions** node.
- **3** Double-click the interface or click the **Add Selected** button ( -) underneath the list to add the selected PDE interface to the model. The interface is added to **Selected physics**.
- 4 Click the Next button ( ⇒) in the upper-right corner of the Model Wizard window.
- 5 Optionally, choose a Study Type.
- 6 Click the Finish button ( 😹 ) in the upper-right corner of the Model Wizard window.

#### SPECIFYING A SYSTEM OF EQUATIONS

COMSOL Multiphysics allows the creation of equations with more than one dependent variable. To do so, after Step 4 above, under **Dependent variables** type the number of dependent variables in the **Number of dependent variables** field. COMSOL Multiphysics then automatically assigns variable names, typically u1, u2, u3, and so on. Also enter the name of your choice (as long as they are valid and unique) in **Variable names** fields. Several scalar PDEs can also be coupled using a multiphysics approach

Regardless if you start with a PDE interface in coefficient form or general form, additional equation nodes can be added in coefficient form, general form, or weak form to the same PDE interface.

# Notational Conventions

COMSOL Multiphysics PDE interfaces and this chapter describing them use a slightly different notation, compared to other physics interfaces and their documentation. The difference lies in the meaning of the symbol  $\nabla$ , pronounced *nabla* or *del*. In equations on display in the physics interfaces, the  $\nabla$  symbol applied to a scalar or vector variable denotes the following coordinate system-independent *gradient*, *divergence*, and *curl* operations:

 $\nabla u = \operatorname{grad}(u)$  $\nabla \cdot \mathbf{u} = \operatorname{div}(\mathbf{u})$  $\nabla \times \mathbf{u} = \operatorname{curl}(\mathbf{u})$ 

g

Τīp

In the PDE interfaces, *nabla/del* is interpreted as the vector of partial derivatives:

$$\nabla = \left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right)$$

The spatial coordinates are here denoted  $x_1, ..., x_n$ , where *n* represents the number of space dimensions. When applied to a scalar or vector in a Cartesian coordinate system, this definition leads to an expression that is identical in form to the gradient, divergence, or curl in the same coordinate system. The same does not apply, however, in curvilinear systems such as the one implied in an axisymmetric geometry.

For example, the divergence of a vector  $\mathbf{u} = [u_p \ u_z]$  in an axisymmetric cylindrical system is

$$\operatorname{div}(\mathbf{u}) = \frac{\partial u_r}{\partial r} + \frac{u_r}{r} + \frac{\partial u_z}{\partial z} = \frac{1}{r} \frac{\partial}{\partial r} (r u_r) + \frac{\partial u_z}{\partial z}$$

while the PDE interface interpretation of *nabla/del* is

$$\nabla \cdot \mathbf{u} = \frac{\partial u_r}{\partial r} + \frac{\partial u_z}{\partial z}$$

In practice, this means that to correctly implement equations containing the gradient, divergence, or curl in an axisymmetric geometry, you need to compensate for the missing terms related to the curvature of the coordinate system.

The following related examples follow the same principle:

• The symbol  $\Delta$  is the Laplace operator

$$\frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_n^2}$$

•  $\nabla \cdot (c \nabla u)$  means

$$\frac{\partial}{\partial x_1} \left( c \frac{\partial u}{\partial x_1} \right) + \ldots + \frac{\partial}{\partial x_n} \left( c \frac{\partial u}{\partial x_n} \right)$$

•  $\beta \cdot \nabla u$  means

$$\beta_1 \frac{\partial u}{\partial x_1} + \dots + \beta_n \frac{\partial u}{\partial x_n}$$

where  $\beta_1, ..., \beta_n$  are the components of the vector  $\beta$ .



The axisymmetric versions of physics interfaces take the cylindrical system into account, and no compensation is therefore needed.

# Coefficient Form PDE Interface (c)

The PDE interface ( $\Delta u$ ) in coefficient form, **Coefficient Form PDE**, found under the **Mathematics>PDE Interfaces** branch ( $\Delta u$ ) in the **Model Wizard**, covers many well-known PDEs. This section covers the formulation and settings pertaining to the coefficient form, as well as the general PDE terminology used in COMSOL Multiphysics.

When this interface is added, these default nodes are also added to the **Model Builder**— **Coefficient Form PDE**, **Zero Flux**, and **Initial Values**. Right-click the **PDE** node to add other nodes that implement other boundary conditions, for example.

The following sections provides information about all nodes available in the Coefficient Form PDE interface. The Coefficient Form PDE interface is also available as Coefficient Form Boundary PDE, Coefficient Form Edge PDE, and Coefficient Form Point PDE for PDEs in coefficient form on boundaries and edges and at points.

#### THE SCALAR COEFFICIENT FORM EQUATION

A single dependent variable u is an unknown function on the computational domain. COMSOL Multiphysics determines it by solving the PDE problem specified. In coefficient form, the PDE problem reads

$$\begin{cases} e_a \frac{\partial^2 u}{\partial t^2} + d_a \frac{\partial u}{\partial t} + \nabla \cdot (-c \nabla u - \alpha u + \gamma) + \beta \cdot \nabla u + au = f & \text{in } \Omega \\ \\ \mathbf{n} \cdot (c \nabla u + \alpha u - \gamma) + qu = g - h^T \mu & \text{on } \partial \Omega \\ u = r & \text{on } \partial \Omega \end{cases}$$
(15-1)

where

- Ω is the computational domain—the union of all domains
- $\partial \Omega$  is the domain boundary
- **n** is the outward unit normal vector on  $\partial \Omega$

The first equation in the list above is the PDE, which must be satisfied in  $\Omega$ . The second and third equations are the boundary conditions, which must hold on  $\partial \Omega$ . The second equation is a generalization of a *Neumann* boundary condition, whereas the third equation is a *Dirichlet* boundary condition. In finite element terminology, the boundary condition corresponding to a Neumann boundary condition is called a *natural boundary conditions*, because it does not occur explicitly in the weak form of the PDE problem. In the PDE interfaces, the corresponding condition is called a *flux* or *source*, because it specifies the value of the numerical flux at the boundary.

Dirichlet conditions are also known as *essential boundary conditions* in finite element theory, because they impose a restriction on the trial space which is not part of the main equation. In the PDE interfaces, a distinction is made between Dirichlet boundary conditions and *constraints*. The former directly specify the value of the dependent variable at the boundary, while the latter force an arbitrary function of the dependent variables to equal zero on the boundary. This makes the constraint a more general feature.

Within COMSOL Multiphysics, the coefficients c,  $\alpha$ ,  $\gamma$ ,  $\beta$ , a, and h, and the terms f, g, and r are specified. They can all be functions of the spatial coordinates.

- A PDE is *linear* when the coefficients depend only on the spatial coordinates (or are constants).
- A PDE is *nonlinear* if the coefficients depend on *u* or its derivatives (for example, the components of ∇*u*).
- All the coefficients in the above equation are scalars except α, β, and γ, which are vectors with *n* components. The coefficient *c* can alternatively be an *n*-by-*n* matrix to model anisotropic materials.

The  $e_a$  coefficient in Equation 14-1 is a scalar or a matrix for time-dependent systems called the *mass matrix* (or mass coefficient). The  $d_a$  coefficient represents a damping term (however, if  $e_a = 0$ , then  $d_a$  is often called the mass coefficient).



Modeling Anisotropic Materials

• Solving Time-Dependent Problems

#### INTERFACE IDENTIFIER

The interface identifier is a text string that can be used to reference the respective physics interface if appropriate. Such situations could occur when coupling this

interface to another physics interface, or when trying to identify and use variables defined by this physics interface, which is used to reach the fields and variables in expressions, for example. It can be changed to any unique string in the **Identifier** field.

The default identifier (for the first interface in the model) is c (in domains), cb, ce, or cp (on boundaries, edges, and at points, respectively).

#### DOMAIN SELECTION

The default setting is to include **All domains** in the model to define the PDE. To choose specific domains, select **Manual** from the **Selection** list.

#### UNITS

By default, the PDE interfaces are unitless, but you can define units for the dependent variable and the source term (that is, the overall left and right side of the equation). The units for these quantities—in combination with the units for length and time—fully define the units for all other terms in the equations. To select the units you select the corresponding quantity from a list of physical quantities or enter the unit directly.

Select the quantity that defines the unit for the dependent variable *u* from the **Dependent variable quantity** list. The default is **Dimensionless [1]**. Select **None** to enter a unit (for example, K, m/s, or mol/m^3) in the **Unit** field that appears.

Select the quantity that defines the unit for the source term f (the unit for the right and left—side of the PDE) from the **Source term quantity** list. Select **None** (the default) to enter a unit (for example, W/m^3 or A/m^3) in the **Unit** field that appears. The default unit is m^-2, which is a consistent with a dimensionless dependent variable.

Model

For an example of the use of units in a PDE interface, see Shell Diffusion: Model Library path COMSOL_Multiphysics/Equation-Based_Models/ shell_diffusion

#### DEPENDENT VARIABLES

Choose the number of dependent variables and set the field and dependent variable names. The default field and variable name for a single scalar PDE variable is u. If the field name coincides with the name of another field of the same unit and number of components, the two fields (and the interfaces which define them) will share degrees of freedom and dependent variable names. A field name must not coincide with the name of a field of another type, or with a component name belonging to some other

field. Component names must be unique within a model except when two interfaces share a common field name.

#### DISCRETIZATION

To display this section, click the Show button ( $rac{1}{20}$ ) and select Discretization from the Model Builder.

Select from a number of different shape function types (finite element types) from the **Shape function type** list and an associated element order (order of the shape function for the element) from the **Element order** list. The default is to use quadratic Lagrange elements.

The Value type (Real or Complex) of dependent variables needs to be specified when Split complex variables in real and imaginary parts setting is activated in the Compile Equations node of any solver sequence used. The default is complex value type. If split complex variables setting is not active the value type is ignored.



• Element Types and Discretization

Show More Physics Options

# Coefficient Form PDE

This is the default equation for a **Coefficient Form PDE** interface. Specify the coefficients for a coefficient form PDE (see Equation 14-1), with the following equation coefficients:

$$e_a \frac{\partial^2 u}{\partial t^2} + d_a \frac{\partial u}{\partial t} + \nabla \cdot (-c \nabla u - \mathbf{a}u + \gamma) + \beta \cdot \nabla u + au = f$$

- $e_a$  is the mass coefficient.
- d_a is a damping coefficient or a mass coefficient.
- c is the diffusion coefficient.
- $\alpha$  is the conservative flux convection coefficient.
- $\beta$  is the convection coefficient.
- *a* is the *absorption coefficient*.

- $\gamma$  is the *conservative flux source* term.
- f is the source term.



Interpreting Boundary Conditions

#### DOMAIN SELECTION

The default setting is to include **All domains** in the model to define where the coefficient form PDE is active. To choose specific domains, select **Manual** from the **Selection** list.

#### DIFFUSION COEFFICIENT

Enter a value or expression for the **Diffusion coefficient** *c*, which is a tensor. Select **Isotropic**, **Diagonal**, **Symmetric**, or **Anisotropic** and enter a *c* coefficient on various forms in 2D and 3D. If there are multiple dependent variables, there is a matrix of *c* component inputs.

#### ABSORPTION COEFFICIENT

Enter a value or expression for the absorption coefficient a. If there are multiple dependent variables, there is a matrix of a component inputs.

#### SOURCE TERM

Enter a value or expression for the source term f. If there are multiple dependent variables, there is a vector of f component inputs.

#### MASS COEFFICIENT

Enter a value or expression for the mass coefficient  $e_a$ . If there are multiple dependent variables, there is a matrix of  $e_a$  component inputs.

#### DAMPING OR MASS COEFFICIENT

Enter a value or expression for the damping (or mass) coefficient  $d_a$ . If there are multiple dependent variables, there is a matrix of  $d_a$  component inputs.

#### CONSERVATIVE FLUX CONVECTION COEFFICIENT

Enter values or expressions for the conservative flux convection coefficient  $\alpha$  vector's components. If there are multiple dependent variables, there is a matrix of  $\alpha$  vector component inputs.

#### CONVECTION COEFFICIENT

Enter values or expressions for the convection coefficient  $\beta$  vector's components. If there are multiple dependent variables, there is a matrix of  $\beta$  vector component inputs.

#### CONSERVATIVE FLUX SOURCE

Enter values or expressions for the conservative flux source term  $\gamma$  vector's components. If there are multiple dependent variables, there is a vector of  $\gamma$  vector component inputs.

# General Form PDE Interface (g)

The PDE interface ( $\Delta u$ ) in general form, **General Form PDE**, found under the **Mathematics>PDE Interfaces** branch ( $\Delta u$ ) in the **Model Wizard**, provides a flexible way of specifying PDEs in a general form. This section covers the formulation and settings pertaining to the general form.

When this interface is added, these default nodes are also added to the **Model Builder**— **General Form PDE**, **Zero Flux**, and **Initial Values**. Right-click **General Form PDE** to add other nodes that implement other boundary conditions, for example.

The following sections provides information about all nodes available in the General Form PDE interface. The General Form PDE interface is also available as General Form Boundary PDE, General Form Edge PDE, and General Form Point PDE for PDEs in general form on boundaries and edges and at points.

#### THE SCALAR GENERAL FORM EQUATION

Use the *general form* for nonlinear PDEs. Assuming that you are working with a single dependent variable *u*, then a transient problem in general form reads

$$\begin{cases} e_a \frac{\partial^2 u}{\partial t^2} + d_a \frac{\partial u}{\partial t} + \nabla \cdot \mathbf{\Gamma} = f & \text{in } \Omega \\ -\mathbf{n} \cdot \mathbf{\Gamma} = G + \left(\frac{\partial R}{\partial u}\right)^T \mu & \text{on } \partial \Omega \end{cases}$$

$$0 = R$$
 on  $\partial \Omega$ 

The first equation is the PDE. The second and third equations are the Neumann and Dirichlet boundary conditions, respectively.

C See Also For information on the time-dependent general form equation, see Solving Time-Dependent Problems.

The terms  $\Gamma$ , *f*, *G*, and *R* are coefficients. They can be functions of the spatial coordinates, the solution *u*, and the space derivatives of *u*. The coefficients *f*, *G*, and *R* are scalar, whereas  $\Gamma$  is the *flux vector*. The superscript "*T*" in the Neumann boundary condition denotes the transpose. The variable  $\mu$  is a Lagrange multiplier.

#### INTERFACE IDENTIFIER

The interface identifier is a text string that can be used to reference the respective physics interface if appropriate. Such situations could occur when coupling this interface to another physics interface, or when trying to identify and use variables defined by this physics interface, which is used to reach the fields and variables in expressions, for example. It can be changed to any unique string in the **Identifier** field.

The default identifier (for the first interface in the model) is g (in domains), gb, ge, or gp (on boundaries, edges, and at points, respectively).

#### DOMAIN SELECTION

The default setting is to include **All domains** in the model to define where the PDE is active. To choose specific domains, select **Manual** from the **Selection** list.

#### UNITS

By default, the PDE interfaces are unitless, but you can define units for the dependent variable and the source term (that is, the overall left and right side of the equation). The units for these quantities fully define the units for all other terms in the equations. To select the units you select the corresponding quantity from a list of physical quantities or enter the unit directly.

Select the quantity that defines the unit for the dependent variable *u* from the **Dependent variable quantity** list. The default is **Dimensionless [1]**. Select **None** to enter a unit (for example, K, m/s, or mol/m^3) in the **Unit** field that appears.

Select the quantity that defines the unit for the source term f from the **Source term** quantity list. Select None (the default) to enter a unit (for example, W/m^3 or A/m^3) in

the **Unit** field that appears. The default unit is m⁻², which is a consistent with a dimensionless dependent variable.

#### DEPENDENT VARIABLES

Choose the number of dependent variables and set the field and dependent variable names. The default field and variable name for a single scalar PDE variable is u. If the field name coincides with the name of another field of the same unit and number of components, the two fields (and the interfaces which define them) will share degrees of freedom and dependent variable names. A field name must not coincide with the name of a field of another type, or with a component name belonging to some other field. Component names must be unique within a model except when two interfaces share a common field name.

#### DISCRETIZATION

To display this section, click the Show button ( $rac{1}{20}$ ) and select Discretization from the Model Builder.

Select from a number of different shape function types (finite element types) from the **Shape function type** list and an associated element order (order of the shape function for the element) from the **Element order** list. The default is to use quadratic Lagrange elements.

The Value type (Real or Complex) of dependent variables needs to be specified when Split complex variables in real and imaginary parts setting is activated in the Compile Equations node of any solver sequence used. The default is complex value type. If split complex variables setting is not active the value type is ignored.

C See Also • Element Types and Discretization

Show More Physics Options

# General Form PDE

This is the default equation for a **General Form PDE** interface. Specify the coefficients for a general form PDE, with the following equation coefficients:

$$e_a \frac{\partial^2 u}{\partial t^2} + d_a \frac{\partial u}{\partial t} + \nabla \cdot \mathbf{\Gamma} = f$$

- $e_a$  is the mass coefficient.
- d_a is a damping coefficient or a mass coefficient.
- Γ is the conservative *flux vector*.
- f is the source term.

The interface is also available as General Form Boundary PDE, General Form Edge PDE, and General Form Point PDE for PDEs in general form on boundaries and edges and at points.

#### DOMAIN SELECTION

The default setting is to include **All domains** in the model to define where the general form PDE is active. To choose specific domains, select **Manual** from the **Selection** list.

#### CONSERVATIVE FLUX

Enter a values or expressions for the components of the conservative flux vector  $\Gamma$ . The default values -ux, -uy, and -uz (in 3D) represent the negative gradient of *u* and makes the left-hand side equal to the Laplace operator. If there are multiple dependent variables, there is one  $\Gamma$  vector for each variable.

#### SOURCE TERM

Enter a value or expression for the source term f. If there are multiple dependent variables, there is a vector of f component inputs.

#### DAMPING OR MASS COEFFICIENT

Enter a value or expression for the damping (or mass) coefficient  $d_a$ . If there are multiple dependent variables, there is a matrix of  $d_a$  component inputs.

#### MASS COEFFICIENT

Enter a value or expression for the mass coefficient  $e_a$ . If there are multiple dependent variables, there is a matrix of  $e_a$  component inputs.

# Initial Values

The **Initial Values** node adds initial values for the dependent variables that can serve as an initial condition for a transient simulation or as an initial guess for a nonlinear solver.

If you need to specify more than one set of initial values, you can add additional **Initial Values** nodes.

#### DOMAIN SELECTION

From the **Selection** list, choose the domains to define an initial value.

#### INITIAL VALUES

Enter a value or expression for the initial value of the dependent variables.

# Adding Extra Source Terms

You can add additional source term nodes on different geometry levels: **Source** on domains, **Edge Source** on edges in 3D models and **Point Source** at points.

#### DOMAIN, EDGE, OR POINT SELECTION

From the **Selection** list, choose the geometric entity (domains, boundaries, edges, or points) to define a source.

#### SOURCE TERM

Enter a value or expression for the source term f.

# Boundary Conditions for the PDE Interfaces

The PDE interfaces include the following boundary condition types:

- Zero Flux
- Periodic Condition
- Destination Selection
- Dirichlet Boundary Condition
- Constraint
- Flux/Source

# Dirichlet Boundary Condition

The **Dirichlet Boundary Condition** specifies a value of u on the boundary of the domain: u = r. This is the default boundary condition.

#### **BOUNDARY SELECTION**

From the **Selection** list, choose the boundaries to define a Dirichlet boundary condition.

#### DIRICHLET BOUNDARY CONDITION

Enter a value or expression for the dependent variables on the boundary. To activate the Dirichlet boundary condition for a dependent variable (for example,  $u_2$ ), select the corresponding check box (**Prescribed values for u2**, for example). Then enter a value or expression for the prescribed value in the associated field.

#### CONSTRAINT SETTINGS

To display this section, click the Show button ( $rac{1}{20}$ ) and select Advanced Physics Options from the Model Builder.

This section contains settings for specifying the type of constraint and whether to use a pointwise or weak constraint:

- From the **Constraint type** list, select **Bidirectional, symmetric** to use a bidirectional constraint or select **Unidirectional** (the default) to use a unidirectional constraint.
- Select the **Use weak constraints** check box to use weak constraints instead of the default pointwise constraints.



For an overview of the differences between the constraint types and cases where a unidirectional constraint is required, see Bidirectional vs. Unidirectional Weak Constraints

#### Constraint

The **Constraint** boundary condition specifies a value of R in the constraint R = 0. This is a bidirectional constraint. Use an expression for the constraint that, for example, implements a *Robin boundary condition* by including a term on the form qu, where u is the dependent variable.



Bidirectional vs. Unidirectional Weak Constraints

#### **BOUNDARY SELECTION**

From the Selection list, choose the boundaries to define a constraint.

#### BIDIRECTIONAL CONSTRAINT, R = 0

Enter a value or expression for the value of *R* in the constraint R = 0. For example, to constrain *u* to 2, type 2-u in the field for *R*.

#### CONSTRAINT SETTINGS

To display this section, click the Show button ( $\searrow$ ) and select Advanced Physics Options from the Model Builder. Normally these settings do not need to be changed.

This section contains settings for specifying the type of constraint and whether to use a pointwise or weak constraint:

- From the **Constraint type** list, select **Bidirectional**, **symmetric** to use a bidirectional constraint (the default) or select **Unidirectional** to use a unidirectional constraint.
- Select the **Use weak constraints** check box to use weak constraints instead of the default pointwise constraints.



For an overview of the differences between the constraint types and cases where a unidirectional constraint is required, see Bidirectional vs. Unidirectional Weak Constraints

#### Flux/Source

The **Flux/Source** boundary condition adds a flux or source *g* on the boundary:

$$\mathbf{n} \cdot (c\nabla u + \alpha u - \gamma) = -g + qu$$

or:

$$\mathbf{n} \cdot \Gamma = -g + qu$$

#### **BOUNDARY SELECTION**

From the Selection list, choose the boundaries to define a flux or source.

#### **BOUNDARY FLUX/SOURCE**

Enter a value or expression for the value of the boundary flux or source *g* in the corresponding field. The default value is 0.

#### **BOUNDARY ABSORPTION/IMPEDANCE TERM**

Enter a value or expression for the value of the coefficient q in the corresponding field. The default value is 0. It adds a term qu to the boundary flux or source, which can represent absorption or impedance at the boundary.

#### Zero Flux

The **Zero Flux** boundary condition is the default boundary condition and prescribes a zero flux (insulation) across the boundary:

$$\mathbf{n} \cdot (c\nabla u + \alpha u - \gamma) = 0$$

or:

$$\mathbf{n} \cdot \mathbf{\Gamma} = \mathbf{0}$$

#### **BOUNDARY SELECTION**

From the Selection list, choose the boundaries to define a flux or source.

# Periodic Condition

The **Periodic Condition** node adds a *periodic boundary condition*. This periodicity can be continuous (the default) so that  $u(x_0) = u(x_1)$  or anti-periodic so that  $u(x_0) = -u(x_1)$  and can control which of the dependent variables that the periodic condition applies to.

#### **BOUNDARY SELECTION**

From the **Selection** list, choose the boundaries to define a periodic boundary condition. The software automatically identifies the boundaries as either source boundaries or destination boundaries. This works fine for cases like opposing parallel boundaries. In other cases use the Destination Selection subnode to control the destination (right-click **Periodic Condition** in the Model Tree and choose **Destination Selection**). By default it contains the selection that COMSOL Multiphysics has identified. Also, under **Model>Definitions**, an **Explicit** selection node ( $\mathbb{Q}_{h}$ ), which is "read only," shows the selected destination boundaries.

#### PERIODIC CONDITION

Select a **Type of periodicity**—**Continuity** (the default) to make the dependent variables equal, or **Antiperiodicity** to make them antiperiodic:  $u(x_0) = -u(x_1)$ .

For each dependent variable in the PDE, choose to apply the periodic condition by selecting, for example, the **Apply condition on variable ul** check box. By default, the periodic condition applies to all dependent variables.

Destination Selection
 Using Periodic Boundary Conditions
 Periodic Boundary Condition Example

# Destination Selection

Use the **Destination Selection** node to change the selection for the destination. The selection that COMSOL Multiphysics makes appears as the default selection in the **Selection** list (as **Selection I**, for example).

#### **BOUNDARY SELECTION**

From the **Selection** list, choose the boundaries to define the destination for the periodic boundary condition. By default it contains the selection that COMSOL Multiphysics has identified.

**∎** Note The software usually automatically identifies the boundaries as either source boundaries or destination boundaries. By default it contains the selection that COMSOL Multiphysics has identified. An **Explicit** selection node ( ), which is "read only," under **Model>Definitions** shows the selected destination boundaries.

	Periodic Condition
0	Using Periodic Boundary Conditions
See Also	Periodic Boundary Condition Example

# Interpreting Boundary Conditions

The formulation of the boundary conditions imposes both Dirichlet and Neumann conditions. This combination is possible because of a new dependent variable  $\mu$ , which is defined only on the boundary. The unknown variable  $\mu$  is called a *Lagrange multiplier*. Often boundary conditions can be reformulated without Lagrange multipliers. In structural mechanics problems the Lagrange multiplier equals the

reaction forces on the boundary. The factor  $h^T$  in the Neumann boundary condition is the transpose of h. If h is a scalar, then  $h^T = h$ .

How do the Lagrange multipliers relate to the conventional formulation with either a Dirichlet or a Neumann boundary condition?

• First, assume that *h* = 1. Then the Dirichlet condition is *u* = *r*. The Neumann condition becomes:

$$\mathbf{n} \cdot (c\nabla u + \alpha u - \gamma) + qu = g - \mu$$

The Lagrange multiplier,  $\mu$ , adjusts so as to satisfy the requested Dirichlet condition. Specifying a nonzero *g* changes the value of the Lagrange multiplier but does not affect the actual solution *u*. Therefore, this equation can usually be ignored, leaving a pure Dirichlet condition.

• Second, assume that *h* = 0 and *r* = 0. Then the Dirichlet condition reads 0 = 0, and the Neumann condition is

$$\mathbf{n} \cdot (c\nabla u + \alpha u - \gamma) + qu = g$$

This is the generalized Neumann condition without a Lagrange multiplier. For more on the Lagrange multiplier formulation, see System for Two Variables in the General Form.

The vector  $\Gamma = -c\nabla u - \alpha u + \gamma$  is the *flux vector*. In transport equations its first term describes diffusion, the second term describes convection with a velocity  $-\alpha$ , and the third term  $\gamma$  is a source term.

In certain applications  $\Gamma$  can be discontinuous across interior boundaries. There can be a jump in the normal component of  $\Gamma$  across such a boundary. For instance, denote the two adjacent domains 1 and 2, and let  $\Gamma_i$  and  $\mathbf{n}_i$  be the values of  $\Gamma$  and  $\mathbf{n}$  from the two domains. Then state the jump condition as the Neumann condition

$$-\mathbf{n}_1 \cdot \Gamma_1 - \mathbf{n}_2 \cdot \Gamma_2 + qu = g - h^T \mu$$

where  $\mathbf{n}_1$  is the outward normal from domain 1, and  $\mathbf{n}_2$  is the outward normal from domain 2 so that  $\mathbf{n}_1 = -\mathbf{n}_2$ . At the same time there is a Dirichlet condition u = r.

The rest of this section handles stationary problems where  $\partial u/\partial t = 0$  and transient effects have vanished.

**∎** Note The *c*,  $\alpha$ , and  $\gamma$  coefficients in the equations for the boundary conditions come from the PDE specification.

Multiple Dependent Variables—Equation Systems

#### THE COEFFICIENT FORM EQUATION SYSTEM

With two dependent variables  $u_1$  and  $u_2$ , the stationary PDE problem in coefficient form results in the following equation system:

$$e_a \frac{\partial^2 u}{\partial t^2} + d_a \frac{\partial u}{\partial t} - \nabla \cdot (c \nabla u + \alpha u - \gamma) + \beta \cdot \nabla u + au = f$$

where  $u = (u_1, u_2)$ . The mass term is defined as

$$e_{a}\frac{\partial^{2} u}{\partial t^{2}} = \begin{bmatrix} e_{a11} & e_{a12} \\ e_{a21} & e_{a22} \end{bmatrix} \begin{bmatrix} \partial^{2} u_{1} \\ \partial t^{2} \\ \partial^{2} u_{2} \\ \partial t^{2} \end{bmatrix} = \begin{bmatrix} e_{a11}\frac{\partial^{2} u_{1}}{\partial t^{2}} + e_{a12}\frac{\partial^{2} u_{2}}{\partial t^{2}} \\ e_{a11}\frac{\partial^{2} u_{1}}{\partial t^{2}} + e_{a12}\frac{\partial^{2} u_{2}}{\partial t^{2}} \\ e_{a21}\frac{\partial^{2} u_{1}}{\partial t^{2}} + e_{a22}\frac{\partial^{2} u_{2}}{\partial t^{2}} \end{bmatrix}$$

Similarly, the damping term is

$$d_{a}\frac{\partial u}{\partial t} = \begin{bmatrix} d_{a11} & d_{a12} \\ d_{a21} & d_{a22} \end{bmatrix} \begin{bmatrix} \partial u_{1} \\ \overline{\partial t} \\ \partial u_{2} \\ \overline{\partial t} \end{bmatrix} = \begin{bmatrix} \partial u_{1} & \partial u_{2} \\ d_{a11}\overline{\partial t} & + d_{a12}\overline{\partial t} \\ d_{a21}\overline{\partial t} & + d_{a22}\overline{\partial t} \end{bmatrix}$$

However, if  $e_a = 0$ , then  $d_a$  is often called the mass coefficient.

The diffusive flux is defined as

$$c\nabla u = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} \nabla \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} \begin{bmatrix} \nabla u_1 \\ \nabla u_2 \end{bmatrix} = \begin{bmatrix} c_{11} \nabla u_1 + c_{12} \nabla u_2 \\ c_{21} \nabla u_1 + c_{22} \nabla u_2 \end{bmatrix}$$
$$= \begin{bmatrix} c_{11} \begin{bmatrix} \partial u_1 \\ \partial u_1 \\ \partial u_1 \\ \partial y \end{bmatrix} + c_{12} \begin{bmatrix} \partial u_2 \\ \partial u_2 \\ \partial y \end{bmatrix} = \begin{bmatrix} c_{11} \frac{\partial u_1}{\partial x} + c_{12} \frac{\partial u_2}{\partial x} \\ c_{11} \frac{\partial u_1}{\partial y} + c_{12} \frac{\partial u_2}{\partial y} \\ c_{21} \frac{\partial u_1}{\partial x} + c_{22} \frac{\partial u_2}{\partial x} \\ \frac{\partial u_1}{\partial y} \end{bmatrix} + c_{22} \begin{bmatrix} \partial u_2 \\ \partial u_2 \\ \partial u_2 \\ \partial y \end{bmatrix} = \begin{bmatrix} c_{11} \frac{\partial u_1}{\partial x} + c_{12} \frac{\partial u_2}{\partial x} \\ c_{11} \frac{\partial u_1}{\partial y} + c_{22} \frac{\partial u_2}{\partial x} \\ c_{21} \frac{\partial u_1}{\partial y} + c_{22} \frac{\partial u_2}{\partial y} \end{bmatrix}$$

where  $\nabla u_1$  and  $\nabla u_2$  are column vectors. The flux matrix or flux tensor is a column vector in this presentation. For anisotropic materials, the components  $c_{11}, c_{12}, c_{21}$ , and  $c_{22}$  can be matrices as described above for the one-variable coefficient form PDE. In this case, the diffusive flux reads

$$\begin{split} c \nabla u \ &= \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} \begin{bmatrix} \nabla u_1 \\ \nabla u_2 \end{bmatrix} \ &= \begin{bmatrix} c_{1111} & c_{1112} \\ c_{1121} & c_{1122} \\ c_{2111} & c_{2112} \\ c_{2121} & c_{2122} \end{bmatrix} \begin{bmatrix} c_{1211} & c_{1212} \\ c_{1221} & c_{2221} \\ c_{2221} & c_{2222} \end{bmatrix} \begin{bmatrix} \nabla u_1 \\ \nabla u_2 \end{bmatrix} \\ &= \begin{bmatrix} c_{1111} & c_{1112} \\ c_{1121} & c_{1122} \\ c_{1121} & c_{1122} \end{bmatrix} \nabla u_1 + \begin{bmatrix} c_{1211} & c_{1212} \\ c_{1221} & c_{1222} \end{bmatrix} \nabla u_2 \\ \begin{bmatrix} c_{2111} & c_{2112} \\ c_{1221} & c_{1222} \end{bmatrix} \nabla u_1 + \begin{bmatrix} c_{2211} & c_{2212} \\ c_{2221} & c_{2222} \end{bmatrix} \nabla u_2 \\ \begin{bmatrix} c_{2111} & c_{2112} \\ c_{2121} & c_{2122} \end{bmatrix} \nabla u_1 + \begin{bmatrix} c_{2211} & c_{2212} \\ c_{2221} & c_{2222} \end{bmatrix} \nabla u_2 \end{split}$$

The conservative convective flux is defined as

$$\alpha u = \alpha \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} \alpha_{111} \\ \alpha_{121} \\ \alpha_{212} \end{bmatrix} \begin{bmatrix} \alpha_{121} \\ \alpha_{122} \\ \alpha_{221} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} \alpha_{111} \\ \alpha_{112} \end{bmatrix} u_1 + \begin{bmatrix} \alpha_{121} \\ \alpha_{122} \end{bmatrix} u_2 \\ \begin{bmatrix} \alpha_{211} \\ \alpha_{212} \end{bmatrix} u_1 + \begin{bmatrix} \alpha_{221} \\ \alpha_{222} \end{bmatrix} u_2$$

Here the third index, k, of  $\alpha_{ijk}$  corresponds to the spatial coordinate suffixes x and y. The conservative flux source is defined as

$$\gamma = \begin{bmatrix} \gamma_{11} \\ \gamma_{12} \\ \\ \gamma_{21} \\ \\ \gamma_{22} \end{bmatrix}$$

Here the second index, j, of  $\gamma_{ij}$  denotes the spatial coordinate suffixes for x and y.

For the flux terms the divergence operator works on each row separately. To illustrate this, consider the divergence of the conservative flux source

$$\nabla \cdot \gamma = \nabla \cdot \begin{bmatrix} \gamma_{11} \\ \gamma_{12} \\ \\ \gamma_{21} \\ \gamma_{22} \end{bmatrix} = \begin{bmatrix} \nabla \cdot \begin{bmatrix} \gamma_{11} \\ \gamma_{12} \\ \\ \nabla \cdot \begin{bmatrix} \gamma_{21} \\ \\ \gamma_{22} \end{bmatrix} \end{bmatrix}$$

The convection term is defined as

$$\beta \cdot \nabla u = \begin{bmatrix} \beta_{11} & \beta_{12} \\ \beta_{21} & \beta_{22} \end{bmatrix} \cdot \begin{bmatrix} \nabla u_1 \\ \nabla u_2 \end{bmatrix} = \begin{bmatrix} \beta_{111} \\ \beta_{122} \\ \beta_{211} \\ \beta_{212} \end{bmatrix} \begin{bmatrix} \beta_{221} \\ \beta_{222} \end{bmatrix} \cdot \begin{bmatrix} \nabla u_1 \\ \nabla u_2 \end{bmatrix} = \begin{bmatrix} \beta_{111} \\ \beta_{112} \\ \beta_{112} \end{bmatrix} \cdot \nabla u_1 + \begin{bmatrix} \beta_{121} \\ \beta_{122} \\ \beta_{122} \end{bmatrix} \cdot \nabla u_2 \begin{bmatrix} \beta_{211} \\ \beta_{212} \end{bmatrix} \cdot \nabla u_1 + \begin{bmatrix} \beta_{211} \\ \beta_{222} \end{bmatrix} \cdot \nabla u_2$$

The variable names for these components are beu1 and beu2.

The absorption term is defined as

$$au = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} a_{11}u_1 + a_{12}u_2 \\ a_{21}u_1 + a_{22}u_2 \end{bmatrix}$$

The variable names for these components are au1 and au2.

The source term is defined as

$$f = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix}$$

The variable names for these components are f1 and f2.

The Boundary Condition Terms

The Dirichlet boundary condition, in expanded form, reads

$$\begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} r_1 \\ r_2 \end{bmatrix}$$

If the Dirichlet condition is chosen, the generalized Neumann boundary condition also results, which reads

$$\mathbf{n} \cdot (c\nabla u + \alpha u - \gamma) + qu = g - h^T \mu$$

The normal vector  $\mathbf{n} = (n_x, n_y)$  operates on the flux vector in the same way as the divergence operator as explained earlier. If *h* has full rank (as in the default identity matrix, for example) only the constraints from the Dirichlet condition are active.

If the Neumann condition is chosen, you get only the boundary condition

$$\mathbf{n} \cdot (c\nabla u + \alpha u - \gamma) + qu = g$$

The normal component of the diffusive flux is defined as

$$\mathbf{n} \cdot c \nabla u = \mathbf{n} \cdot \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} \begin{bmatrix} \nabla u_1 \\ \nabla u_2 \end{bmatrix} = \begin{bmatrix} \mathbf{n} \cdot (c_{11} \nabla u_1 + c_{12} \nabla u_2) \\ \mathbf{n} \cdot (c_{21} \nabla u_1 + c_{22} \nabla u_2) \end{bmatrix}$$

The normal component of the conservative convective flux is defined as

$$\mathbf{n} \cdot \alpha u = \mathbf{n} \cdot \begin{bmatrix} \begin{bmatrix} \alpha_{111} \\ \alpha_{112} \end{bmatrix} u_1 + \begin{bmatrix} \alpha_{121} \\ \alpha_{122} \end{bmatrix} u_2 \\ \begin{bmatrix} \alpha_{211} \\ \alpha_{212} \end{bmatrix} u_1 + \begin{bmatrix} \alpha_{221} \\ \alpha_{222} \end{bmatrix} u_2 \end{bmatrix} = \begin{bmatrix} (n_x, n_y) \cdot \begin{pmatrix} \begin{bmatrix} \alpha_{111} \\ \alpha_{112} \end{bmatrix} u_1 + \begin{bmatrix} \alpha_{121} \\ \alpha_{122} \end{bmatrix} u_2 \\ (n_x, n_y) \cdot \begin{pmatrix} \begin{bmatrix} \alpha_{211} \\ \alpha_{212} \end{bmatrix} u_1 + \begin{bmatrix} \alpha_{221} \\ \alpha_{222} \end{bmatrix} u_2 \end{bmatrix}$$

The normal component of the conservative flux source is defined as

$$\mathbf{n} \cdot \boldsymbol{\gamma} = (n_x, n_y) \cdot \begin{bmatrix} \gamma_{11} \\ \gamma_{12} \\ \\ \gamma_{21} \\ \gamma_{22} \end{bmatrix} = \begin{bmatrix} (n_x, n_y) \cdot \begin{bmatrix} \gamma_{11} \\ \gamma_{12} \\ \\ (n_x, n_y) \cdot \begin{bmatrix} \gamma_{21} \\ \gamma_{22} \end{bmatrix} \end{bmatrix}$$

The boundary absorption term is defined as

$$qu = \begin{bmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} q_{11}u_1 + q_{12}u_2 \\ q_{21}u_1 + q_{22}u_2 \end{bmatrix}$$

The boundary source term is defined as

$$g = \begin{bmatrix} g_1 \\ g_2 \end{bmatrix}$$

# THE GENERAL FORM EQUATION SYSTEM

In the case of several dependent variables  $u_1, u_2, ..., u_N$ , the following system of equations represents a stationary problem in the general form:

$$\begin{cases} \nabla \cdot \mathbf{\Gamma}_{l} = F_{l} & \text{in } \Omega \\ -\mathbf{n} \cdot \mathbf{\Gamma}_{l} = G_{l} + \frac{\partial R_{m}}{\partial u_{l}} \mu_{m} & \text{on } \partial \Omega \\ 0 = R_{m} & \text{on } \partial \Omega \end{cases}$$

The equation index l ranges from 1 to N, while the constraint index m ranges from 1 to M. This discussion uses the summation convention.  $F_l$ ,  $G_l$ , and  $R_m$  are scalars, whereas  $\Gamma_l$  is a vector. In this case there are several Lagrange multipliers:  $\mu_1, \mu_2, ..., \mu_M$ .

For a more compact form, let u be a vector with components  $u_k$ , let  $\Gamma$  be a vector with components  $\Gamma_l$ , and so on. Then the system of equations takes on the same form as given above for a single dependent variable.

It is possible to rewrite the system to introduce the components  $\Gamma_{lj}$  of the vector  $\Gamma_l$ and the components  $n_j$  of the normal vector **n**. Then the system of equations becomes

$$\begin{cases} \frac{\partial \Gamma_{lj}}{\partial x_j} = F_l & \text{ in } \Omega \\ -n_j \Gamma_{lj} = G_l + \frac{\partial R_m}{\partial u_l} \mu_m & \text{ on } \partial \Omega \\ 0 = R_m & \text{ on } \partial \Omega \end{cases}$$

System for Two Variables in the General Form

The following example of a PDE in the general form is a stationary system for N = 2 solution components in n = 2 space dimensions with M = 2 constraints:

$$\left| \begin{array}{cc} \nabla \cdot \Gamma_1 = F_1 & \text{ in } \Omega \\ \nabla \cdot \Gamma_2 = F_2 & \text{ in } \Omega \end{array} \right|$$

with the Neumann boundary conditions

$$\left\{ \begin{array}{ll} -\mathbf{n} \cdot \Gamma_1 = G_1 + \frac{\partial R_1}{\partial u_1} \mu_1 + \frac{\partial R_2}{\partial u_1} \mu_2 & \text{ on } \partial \Omega \\ -\mathbf{n} \cdot \Gamma_2 = G_2 + \frac{\partial R_1}{\partial u_2} \mu_1 + \frac{\partial R_2}{\partial u_2} \mu_2 & \text{ on } \partial \Omega \end{array} \right.$$

and the Dirichlet boundary conditions

$$\left\{ \begin{array}{ll} 0=R_1 & \text{ on } \partial\Omega \\ 0=R_2 & \text{ on } \partial\Omega \end{array} \right.$$

#### Specifying and Interpreting Boundary Conditions

The same set of boundary conditions are accessible in all PDE interfaces. To illustrate the flexibility of the Constraint boundary condition R = 0, consider five cases:

I Let  $R_1 = R_2 = 0$ . Then the Dirichlet boundary conditions give 0 = 0. In addition, the terms containing the Lagrange multipliers disappear from the Neumann boundary condition. Thus you have only the Neumann boundary conditions

$$\begin{array}{|c|c|c|} -\mathbf{n}\cdot \Gamma_1 = G_1 & \text{ on } \partial\Omega \\ -\mathbf{n}\cdot \Gamma_2 = G_2 & \text{ on } \partial\Omega \end{array}$$

2 Let  $R_1 = r_1 - u_1$  and  $R_2 = r_2 - u_2$ . Then the Dirichlet conditions are the usual  $u_1 = r_1$  and  $u_2 = r_2$ . The Neumann boundary conditions become

$$\left| \begin{array}{cc} -\mathbf{n} \cdot \Gamma_1 = G_1 - \mu_1 & \text{ on } \partial\Omega \\ -\mathbf{n} \cdot \Gamma_2 = G_2 - \mu_2 & \text{ on } \partial\Omega \end{array} \right|$$

These equations impose no restrictions on  $u_1$  or  $u_2$ , because the Lagrange multipliers  $\mu_1$  and  $\mu_2$  always adjust so as to fulfill the Dirichlet conditions. In this case, ignore the Neumann boundary conditions.

**3** Let  $R_1 = r_1 - u_1$  and  $R_2 = 0$ . Then the Dirichlet conditions are

$$\begin{cases} 0 = r_1 - u_1 & \text{on } \partial \Omega \\ 0 = 0 & \text{on } \partial \Omega \end{cases}$$

and the Neumann conditions are

$$\left\{ \begin{array}{ll} -\mathbf{n} \cdot \boldsymbol{\Gamma}_1 = \boldsymbol{G}_1 - \boldsymbol{\mu}_1 & \text{ on } \partial \Omega \\ -\mathbf{n} \cdot \boldsymbol{\Gamma}_2 = \boldsymbol{G}_2 & \text{ on } \partial \Omega \end{array} \right.$$

The first Neumann condition can be ignored because it imposes no restriction on  $u_1$  or  $u_2$ . You effectively have only the Dirichlet condition on  $u_1$  together with the second Neumann condition.

**4** The same as Case 3 above but with the two PDEs interchanged ( $\Gamma_1$  and  $\Gamma_2$  as well as  $F_1$  and  $F_2$ ). Then the PDEs are

$$\left\{ \begin{array}{ll} \nabla \cdot \Gamma_2 = F_2 & \mbox{ in } \Omega \\ \nabla \cdot \Gamma_1 = F_1 & \mbox{ in } \Omega \end{array} \right. \label{eq:phi}$$

The Dirichlet condition is similar to that in Case 3:  $u_1 = r_1$ . The Neumann conditions then become

$$\left\{ \begin{array}{ll} -\mathbf{n}\cdot \boldsymbol{\Gamma}_2 = \boldsymbol{G}_2 {-} \boldsymbol{\mu}_1 & \text{ on } \partial \boldsymbol{\Omega} \\ -\mathbf{n}\cdot \boldsymbol{\Gamma}_1 = \boldsymbol{G}_1 & \text{ on } \partial \boldsymbol{\Omega} \end{array} \right.$$

Effectively, you have only the Neumann condition  $-\mathbf{n} \cdot \Gamma_1 = G_1$ . In comparison with Case 3 above, the PDEs and the Dirichlet conditions are identical, while the Neumann conditions are different. Thus, when mixing Dirichlet and Neumann conditions, the ordering of the equations and the dependent variables are important. However, the ordering of the Dirichlet conditions does not matter because the different Lagrange multipliers are for all practical purposes indistinguishable from each other.

**5** Finally, let  $R_1 = u_2 - u_1$  and  $R_2 = 0$ . Then the Dirichlet conditions are

$$\begin{cases} 0 = u_2 - u_1 & \text{on } \partial \Omega \\ 0 = 0 & \text{on } \partial \Omega \end{cases}$$

and the Neumann conditions are

$$\left\{ \begin{array}{ll} -\mathbf{n} \cdot \Gamma_1 = G_1 - \mu_1 & \text{ on } \partial\Omega \\ -\mathbf{n} \cdot \Gamma_2 = G_2 + \mu_1 & \text{ on } \partial\Omega \end{array} \right.$$

The same Lagrange multiplier now appears in both Neumann conditions, which can have different definitions of  $\Gamma$  and G. Therefore, contrary to Cases 2 and 3 above, the Neumann conditions cannot be ignored. Instead, adding the two conditions, it becomes apparent that the solution and flux on the boundary must fulfill

$$\left\{ \begin{array}{l} 0 = u_2 - u_1 & \text{on } \partial \Omega \\ -\mathbf{n} \cdot \Gamma_2 - \mathbf{n} \cdot \Gamma_2 = G_1 + G_2 \text{ on } \partial \Omega \end{array} \right.$$

In these examples, the values of the Lagrange multipliers do not matter. However, they often have a physical significance. In structural mechanics, the term

$$\left(\frac{\partial R}{\partial u}\right)^T \mu$$

in the Neumann condition is the reaction force necessary to satisfy the kinematic constraints described by the Dirichlet conditions. This term has a special form because of the variational principles that give rise to it.

## COEFFICIENT FORM VS. GENERAL FORM

The following substitutions show that the coefficient form and the general form are equivalent:

$$\Gamma = -c\nabla u - \alpha u + \gamma, \quad F = f - \beta \nabla u - au, \quad G = g, \quad R = r - u$$

This duality lets you choose the representation that best suits a particular PDE.

# Solving Time-Dependent Problems

To get the equation for a time-dependent PDE in COMSOL Multiphysics, add terms containing time derivatives to the left-hand side of the stationary equation. The time derivatives must appear linearly, and the Dirichlet conditions must be linear. A time-dependent problem in the coefficient form reads

$$\int e_a \frac{\partial^2 u}{\partial t^2} + d_a \frac{\partial u}{\partial t} + \nabla \cdot (-c \nabla u - \alpha u + \gamma) + \beta \cdot \nabla u + au = f \quad \text{in } \Omega$$

$$\mathbf{n} \cdot (c\nabla u + \alpha u - \gamma) + qu = g - h^T \mu \qquad \text{on } \partial\Omega$$

$$u = r$$
 on  $\partial \Omega$ 

If u is a vector of dependent variables then the *mass coefficient*  $e_a$  is a matrix. All coefficients can depend on time. The name *mass matrix* or mass coefficient stems from the fact that in many physics applications  $e_a$  contains the mass density. The  $d_a$  coefficient represents damping for wave-type equations. However, if  $e_a = 0$ , then  $d_a$  is often called the mass coefficient. The default settings are  $e_a = 0$  and  $d_a = 1$ , representing a time-dependent PDE such as the heat equation. Using  $e_a = 1$  and  $d_a = 0$  represents an undamped wave equation.

For a stationary model, COMSOL Multiphysics ignores any values or expressions that are entered in the field for the  $d_a$  and  $e_a$  coefficient. To activate the  $d_a$  and  $e_a$  coefficients and convert the model into a time-dependent model, select a time-dependent study.

The time-dependent problem in the general form is

$$\begin{cases} e_a \frac{\partial}{\partial t^2} + d_a \frac{\partial u}{\partial t} + \nabla \cdot \mathbf{\Gamma} = F & \text{in } \Omega \\ -\mathbf{n} \cdot \mathbf{\Gamma} = G + \left(\frac{\partial R}{\partial u}\right)^T \mu & \text{on } \partial\Omega \\ 0 = R & \text{on } \partial\Omega \end{cases}$$

The flux vector  $\Gamma$  and the scalar coefficients F, G, and R can be functions of the spatial coordinates, the solution u, and the space and time derivatives of u. The superscript T in the Neumann boundary condition denotes the transpose. The variable  $\mu$  is the Lagrange multiplier.

For the weak form, the time-dependent problem (in 2D) looks like

$$\int_{\Omega} W^{(2t)} dA + \int_{B} W^{(1t)} ds + \sum_{P} W^{(0t)} = \int_{\Omega} W^{(2)} dA + \int_{B} W^{(1)} ds + \sum_{P} W^{(0)} + \int_{\Omega} v_l \frac{\partial R_m^{(2)}}{\partial u_l} \mu_m^{(2)} dA + \int_{B} v_l \frac{\partial R_m^{(1)}}{\partial u_l} \mu_m^{(1)} ds + \sum_{P} v_l \frac{\partial R_m^{(0)}}{\partial u_l} \mu_m^{(0)}$$

$$0 = R^{(2)} \quad \text{on } \Omega$$

$$0 = R^{(1)} \quad \text{on } B$$

$$0 = R^{(0)} \quad \text{on } P$$

where the integrands  $W^{(it)}$  depend bilinearly on the test functions  $v_l$  and on the first and second time derivatives of the dependent variables and their space derivatives. For example,

$$W^{(2t)} = v_1 \frac{\partial u_2}{\partial t} - \frac{\partial v_1}{\partial x} \cos(3u_1) \frac{\partial u_1}{\partial t} + v_2 \frac{\partial^2 u_2}{\partial t \partial y}$$

Time-Dependent Systems

For time-dependent systems of PDEs the  $d_a$  and  $e_a$  coefficients are matrices. For example, for the system

$$e_{11}\frac{\partial^{2} u}{\partial t^{2}} + e_{12}\frac{\partial^{2} u}{\partial t^{2}} + d_{11}\frac{\partial u}{\partial t}^{1} + d_{12}\frac{\partial u}{\partial t}^{2} + \nabla \cdot (-c_{11}\nabla u_{1} - c_{12}\nabla u_{2}) + a_{11}u_{1} + a_{12}u_{2} = f_{1}$$

$$e_{21}\frac{\partial^{2} u}{\partial t^{2}} + e_{22}\frac{\partial^{2} u}{\partial t^{2}} + d_{21}\frac{\partial u}{\partial t}^{1} + d_{22}\frac{\partial u}{\partial t}^{2} + \nabla \cdot (-c_{21}\nabla u_{1} - c_{22}\nabla u_{2}) + a_{21}u_{1} + a_{22}u_{2} = f_{2}$$

the coefficient matrices are

$$e_{a} = \begin{bmatrix} e_{11} & e_{12} \\ e_{21} & e_{22} \end{bmatrix} \qquad d_{a} = \begin{bmatrix} d_{11} & d_{12} \\ d_{21} & d_{22} \end{bmatrix}$$
$$c = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} \qquad a = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

(where each element  $c_{ij}$  can be an *n*-by-*n* matrix). Many interesting problems have a singular  $d_a$  matrix (with  $e_a = 0$ ), or a singular nonzero  $e_a$  matrix. Such problems are

called *differential-algebraic equation* (DAE) systems. The COMSOL Multiphysics solvers for time-dependent problems handle DAEs.

# Solving Eigenvalue Problems

COMSOL Multiphysics handles scalar eigenvalue problems for all PDE forms. These eigenvalue problems are related to time-dependent problems via the correspondence  $\partial/\partial t \leftrightarrow -\lambda$ , linking the time derivative to the eigenvalue  $\lambda$  (with the eigenvalue name lambda). An eigenvalue problem in the coefficient form reads

$$(\lambda - \lambda_0)^2 e_a u - (\lambda - \lambda_0) d_a u + \nabla \cdot (-c \nabla u - \alpha u) + \beta \cdot \nabla u + a u = f \quad \text{in } \Omega$$

$$\mathbf{n} \cdot (c\nabla u + \alpha u) + qu = -h^T \mu \qquad \text{on } \partial\Omega$$

$$u = r$$
 on  $\partial \Omega$ 

where  $\lambda_0$  is the linearization point for the eigenvalue. The source terms are included if they depend on the solution components. If the coefficients depend on *u* or the eigenvalue  $\lambda$ , COMSOL Multiphysics performs a linearization of the problem about the linearization point  $u = u_0$ ,  $\lambda = \lambda_0$ .

To specify the linearization point  $u_0$  and the linearization point  $\lambda_0$ , use the settings in the **Linearization Point** section in the **Eigenvalue** node's settings window.

C See Also

## Solver Studies and Study Types

# Interpreting PDE Coefficients

The COMSOL PDE formulations can model a variety of problems, but this documentation uses coefficient names that fall within the realm of continuum mechanics and mass transfer. For the coefficient form PDE:

- $e_{a}$  is the mass coefficient.
- d_a is a damping coefficient or a mass coefficient.
- c is the diffusion coefficient.
- $\alpha$  is the conservative flux convection coefficient.

- $\beta$  is the convection coefficient.
- *a* is the *absorption coefficient*.
- $\gamma$  is the conservative flux source term.
- *f* is the *source term*.



There are many interesting PDE problems to which this interpretation does not apply. For instance, a time-harmonic PDE such as the Helmholtz equation represents a time-dependent phenomenon transformed into the frequency domain.

For the Neumann boundary condition of the coefficient form

$$\mathbf{n} \cdot (c\nabla u + \alpha u - \gamma) + qu = g - h^T \mu$$

- q is the boundary absorption coefficient.
- g is the boundary source term.

# Classical PDEs

Many classical PDEs are instances of the coefficient form PDE. The classical PDEs in this section have their own interfaces and are found under the **Mathematics>Classical PDEs** branch ( $\sqrt{2}$ ) in the **Model Wizard**. Table 14-2 shows the

available classical PDEs using two notations: the compact notation of vector analysis (used in this documentation) and an expanded mathematical notation.

EQUATION	COMPACT NOTATION	STANDARD NOTATION (2D)
Laplace's equation	$-\nabla \cdot (\nabla u) = 0$	$-\frac{\partial}{\partial x}\frac{\partial u}{\partial x} - \frac{\partial}{\partial y}\frac{\partial u}{\partial y} = 0$
Poisson's equation	$-\nabla \cdot (c\nabla u) = f$	$-\frac{\partial}{\partial x} \left( c \frac{\partial u}{\partial x} \right) - \frac{\partial}{\partial y} \left( c \frac{\partial u}{\partial y} \right) = f$
Helmholtz equation	$-\nabla \cdot (c\nabla u) + au = f$	$-\frac{\partial}{\partial x}\left(c\frac{\partial u}{\partial x}\right) - \frac{\partial}{\partial y}\left(c\frac{\partial u}{\partial y}\right) + au = f$
Heat equation	$d_a \frac{\partial u}{\partial t} - \nabla \cdot (c \nabla u) = f$	$d_{a}\frac{\partial u}{\partial t} - \frac{\partial}{\partial x} \left( c\frac{\partial u}{\partial x} \right) - \frac{\partial}{\partial y} \left( c\frac{\partial u}{\partial y} \right) = f$
Wave equation	$e_{a}\frac{\partial^{2} u}{\partial t^{2}} - \nabla \cdot (c \nabla u) = f$	$e_{a}\frac{\partial^{2} u}{\partial t^{2}} - \frac{\partial}{\partial x}\left(c\frac{\partial u}{\partial x}\right) - \frac{\partial}{\partial y}\left(c\frac{\partial u}{\partial y}\right) = f$
Convection- diffusion equation	$d_a \frac{\partial u}{\partial t} - \nabla \cdot (c \nabla u) + \beta \cdot \nabla u = f$	$d_{a}\frac{\partial u}{\partial t} - \frac{\partial}{\partial x}\left(c\frac{\partial u}{\partial x}\right) - \frac{\partial}{\partial y}\left(c\frac{\partial u}{\partial y}\right)$
		$+\beta_x \frac{\partial u}{\partial x} + \beta_y \frac{\partial u}{\partial y} = f$

TABLE 15-2: CLASSICAL PDES IN COMPACT AND STANDARD NOTATION

The default values are 1 for *f* and *c* and -1 for *a*, so the default Helmholtz equation, for example, is  $-\Delta u - u = 1$ .



The Classical PDEs have the same boundary conditions and other settings as the Coefficient Form PDE Interface (c).

# Bidirectional and Unidirectional Constraints

Constraints formulated through the coefficients h and r in the Coefficient Form PDE interface and through the coefficient R in the General Form PDE interface give rise to constraints called *bidirectional*. A bidirectional constraint dictates exactly how the flux conditions (or Neumann boundary conditions) are influenced by the constraint force. For the coefficient form, the flux condition is

$$\mathbf{n} \cdot (c\nabla u + \alpha u) + qu = g - h^T \mu$$

and for the general form, the flux condition is

$$-\mathbf{n}\cdot\mathbf{\Gamma} = G + \left(\frac{\partial R}{\partial u}\right)^T \mu$$

The last term on the right-hand side in both expressions is the bidirectional constraint force. Thus, with bidirectional constraints a flux condition cannot be enforced independently of the constraints. In mathematics as well as in multiphysics modeling it is often necessary to enforce Neumann conditions and Dirichlet conditions more freely than what is possible through bidirectional constraints. As an example, consider again the general form and assume that you want to enforce the boundary conditions

$$0 = r_1 - u_1 \quad \text{on } \partial \Omega$$
$$-\mathbf{n} \cdot \Gamma_2 = G_2 \quad \text{on } \partial \Omega$$

If  $r_1 = r_1(u_2)$ , the first condition is fulfilled but not the second. This is because the bidirectional constraint force is not zero:

$$-\mathbf{n} \cdot \Gamma_2 = G_2 + \frac{\partial R_1}{\partial u_2} \mu_1 + \frac{\partial R_2}{\partial u_2} \mu_2 = G_2 + \frac{\partial r_1}{\partial u_2} \mu_1 \neq G_2.$$

To remedy this limitation with bidirectional constraints use *unidirectional* constraints, by which the constraint force is specified independently of the constraints. The term unidirectional refers to the fact that the constraint force differs from  $-h^T \mu$  for coefficient form and from  $\left(\frac{\partial R}{\partial u}\right)^T \mu$  for general form. In multiphysics modeling, unidirectional constraints are, for example, necessary for the following boundary conditions:

- Normal-direction constraints on a moving mesh, where the mesh motion is part of the problem. These conditions are of the type n · u r = 0 where n = n(x) is the boundary normal, u is a vector field (displacements or velocity), and x is the mesh coordinate vector. Bidirectional constraints give constraint forces not only on the equations for u but also on the equations for x, which typically are not wanted.
- Constraints on time derivatives, such as  $\frac{\partial u}{\partial t} = 1$  on the boundary (typing 1-ut using COMSOL syntax for *R* in the constraint R = 0. The bidirectional constraint attempts to apply the test function on the time derivative of *u*, which is not

supported. The unidirectional constraint must also be a weak constraint because pointwise constraints for time derivatives are not supported.

Wall boundary conditions for turbulent fluid flow. For the *k*-ε turbulence model this condition is of the type *k* − *r*(ε), −**n** · ∇ε, where *r* is a given function. Bidirectional constraints for the first relation imply that the second relation cannot hold.

Unidirectional constraints can be enforced in COMSOL Multiphysics both in a pointwise sense and in a weak sense.

For descriptions of how to use pointwise and weak unidirectional constraints, see Constraint Forces for PDEs and The Weak Constraint Node, respectively.

# PDE Interface Variables

1

See Also

The following list shows the variables that are available for results evaluation and visualization in addition to the other variables for PDEs:

NAME	ТҮРЕ	DESCRIPTION	EXPRESSION
Uí	S, B	The solution variable (dependent variable)	<i>u</i> _i
uixj	S, B	The derivative of the solution variable $u_i$ with respect to the spatial coordinate $x_j$ , for example, uy	$\frac{\partial u_i}{\partial x_i}$
<b>u</b> i <b>x</b> j <b>x</b> k	S, B	The second derivative of the solution variable $u_i$ with respect to the spatial coordinates $x_j$ and $x_k$ , for example, uxx, uxy	$\frac{\partial^2 u_i}{\partial x_j \partial x_k}$
uit	S, B	The derivative of the solution variable $\boldsymbol{u}_i$ with respect to time	$\frac{\partial u_i}{\partial t}$
uitt	S, B	The second derivative of the solution variable $u_i$ with respect to time	$\frac{\partial^2 u_i}{\partial t^2}$
uixjt	S, B	The mixed derivative of the solution variable $u_i$ with respect to time and the spatial coordinate $x_j$	$\frac{\partial^2 u_i}{\partial x_j \partial t}$

The *d* coefficients relate to 1st-order time derivatives of the solution *u*. The only directly available *d* coefficient is  $d_a$ , the coefficient in front of  $\partial u/\partial t$ ; the subscript *a* is used because  $d_a$  is similar to the *a* coefficient in the absorption term except that it multiplies  $\partial u/\partial t$  instead of *u*. In contrast, the coefficients  $d_c$ ,  $\mathbf{d}_{\alpha}$ , and  $\mathbf{d}_{\beta}$  for  $\partial u/\partial t$ —analogous to the coefficients *c*,  $\alpha$ , and  $\beta$  for *u*, respectively—in the extended PDE formulation

$$-\nabla \cdot \left( d_c \nabla \frac{\partial u}{\partial t} + \mathbf{d}_{\alpha} \frac{\partial u}{\partial t} \right) + \mathbf{d}_{\beta} \cdot \nabla \frac{\partial u}{\partial t} + d_a \frac{\partial u}{\partial t} + \nabla \cdot \left( -c \nabla u + \ldots \right)$$

are not directly available in the general or coefficient form PDE models. Instead, enter them in the existing  $\gamma$  and *f* terms:



In 1D, add  $-d_c*uxt-d_al*ut$  to the  $\gamma$  term, and add  $-d_be*uxt$  to the f term.



In 2D, add  $-d_c*uxt-d_al1*ut$  to the first  $\gamma$  component, and add  $-d_c*uyt-d_al2*ut$  to the second  $\gamma$  component. Add  $-d_bel*uxt-d_be2*uyt$  to the *f* term.

Replace the variables d_c, d_al, d_be, d_al1, d_al2, d_be1, and d_be2 with appropriate expressions.

Enter 2nd-order time derivative terms in an analogous manner.

To specify a boundary condition containing time-derivative terms as in

$$\mathbf{n} \cdot (c\nabla u + \dots) + e_q \frac{\partial^2 u}{\partial t^2} + d_q \frac{\partial u}{\partial t} + qu = g - h^T \mu,$$

add the terms  $-e_q*utt-d_q*ut$  to the g term, and provide appropriate values or expressions for the coefficients  $e_q$  and  $d_q$  in, for instance, a **Global Expressions** node's settings window.

# Element Types and Discretization

The PDE and weak form interfaces provide a selection of different shape functions and associated element order (order of the shape functions). Select the shape function type from the **Shape function type** list and the order from the **Element order** list as, in most cases, **Constant, Linear, Quadratic, Cubic, Quartic**, or **Quintic** (order 0–5, respectively). Not all shape functions are available for all space dimensions and types of equations, and not all shape functions support all orders. The following table provides an overview of the available shape function types and the element orders they support:

NAME	ORDER	COMMENTS
Lagrange	I-5 (ID and 2D); I-4 (3D). Default: 2	The default type
Hermite	3–5 (1D and 2D); 3–4 (3D). Default: 3	
Argyris	Order 5 only.	2D only
Discontinuous Lagrange	0–5 (1D and 2D); 0–4 (3D). Default: 2	
Nodal discontinuous Lagrange	0–10	Special shape functions for wave equations
Discontinuous scalar density	0–5 (1D and 2D); 0–4 (3D). Default: 2	Not available on boundaries, edges, or points
Bubble	2 (1D); 3 (2D); 4 (3D)	Lower order on boundaries, edges, and points
Gauss point data	0, 2, 4, 8, or 10. Default: 4	Discrete values associated with the quadrature points in an integration rule of the given order
Divergence	I–4 (ID and 2D); I–3 (3D). Default: 2	For vector fields only (1, 2, and 3 dependent variables in 1D, 2D, and 3D, respectively
Curl	I–4 (2D); I–3 (3D). Default: 2	2D and 3D only. For vector fields only (1, 2, and 3 dependent variables in 1D, 2D, and 3D, respectively)

#### TABLE 15-3: SHAPE FUNCTION TYPES



For more information about each shape function type, see Finite Elements in the *COMSOL Multiphysics Reference Guide*.

# Weak Form Modeling

In this section:

- About Weak Form Modeling
- The Weak Form Interfaces
- Weak Form PDE
- The Weak Contribution Node
- The Weak Contributions on Mesh Boundaries Node
- Auxiliary Dependent Variable
- · Modeling with PDEs on Boundaries, Edges, and Points
- Specifying PDEs in Weak Form

# About Weak Form Modeling

Do not be misled by the term "weak;" the weak form is very powerful and flexible. The term *weak form* is borrowed from mathematics, but in this context it has a slightly different meaning; this implementation incorporates capabilities in addition to those defined in the mathematical weak form. Moreover, knowledge of the mathematical weak form is not a prerequisite to using the COMSOL Multiphysics implementation.

The distinguishing characteristics of the weak form in COMSOL Multiphysics are that it makes it possible to:

- Enter certain equations that can be derived from an energy principle in a very compact and convenient form. Such equations, for example, arise in structural mechanics.
- Add and modify nonstandard constraints, such as various contact and friction models.
- Build models with extra equations on boundaries, edges, and points.
- Use the *test operator* to conveniently work with problems in variational calculus and parametric optimization.

COMSOL Multiphysics provides the possibility to add weak form contributions to any physics interface in the model. In addition, add *weak constraints*, which, for example, provide accurate fluxes and reaction forces.

By default, COMSOL Multiphysics converts all models to the *weak form* before solving. Although this conversion is a part of the solution technique rather than part of the modeling process, it nonetheless belongs in this discussion because it is based on the weak form implementation.

The discussion in this section reviews the ways to work with the weak form by adding weak form contributions.



For a thorough mathematical and physics-related background to the weak formulation in COMSOL Multiphysics, see Weak Form Theory Background in the *COMSOL Multiphysics Reference Guide*.

# The Weak Form Interfaces

In the **Model Wizard**, add weak form interfaces on all domain levels: **Weak Form PDE** on domains, **Weak Form Boundary PDE** on boundaries, **Weak Form Edge PDE** on edges (in 3D models), and **Weak Form Point** for points. All the interfaces are found under the **Mathematics>PDE Interfaces** branch ( $\Delta u$ ) in the **Model Wizard**. In all of them, weak expressions can be added, which COMSOL Multiphysics adds to the overall equation. Adding one of these interfaces creates a **PDE** node ( $\int du$ ) for PDE modeling using a weak formulation. Also add a Weak Form PDE on the domain level to any other PDE interface.

When this interface is added, these default nodes are also added to the **Model Builder**— **Weak Form PDE**, **Zero Flux** (for a Weak Form PDE on the domain level only), and **Initial Values**. Right-click the main **PDE** node to add other nodes that implement other boundary conditions, for example. On the domain level, edge level, and boundary levels the same boundary conditions can be used as for the Coefficient Form PDE and General Form PDE.

#### INTERFACE IDENTIFIER

The interface identifier is a text string that can be used to reference the respective physics interface if appropriate. Such situations could occur when coupling this interface to another physics interface, or when trying to identify and use variables defined by this physics interface, which is used to reach the fields and variables in expressions, for example. It can be changed to any unique string in the **Identifier** field.

The default identifier (for the first interface in the model) is w, wb, we, or wp, depending on the geometry level.

#### DOMAIN, BOUNDARY, EDGE, OR POINT SELECTION

From the **Selection** list, choose the geometric entity level (domains, boundaries, edges, or points) to define the weak-form PDE. The default setting include **All domains**, **All boundaries**, **All edges**, or **All Points** in the model.

## UNITS

By default, the weak form interfaces are unitless, but you can define units for the dependent variable and the source term. The units for these quantities fully define the units for all other terms in the equations. To select the units you select the corresponding quantity from a list of physical quantities or enter the unit directly.

Select the quantity that defines the unit for the dependent variable *u* from the **Dependent variable quantity** list. The default is **Dimensionless [1]**. Select **None** to enter a unit (for example, K, m/s, or mol/m^3) in the **Unit** field that appears.

Select the quantity that defines the unit for the source term f from the **Source term quantity** list. Select **None** (the default) to enter a unit (for example, W/m^3 or A/m^3) in the **Unit** field that appears. The default unit is m^-2, which is a consistent with a dimensionless dependent variable.

## DEPENDENT VARIABLES

Choose the number of dependent variables and set the field and dependent variable names. The default field and variable name for a single scalar PDE variable is u. If the field name coincides with the name of another field of the same unit and number of components, the two fields (and the interfaces which define them) will share degrees of freedom and dependent variable names. A field name must not coincide with the name of a field of another type, or with a component name belonging to some other field. Component names must be unique within a model except when two interfaces share a common field name.

#### DISCRETIZATION

To display this section, click the Show button ( $rac{1}{20}$ ) and select Discretization from the Model Builder.

Select from a number of different shape function types (finite element types) from the **Shape function type** list and an associated element order (order of the shape function for the element) from the **Element order** list. The default is to use quadratic Lagrange elements.

The Value type (Real or Complex) of dependent variables needs to be specified when Split complex variables in real and imaginary parts setting is activated in the Compile Equations node of any solver sequence used. The default is complex value type. If split complex variables setting is not active the value type is ignored.

Contraction Contra

• Element Types and Discretization

Show More Physics Options

# Weak Form PDE

Use Weak Form PDE, found under the Mathematics>PDE Interfaces branch ( $\Delta u$ ) in the Model Wizard, to specify the PDE using a weak formulation.

## DOMAIN, BOUNDARY, EDGE, OR POINT SELECTION

From the **Selection** list, choose the geometric entity level (domains, boundaries, edges, or points) to define the weak form PDE. The default includes **All domains**, **All boundaries**, **All edges**, or **All points** in the model.

#### WEAK EXPRESSION

Enter the weak expression that COMSOL Multiphysics (together with any other weak expressions on the same domain) sets equal to 0 in the **weak** field. On the domain level, the default expression is -test(ux)*ux-test(uy)*uy+test(u), which is the weak formulation of Poisson's equation with f = 1. On other geometric entity levels, the default weak expression is 0.

# The Weak Contribution Node

The **Weak Contribution** node is available in all interfaces and for all geometry levels, including the global level.

To add a **Weak Contribution** node to the main PDE or other physics interface, in the **Model Builder**, right-click the main interface node and then, depending on the geometric entity level, select **More>Weak Contribution**, **Edges>Weak Contribution** or **Points>Weak Contribution** from the context menu. Or select **Global>Weak Contribution** option to apply it globally. To access these nodes, click the **Show** button (**>**^T) and select **Advanced Physics Options** from the **Model Builder**.

To create an independent weak form equation rather than a weak form contribution, add extra states (dependent variables) using the **Auxiliary Dependent Variables** subnode,

by right-clicking the **Weak Contribution** node. You can then use the auxiliary dependent variables in the weak-form expression.

## DOMAIN, BOUNDARY, EDGE, OR POINT SELECTION

From the **Selection** list, choose the geometric entity level (domains, boundaries, edges, or points) to define the weak contribution.

## WEAK CONTRIBUTION

Enter the weak form contribution in the **Weak expression** field. For example, -ux*test(ux)-uy*test(uy)+1*test(u) is the weak formulation of a Poisson's equation with u as the dependent variable 1 as the source term on the right-hand side. To add a time derivative as in the time-dependent coefficient form PDE, add -ut*test(u) (notice the sign and the syntax ut for the time derivative of u).

#### QUADRATURE SETTINGS

These settings affect the numerical integration, and you do normally not need to change them. The **Use automatic quadrature settings** check box is selected by default. If the check box is cleared, the following settings become available:

#### Integration Order

The integration order is typically twice the order of the shape function. For example, the default integration order for second-order Lagrange elements is 4. The integration order is a positive integer that is entered in the **Integration order** field.

#### Multiplication by 2nr

This settings is only applicable for axisymmetric models. By default, the **Multiply by**  $2\pi r$  check box is selected to represent, for example, the flux per area rather than by length and full revolution. If the check box is cleared, the value of the Lagrange multiplier is not multiplied by  $2\pi r$ .



When other weak constraints are activated in Dirichlet-type boundary conditions, there is no automatic multiplication by  $2\pi r$  for axial symmetry.

#### Integrate on Frame

This setting determines which frame to base the integration on: the spatial frame, the material frame, the mesh frame, or the geometry frame. The default is to use the default frame for the physics interface. Select the frame from the **Integrate on frame** list.

#### VARIATIONAL CALCULUS

Use the test operator to work with problems in variational calculus and optimization theory.

# The Weak Contributions on Mesh Boundaries Node

To display this option, click the Show button ( $r_{\overline{\infty}}$ ) and select Advanced Physics Options from the Model Builder and then right-click the main PDE node and select More>Weak Contribution on Mesh Boundaries at the domain level.

This node is similar to The Weak Contribution Node but is active on mesh boundaries. The settings are the same.

# Auxiliary Dependent Variable



Enable the option by first clicking the Show button ( $rac{1}{20}$ ) and selecting Advanced Physics Options.

If a complete equation is specified on weak form in a **Weak Contribution** node and a new dependent variable that is not part of the physics interface is used, right-click the **Weak Contribution** node to add an **Auxiliary Dependent Variable**.

## DOMAIN, BOUNDARY, EDGE, OR POINT SELECTION

Select the geometric entity to add the auxiliary dependent variable. The default geometric entity is the same as for the parent **Weak Contribution** node (domains, boundaries, edges in 3D models, or points in 2D and 3D models). In rare cases, more than one **Auxiliary Dependent Variable** node can be used on subsets of the **Weak Contribution** node's selection (to use different initial values, for example).

## AUXILIARY DEPENDENT VARIABLE

Define the name and properties of the auxiliary dependent variable.

- Enter the Field variable name (the dependent variable).
- Enter the **Initial value** for the dependent variable. The default is 0.
- Enter the **Initial time derivative** for the dependent variable. The default is 0.

#### DISCRETIZATION

Select from a number of different shape function types (finite element types) from the **Shape function type** list and an associated element order (order of the shape function for the element) from the **Element order** list. The default is to use quadratic Lagrange elements.



## Element Types and Discretization

The Value type (Real or Complex) of dependent variables needs to be specified when Split complex variables in real and imaginary parts setting is activated in the Compile Equations node of any solver sequence used. The default is complex value type. If split complex variables setting is not active the value type is ignored.

## Modeling with PDEs on Boundaries, Edges, and Points

All PDE formulations—Coefficient Form PDE, General Form PDE, and Weak Form PDE—are available also on boundaries and edges and at points in the geometry.

Extra weak equations can be added by adding auxiliary dependent variables to a **Weak Contribution** node. Use such weak form equations as a way of handling thin layers; COMSOL Multiphysics then solves the problem by modeling rather than meshing. This approach reduces the solution time.



See Transport and Adsorption (Model Library path **COMSOL_Multiphysics**/ **Chemical_Engineering/transport_and_adsorption**) to learn how to use the weak form boundary mode to model a thin adsorption layer with diffusion as a PDE on the boundary of a convection-diffusion problem.

See Shell Diffusion (Model Library path **COMSOL_Multiphysics**/ **Equation-Based_Models/shell_diffusion**) for an example of tangential derivative variables.

# Specifying PDEs in Weak Form

In addition to shape function variables, use the test operator in the **Weak expression** fields in the **Weak Contribution** nodes and the **Constraint expression** fields in the **Weak** 

**Constraint** nodes. The test operator can operate on the shape function variables: for example, test(u1).

The test functions always occur linearly in the weak terms. Use these weak terms either alone to define the problem (in the Weak Form PDE interface or by adding an auxiliary dependent variable), or in addition to the other equations defined by the physics interface.



For more information about the test operator and other operators, see Special Operators.

# Using Weak Constraints

In this section:

- About Weak Constraints
- The Weak Constraint Node
- The Pointwise Constraint Node
- · Bidirectional and Unidirectional Constraints
- Constraint Forces for PDEs
- Limitations of Weak Constraints

# About Weak Constraints

The *weak constraints* in COMSOL Multiphysics implement constraints by using finite elements on the constrained domain for the Lagrange multipliers, and by solving for the Lagrange multipliers along with the original problem. The weak constraints have a number of distinct advantages. They can:

Provide consistent flux or force values at a Dirichlet boundary, for use as input to
other physics. The Lagrange multipliers along the constraints optimally balance the
finite element projection of the applied loads (reaction forces). Direct evaluation of
flux or force variables—which are based on derivatives of the dependent variables—
is not as accurate and may lead to considerable violation of global conservation
criteria. In such cases, using the Lagrange multiplier from a weak constraint as a
replacement is a good option.

Note that the Lagrange multipliers are accurate only in the integral sense required by the finite element method, and not pointwise. However, the reaction force operator (reacf) is a better alternative than weak constraints for calculating integrals of reaction forces or fluxes. The reaction force operator does not have the drawbacks discussed below.

C See Also Calculating Accurate Fluxes

The Reacf Operator

- Handle nonlinear constraints—the nonlinear solver does not store the Lagrange multipliers arising from standard constraints from one step to the next, which affects the convergence when constraints are nonlinear. Weak constraints can handle general nonlinearities because the Lagrange multipliers are updated as a part of the solution vector and give correct contributions to the stiffness matrix.
- Implement general nonsymmetric constraints, for example including nontangential derivatives—which are otherwise ill-posed. Note that unidirectional standard constraints are usually a better alternative for this type problems.



Boundary conditions involving the normal component of the derivative can almost always be reformulated as a Neumann condition, which is usually preferable.

Weak constraints also come with the following drawbacks:

- Because extra unknowns are introduced for the Lagrange multipliers the problem size increases compared to when eliminating the constraints.
- The formulation normally implies that a saddle-point problem is introduced with zeros on the main diagonal of the Jacobian of the discretized equations. This class of problems is often more difficult to solve. Because iterative methods for linear systems are sensitive to the eigenvalue distribution of the system matrix, a weak constraint formulation can be much more difficult to solve than the corresponding pointwise constraint formulation.
- Lagrange multipliers are in some cases difficult to interpret. For example, Lagrange multipliers from Dirichlet conditions in axial symmetry are not equal to the reaction flux per area but rather per length and full revolution. For separate Weak Constraints nodes in axial symmetry, the default quadrature settings include a multiplication by  $2\pi r$ , making the Lagrange multiplier represent flux per area.
- Discontinuous constraints result in (theoretically) infinite Lagrange multipliers. In practice large oscillations result.

# The Weak Constraint Node

To add a **Weak Constraint** node on the domain, boundary, edge, point, or global level, click the **Show** button (**>**⁻/₋) and select **Advanced Physics Options** from the **Model Builder** and then, depending on the geometric entity level, select **More>Weak Constraint**,

**Edges>Weak Constraint**, or **Points>Weak Constraint** from the context menu. There is no global weak constraint option.

## DOMAIN, BOUNDARY, EDGE, OR POINT SELECTION

From the **Selection** list, choose the geometric entity (domains, boundaries, edges, or points) to add a weak constraint—to domains, boundaries, edges in 3D models, and points in 2D and 3D models.

The default setting is to include all geometric entities in the model.

## WEAK CONSTRAINT

Select a **Constraint type—Bidirectional, symmetric** or **User defined**. Enter a **Constraint expression**, which COMSOL constrains to 0. For example, entering 2 - u constrains u to the value 2. If **User defined** is selected, enter a **Constraint force expression**.



- Bidirectional and Unidirectional Constraints
- Constraint Forces for PDEs

## QUADRATURE SETTINGS

These settings affect the numerical integration, and these do not normally need to be changed. The **Use automatic quadrature settings** check box is selected by default. If the check box is cleared, the following settings become available:

#### Integration Order

The integration order is typically twice the order of the shape function. For example, the default integration order for second-order Lagrange elements is 4. The integration order is a positive integer entered in the **Integration order** field.

#### Multiplication by $2\pi r$

This settings is only applicable for axisymmetric models. By default, the **Multiply by**  $2\pi r$  check box is selected to make the Lagrange multiplier represent, for example, the flux per area rather than by length and full revolution. If the check box is cleared, the

Lagrange multiplier is not multiplied by  $2\pi r$  where it is used in the constraint equation, and therefore represent flux per length and full revolution.



When weak constraints are activated in other Dirichlet-type boundary conditions, there is no automatic multiplication by  $2\pi r$  for axial symmetry and the Lagrange multiplier therefore represents flux or force per length and full revolution rather than per area.

#### Integrate on Frame

This setting determines which frame to base the integration on: the spatial frame, the material frame, the mesh frame, or the geometry frame. The default is to use the default frame for the physics interface. Select the frame from the **Integrate on frame** list.

## LAGRANGE MULTIPLIER

Enter a **Lagrange multiplier variable** and an **Initial value**. The variable names using weak constraints, such as 1m, correspond to the Lagrange multipliers. Change the name if required. The weak constraints supersede the original constraints and implement them using a weak formulation.

Select a Shape function—Linear Lagrange, Quadratic Lagrange (the default), Cubic Lagrange, Constant discontinuous, Linear discontinuous, or Quadratic discontinuous.

From the Define derivatives with respect to frame list, select Spatial, Material, or Mesh.

## The Pointwise Constraint Node

To add a **Pointwise Constraint** node on the domain, boundary, edge, or point level, click the **Show** button (*****, and select **Advanced Physics Options** from the **Model Builder** and then, depending on the geometric entity level, select **More>Weak Constraint** at the domain or boundary level, **Edges>Weak Constraint**, or **Points>Weak Constraint** from the context menu. There is no global pointwise constraint option.

Also add pointwise (strong) constraints, which do not create Lagrange multipliers. The settings in the **Pointwise Constraint** section are similar to those for the weak constraints.

## DOMAIN, BOUNDARY, EDGE, OR POINT SELECTION

From the Selection list, choose the geometric entity level (domains, boundaries, edges, or points) to add a pointwise constraint. The default includes All domains, All boundaries, All edges, or All points in the model.

#### POINTWISE CONSTRAINT

Select a Constraint type—Bidirectional, symmetric or User defined. Enter a Constraint expression, which COMSOL constrains to 0. For example, entering 2-u constrains u to the value 2. If User defined is selected, enter a Constraint force expression.



• Bidirectional and Unidirectional Constraints

Constraint Forces for PDEs

#### SHAPE FUNCTION

Select a Shape function—Linear Lagrange, Quadratic Lagrange (the default), Cubic Lagrange, Constant discontinuous, Linear discontinuous, or Quadratic discontinuous.

From the Define derivatives with respect to frame list, select Spatial, Material, or Mesh.

# Bidirectional and Unidirectional Constraints

The default constraint type is *bidirectional*, which means that COMSOL Multiphysics derives the constraint force directly from the constraint at a boundary, edge, or point. Also use *unidirectional* constraints, which for constraints written as 0 = R on  $\partial \Omega$ , change the constraint force according to

$$\left(\frac{\partial R}{\partial u}\right)^T \mu \to -I_{\partial\Omega}\mu$$

where  $I_{\partial\Omega}$  is an identity operator for points on the boundary  $\partial\Omega$ . For example, using two variables  $u_1$  and  $u_2$  and the constraints

$$\begin{vmatrix} 0 = R_1(u_1, u_2) & \text{on } \partial\Omega \\ 0 = R_2(u_1, u_2) & \text{on } \partial\Omega \end{vmatrix}$$

then the unidirectional constraint force is  $-\mu$  acting on both equations for the boundary  $\partial\Omega$ .

## **BIDIRECTIONAL VS. UNIDIRECTIONAL WEAK CONSTRAINTS**

Bidirectional weak constraints in theory implement the same boundary conditions as the standard, pointwise, constraints. In some cases, the result may differ slightly, but this is only due to the different discretization. Using unidirectional constraints, on the other hand, modifies the way boundary conditions are interpreted. Switching from pointwise constraints to unidirectional weak constraints therefore can modify the *physics* of the model, while using bidirectional weak constraints only affects the *numerics*.

The difference between bidirectional and unidirectional constraints is the way the Lagrange multipliers—which can be interpreted as generalized reaction forces—are applied. In a bidirectional constraint, the Lagrange multipliers are applied symmetrically on all dependent variables involved in the constraint so as to keep symmetric problems symmetric. In a unidirectional constraint, the reaction forces are applied only on the physics interface's dependent variable at the boundary where the constraint is specified.

Imagine a model with two physics interfaces *A* and *B*, with dependent variables *u* and *v*, respectively. If physics interface *A* specifies a standard constraint as R = 2u - 3v = 0, COMSOL Multiphysics implements the bidirectional weak boundary constraint by adding the weak term

$$\int_{B} \hat{\mu} \cdot (2u - 3v) ds + \int_{B} \mu \cdot (\hat{2u} - \hat{3v}) ds$$

where  $\mu$  and  $\hat{\mu}$  are the Lagrange multiplier and corresponding test function, and  $\hat{u}$  and  $\hat{v}$  are the test functions corresponding to u and v, respectively. Because  $\mu$  multiplies both test functions in the second integral, both u and v are affected by the constraint, which is therefore *bidirectional*.

The corresponding unidirectional weak constraint adds the weak form contribution

$$\int_{B} \hat{\mu} \cdot (2u - 3v) ds + \int_{B} \mu \cdot \hat{u} ds$$

Here, the Lagrange multiplier  $\mu$  only multiplies the test function  $\hat{u}$ . All reaction forces therefore apply only to u, while v is left unaffected by the constraint. This makes the constraint *unidirectional*. Note also that the unidirectional constraint does not consider the factor 2 in front of u when applying the forces. Even if the constraint would contain spatial derivatives, the Lagrange multiplier would still be applied only directly on the dependent variable itself.

In the **Weak Constraint** nodes' settings windows, the constraint type to use can be specified. The default constraint type is *bidirectional*, which means that the Coefficient Form PDE and General Form PDE interfaces derive the constraint force directly from the constraint that is specified in the **Constraint expression** field.

To use the *unidirectional* constraints, the constraint force from a constraint written as **constr** = R = 0 on  $\partial \Omega$ , changes according to

$$\left(\frac{\partial R}{\partial u}\right)^T \mu \to -I_{\partial\Omega}\mu$$

where  $I_{\partial\Omega}$  is an identity operator for points on the boundary  $\partial\Omega$ . If, for example, a two-variable problem for variables  $u_1$  and  $u_2$  specifies the constraints (using the **Constraint expression** field)

c

$$\begin{cases} 0 = R_1(u_1, u_2) & \text{on } \partial \Omega \\ 0 = R_2(u_1, u_2) & \text{on } \partial \Omega \end{cases}$$

then the default unidirectional constraint force is  $-\mu_1$  acting on  $u_1$  and  $-\mu_2$  acting on  $u_2$ . The corresponding bidirectional constraint would give reaction forces

$$\left(\frac{\partial R_1}{\partial u_1}\right)^T \mu_1 + \left(\frac{\partial R_2}{\partial u_1}\right)^T \mu_2$$

acting on  $u_1$  and

$$\left(\frac{\partial R_1}{\partial u_2}\right)^T \mu_1 + \left(\frac{\partial R_2}{\partial u_2}\right)^T \mu_2$$

acting on  $u_1$ .

If you want a unidirectional constraint or a constraint force different from any of these two choices, a separate expression must be specified for the constraint force. Select **User-defined** from the **Constraint type** list and enter the expression in the **Constraint force expression** field. In this field specify the constraint force Jacobian using the test operator. For example, the expression corresponding to the default unidirectional constraint in the example above is

 $\left\{ -\text{test}(u1) \\ -\text{test}(u2) \right\}$ 



The bidirectional constraint type normally generates a symmetric constraint Jacobian matrix and constraint force Jacobian matrix coupling for the discretized equations, while unidirectional constraints generate an unsymmetrical coupling. See also Solver Studies and Study Types.

# Limitations of Weak Constraints

Weak constraints are more difficult to use than conventional pointwise constraints. Note these tips when using them:

- Pointwise and weak constraints on the same set of variables on adjacent boundaries (boundaries that share common node points in the mesh) do not work. This means that if all boundaries must be constrained on a solid and want to use a weak constraint on one boundary segment (one face), the weak constraint must be used on the entire boundary of the solid (if the boundary is connected).
- There must always be a nontrivial constraint (that is, a Dirichlet condition) on the boundaries where the weak constraint is enabled and for the constraint to take effect.
- Problems with the scaling of linear systems sometimes arise in conjunction with weak constraints. The Lagrange multiplier variables always have a different unit than the main system variables, and can therefore be of a completely different order of magnitude. Usually the automatic variable scaling in the solvers is sufficient, but there are cases when manual scaling might need to be considered.
- Always use the same shape function type for the weak constraint as for the variables that are constrained, possibly with lower-order elements for the weak constraint. In some cases (for example, when constraining derivatives) the system of equations can become singular. The reason is usually that there are redundant Lagrange multiplier degrees of freedom in the model. Try to lower the order of the Lagrange multiplier variables or use constraints on the Lagrange multiplier to remove some degrees of freedom.
- To use iterative methods for the linear system and if the weak constraint formulation gives zeros on the diagonal of the system matrix, the SOR class of preconditioners

and smoothers do not work. Instead try use the Vanka algorithm with the Lagrange multipliers as the Vanka variables or use the incomplete LU factorization algorithm.

# Solving ODEs and DAEs

In this section:

- Adding ODEs, DAEs, and Other Global Equations
- The ODEs and DAEs Interface
- The Global Equations Node
- The Global Constraint Node
- The Weak Contribution (ODEs and DAEs) Node
- The Discretization Node
- Presenting Results for Global Equations
- Solving ODEs
- Solving Algebraic and Transcendental Equations
- Distributed ODEs and DAEs
- The Distributed ODEs and DAEs Interfaces
- Distributed ODE
- Algebraic Equation
- The Events Interface

# Adding ODEs, DAEs, and Other Global Equations

When working on complex models, single named degrees of freedom, or *states*, might need to be introduced, which are not logically related to any particular point in space, and their corresponding equations. In particular, such situations arise when modeling physics in interaction with an external system, for example, a controller or an electrical circuit built from standard components. It is often possible to describe such external systems by a system of ordinary differential equations, ODEs, with a limited number of degrees of freedom.

The Global Equations and ODEs interface has a **Global Equations** node that is designed for implementing this type of external equation. Such equations are often tightly coupled to a model in a physical domain. The Global Equations node is also available from any of the physics interfaces. Access it by right-clicking the main node and then choosing **Global>Global Equations**. Use it for ODEs, differential algebraic equations, purely algebraic equations and conditions, and transcendental equations, or to add degrees of freedom to a model using the introduced states. Possible uses include:

- Controllers
- Rigid-body mechanics
- Nonlinear eigenvalue problems
- Continuation
- Integral constraints
- Augmented or generalized equations

# The ODEs and DAEs Interface

The **ODEs and DAEs** interface  $(\frac{d}{dt})$ , found under the **Mathematics** branch  $(\Delta u)$  in the **Model Wizard**, has the possibility to add ODEs or other global equations to a model. The main node is the **Global Equations** node, used to define the global equations including the names of the variables (states), the required initial values, and an optional description. When the **Global Equations and ODEs** interface is added, it adds a default **Global Equations** node. Right-click the **Global Equations and ODEs** node to add additional **Global Equations** node or a **Weak Contribution** node.

# The Global Equations Node

Right-click the **ODEs and DAEs** node (first click the **Show** button (**>**, ) and select **Advanced Physics Options** from the **Model Builder**) Then select **Global>Global Equations** to add global (space-independent) equations such as ODEs. These are added in the **Global Equations** node's settings window:

## GLOBAL EQUATIONS

The global equations that you can solve have the following form:

$$f(u, \dot{u}, \ddot{u}, t) = 0$$

with the initial conditions  $u(t_0) = u_0$  and  $u_t(t_0) = u_{t,0}$  (where the subscript *t* indicates the time derivative). Several equations can be added and the equation can be coupled.

The first time derivative of u is specified as ut, and the second time derivative of u is utt. With time derivatives, this equation is an ODE (ordinary differential equation). With no time derivatives, the equation is an algebraic equation or a transcendental equation. The initial conditions are only necessary for ODEs.

In the table, each row corresponds to a named state; that is, it defines a single degree of freedom and one equation. Fill in the name of the state variable in the **Name** column. This also defines time-derivative variables. If a state variable is called u, its first and second time derivatives are ut and utt, respectively. These variables become available in all geometries. Therefore the names must be unique.

Use the **f(u,ut,utt,t)** column to specify the left side of the equation that is to be set equal to zero. The software then adds this global equation to the system of equations. When solving the model, the value of the state variable u is adapted in such a way that the associated global equation is satisfied. All state variables and their time derivatives can be used as well as any parameters, global variables, and coupling operators with a scalar output and global destination in the **f(u,ut,utt,t)** column. The variables can be functions of the state variables in the global equations. Setting an equation for a state is optional. The default value of **0** means that the software does not add any additional condition to the model.

If the time derivative of a state variable appears somewhere in the model during a time-dependent solution, the state variable needs an initial condition. Models that contain second time derivatives also require an initial value for the first time derivatives of the state variables. Set these conditions in the third (**Initial value (u_0)**) and fourth (**Initial value (u_t0)**) columns. Enter comments about the state or the equation in the last column, **Description**.

As required, edit the selected row in the table of global equations using the Name, f(u,ut,utt,t), Initial value (u_0), Initial value (u_t0), and Description fields underneath the table.

To add another equation, make additional entries in the second row.

Move equation rows up and down using the **Move Up** ( $\uparrow$ ) and **Move Down** ( $\downarrow$ ) buttons. To remove an equation, select some part of that equation's row in the table and click the **Delete** button ( $\blacksquare$ ). Save the definitions of the global equations to a text file by clicking the **Save to File** button ( $\blacksquare$ ) and using the **Save to File** dialog box that appears. To load a text file with global equation definitions, use the **Load from File** button ( $\blacksquare$ ) and using the **Load from File** dialog box that appears. Data must be separated by spaces or tabs.

#### DISCRETIZATION

To display this section, click the Show button (bar) and select Discretization.

The **Discretization** section for **Global Equations** is used to specify the **Value type** (**Real** or **Complex**) of the variables defined by global equations for the case of using activated

**Split complex variables in real and imaginary parts** setting in the **Compile Equations** node of any solver sequence. The default for split complex variables setting is to be not active and in that case you do not need to specify the value type for global equations variables (the value type specified would be ignored in such case). The value type for all the variables defined by this **Global Equations** node is selected in the **Value type when using splitting of complex variables** selection. The default value type is **Complex**.

# The Global Constraint Node

Right-click the **ODEs and DAEs** node or click the **Show** button (**>** ) and select **Advanced Physics Options** from the **Model Builder** and then right-click the main node for any other physics interface and select **Global>Global Constraint** to add a global (space-independent) constraint. With such a constraint you can, for example, make the sum of some global variables equal to a fixed number. You add the constraint in the **Global Constraint** node's settings window, which contains the following section:

#### GLOBAL CONSTRAINT

Select a **Constraint type—Bidirectional, symmetric** or **User defined**. Enter a **Constraint expression**, which COMSOL constraints to 0. For example, entering 2 - u + v constrains u+v to the value 2. If **User defined** is selected, enter a **Constraint force expression**. See Bidirectional and Unidirectional Constraints and Constraint Forces for PDEs for more information.

## The Weak Contribution (ODEs and DAEs) Node

Another option is to enter equations in the weak form using the **Weak Contribution** node. This can be convenient in advanced modeling because it controls the test variables multiplying the equations. Wherever a test function of a state variable appears (in the **Global Equations** node or elsewhere in the model), whatever it multiplies ends up in the same equation in the discrete system.



There can be zero or more weak expressions, regardless of the number of states.

#### WEAK CONTRIBUTION

Enter the expression that contains the weak formulation in the Weak expression field.



See The Wall Distance Interface for an example of how to write an ODE using a weak formulation.

# The Discretization Node

To display the option, click the **Show** button (**>** ) and select **Advanced Physics Options** from the **Model Builder** then right-click the main physics interface node and select **Global>Discretization** to add extra **Discretization** nodes for use in, for example, multigrid hierarchy.

Select which discretization to use in the Multigrid Level subnodes for the study steps.



The **Discretization** page usually has one section and it is the same as the **Discretization** section found when it is selected in the main physics interface node's settings window.

- Show Advanced Physics Options—Context Menu Equation-Based Feature Nodes
- Element Types and Discretization
- Show Advanced Physics Options



- In the COMSOL Multiphysics Reference Guide:
- Discretization of the Equations
- Finite Elements
- For information about how to specify the splitting of complex variables, see Compile Equations.

The state variables are scalar values and they are available globally. To view the results for an ODE, use the Line Graph, Point Graph, and Global plot types and Global Evaluation for displaying the numerical solution.

# Solving ODEs

As an example of ODEs, the following equations are the Lotka-Volterra equations:

$$\dot{r} = ar - brf$$
$$\dot{f} = -cf + drf$$

where r is the rabbit population, and f is the population of foxes. This is an example of a system of two coupled ODEs.

Enter these equations as rt-a*r+b*r*f and ft+c*f-d*r*f, where *a*, *b*, *c*, and *d* are scalar values defined using the **Parameters** node. For this first-order ODE, specify initial values for *r* and *f*.

# Solving Algebraic and Transcendental Equations

As an example of an algebraic equation, consider the equation f(u) = 0 for

$$f(u) = u^3 + u - 2$$

This equation has a single root at u = 1. To enter it into the **Global Equations** window, type **u** in the **Name** column and  $u^3+u-2$  in the **Equation f(u,ut,utt,t)** column (both entries on the same row). Then solve this using a stationary solver. To display the solution value, right-click **Numerical Results** in the **Results** branch and select **Global Evaluation**. In the settings window, select **u** from the list of predefined quantities (click the down arrow in the **Expression** section and select **ODEs and DAEs>(u)**).Click the Evaluate button, and the value of the root appears in the **Results** section.

As an example of a transcendental equation, consider the equation f(u) = 0 for

$$f(u) = e^{-u} - u$$

A root to this equation is approximately 0.56714. To enter it into the **Global Equations** window, type u in the **Name** column and exp(-u) - u in the **f(u,ut,utt,t)** column (both entries on the same row). Then compute the solution. To display the solution value,

right-click Numerical Results in the Results branch and select Global Evaluation. In the settings window, select **u** from the list of predefined quantities (click the down arrow in the Expression section and select ODEs and DAEs>(u)). Click the Evaluate button, and the value of the root (rounded to 0.567) appears in the Results section.

# Distributed ODEs and DAEs

For ODEs and DAEs in domains, on boundaries and edges, and at points, the Distributed ODEs and DAEs interface is available for solving the following ODE (or DAE):

$$e_{\rm a}\frac{\partial^2 u}{\partial t^2} + d_{\rm a}\frac{\partial u}{\partial t} = f$$

Because it is defined on a geometry but is space independent, it solves the ODE or DAE as a distributed ODE or DAE, with a solution that is defined as a field but with no space variation.

# The Distributed ODEs and DAEs Interfaces

The interfaces for distributed ODEs and DAEs—Domain ODEs and DAEs, Boundary ODEs and DAEs, Edge ODEs and DAEs, and Point ODEs and DAEs ( $\frac{d}{dt}$ )—found under the Mathematics>ODE and DAE Interfaces branch ( $\frac{d}{dt}$ ) in the Model Wizard, provides the possibility to solve distributed ODEs and DAE in domains, on boundaries and edges, and at points.

When this interface is added, these default nodes are also added to the **Model Builder**— **Distributed ODE** and **Initial Values**. Right-click **Distributed ODEs and DAEs** to add other nodes that implement other algebraic equations, for example.

The following sections provides information about nodes available in the distributed ODEs and DAEs interfaces.

### INTERFACE IDENTIFIER

The interface identifier is a text string that can be used to reference the respective physics interface if appropriate. Such situations could occur when coupling this interface to another physics interface, or when trying to identify and use variables defined by this physics interface, which is used to reach the fields and variables in expressions, for example. It can be changed to any unique string in the **Identifier** field.

The default identifier (for the first interface in the model) is dode, bode, eode, or pode (in domains, on boundaries and edges, and at points, respectively).

# DOMAIN SELECTION

The default setting is to include **All domains** in the model to define where the distributed ODEs or DAEs are active. To choose specific domains, select **Manual** from the **Selection** list.

# DEPENDENT VARIABLES

Choose the number of dependent variables and set the field and dependent variable names. The default field and variable name for a single scalar PDE variable is u. If the field name coincides with the name of another field of the same unit and number of components, the two fields (and the interfaces which define them) will share degrees of freedom and dependent variable names. A field name must not coincide with the name of a field of another type, or with a component name belonging to some other field. Component names must be unique within a model except when two interfaces share a common field name.

# DISCRETIZATION

To display this section, click the Show button ( $\succ_{\overline{\infty}}$ ) and select Discretization from the Model Builder.

Select from a number of different shape function types (finite element types) from the **Shape function type** list and an associated element order (order of the shape function for the element) from the **Element order** list. The default is to use quadratic Lagrange elements.



Element Types and Discretization

Show More Physics Options

The **Value type** (**Real** or **Complex**) of dependent variables needs to be specified when **Split complex variables in real and imaginary parts** setting is activated in the Compile Equations node of any solver sequence used. The default is complex value type. If split complex variables setting is not active the value type is ignored.

# Distributed ODE

This is the default equation for a **Distributed ODE** in an interface for distributed ODEs and DAEs. Specify the coefficients for an ODE with the following equation coefficients:

$$e_{\mathrm{a}}\frac{\partial^{2} u}{\partial t^{2}} + d_{\mathrm{a}}\frac{\partial u}{\partial t} = f$$

- $e_a$  is the mass coefficient.
- d_a is a damping coefficient or a mass coefficient.
- f is the source term.

# DOMAIN SELECTION

The default setting is to include **All domains** in the model to define where the distributed ODEs are active. To choose specific domains, select **Manual** from the **Selection** list.

# SOURCE TERM

Enter a value or expression for the source term f. If there are multiple dependent variables, there is a vector of f component inputs.

# DAMPING OR MASS COEFFICIENT

Enter a value or expression for the damping (or mass) coefficient  $d_a$ . If there are multiple dependent variables, there is a matrix of  $d_a$  component inputs.

#### MASS COEFFICIENT

Enter a value or expression for the mass coefficient  $e_a$ . If there are multiple dependent variables, there is a matrix of  $e_a$  component inputs.

# Algebraic Equation

This node adds an **Algebraic Equation** in an interface for distributed ODEs and DAEs. Specify an algebraic equation as

$$f = 0 \tag{15-2}$$

#### DOMAIN SELECTION

The default setting is to include **All domains** in the model to define where the algebraic equation is active. To choose specific domains, select **Manual** from the **Selection** list.

# ALGEBRAIC EQUATION

Enter an expression f for the equation f=0 that defines the algebraic equation in the **f** field. If there are multiple dependent variables, there is a vector of algebraic equations for each variable.

# The Events Interface

Use the **Events** interface  $(A_{ij})$  to create solver events. An event can be explicit or implicit, and the difference is that you for explicit events must specify the exact time when the event occurs. When an event occurs, the solver stops and provides a possibility to reinitialize the values of states and dependent variables.

# INTERFACE IDENTIFIER

The interface identifier is a text string that can be used to reference the respective physics interface if appropriate. Such situations could occur when coupling this interface to another physics interface, or when trying to identify and use variables defined by this physics interface, which is used to reach the fields and variables in expressions, for example. It can be changed to any unique string in the **Identifier** field.

The default identifier (for the first interface in the model) is ev.

# Discrete States

Use the **Discrete States** feature  $(\triangle_{\nabla})$  to define discrete state variables that do not have to be continuous in time. They are often used as logical help variables that control what expression to use in a weak expression or constraint.

#### DISCRETE STATES

Enter values or expressions in the table for the Name, Initial value (u0), and enter a Description.

# Indicator States

Use the **Indicator States** feature (4) to define state variables that the solver uses to trigger implicit events, which occurs at a zero crossing of an indicator state variable.

#### INDICATOR VARIABLES

Multiple state variable can be defined in the table together with corresponding g-coefficients and initial values. A state variable, u, gets its value by solving the following equation:

$$g(u, \dot{u}, \ddot{u}, t) - u = 0$$

with the initial conditions  $u(t_0) = u_0$  (where the dot notation indicates time derivatives). You use the state variables in the implicit event condition that you specify for the Implicit Event feature.

Enter values or expressions in the table for the Name, *g*-coefficients g(u,ut,utt,t), Initial value (u0), and enter a Description.

# Explicit Event

An **Explicit Event** feature ( $\Delta_{v}$ ) specify an event that occurs at predefined times entered in the **Event Timings** section. When an event occurs, it is possible to specify reinitialization of global states in the **Reinitialization** section. Right-click an **Explicit Event** node to add the Reinitialization on Domains node.

# EVENT TIMINGS

Write the first time an explicit event occur in the **Start of event** edit field. It is also possible to repeatedly trigger the event by entering the period in the **Period of event** field.

#### REINITIALIZATION

In the table, enter information in the **Variable** and **Expression** columns for the global state variables that the event reinitializes to the given expression.

## Implicit Event

Use the **Implicit Event** feature  $(\Delta_{v})$  to specify an event that occurs when an condition involving an indicator state is fulfilled. When an event occurs, it is possible to specify reinitialization of global state variables. Right-click an **Implicit Event** node to add a Reinitialization on Domains node.

#### EVENT CONDITIONS

Enter the condition in the **Condition** field. When the condition changes its state from false to true, this triggers the implicit event.

#### REINITIALIZATION

In the table, enter information in the **Variable** and **Expression** columns for the global state variables that the event reinitializes to the given expression.

# Reinitialization on Domains

The **Reinitialization on Domains** feature can reinitialize dependent variables defined on domains when an event occurs. Right-click an Explicit Event or Implicit Event node to add this node.

# REINITIALIZATION

In the table under **Variables** enter the dependent variables. In the **Expression** column, enter the corresponding information for each variable as defined on domains that the event reinitializes.

# The Wall Distance Interface

The **Wall Distance** interface ( $\underline{\underline{\underline{m}}}$ ), found under the **Mathematics** branch ( $\underline{\underline{Au}}$ ) in the **Model Wizard**, has the equations and boundary conditions for calculating the distance to walls in fluid-flow simulation using a modified Eikonal equation, solving for a dependent variable *G* that is related to the wall distance. The main node is the **Distance Equation** node, which adds the distance equation (modified Eikonal equation) and provides an interface for defining the reference length scale.

When this interface is added, these default nodes are also added to the **Model Builder**— **Wall Distance**, **Distance Equation**, and **Initial Values**. Default boundary conditions are also added—a homogeneous Neumann condition that does not appear in the Model Builder.

Right-click the **Wall Distance** node to add boundary conditions for walls. Interface Identifier

The interface identifier is a text string that can be used to reference the respective physics interface if appropriate. Such situations could occur when coupling this interface to another physics interface, or when trying to identify and use variables defined by this physics interface, which is used to reach the fields and variables in expressions, for example. It can be changed to any unique string in the **Identifier** field.

The default identifier (for the first interface in the model) is wd.

## DOMAIN SELECTION

The default setting is to include **All domains** in the model to define where the distance equation is active. To choose specific domains, select **Manual** from the **Selection** list.

#### PHYSICAL MODEL

Enter a **Smoothing parameter**  $\sigma_{w}$  in Equation 15-5. The default value is 0.1.

# DEPENDENT VARIABLES

The dependent variable is the **Reciprocal wall distance** G. You can change its name, which changes both the field name and the variable name. If the new name coincides with the name of another reciprocal distance field in the model, the interfaces will share degrees of freedom. The new name must not coincide with the name of a field of another type, or with a component name belonging to some other field.

#### DISCRETIZATION

To display this section, click the Show button ( $r_{\overline{\infty}}$ ) and select Discretization from the Model Builder. Select Quadratic (the default), Linear, Cubic, or Quartic for the Reciprocal wall distance.



Show More Physics Options

# Distance Equation

The **Distance Equation** node adds to Equation 15-5, and the **Distance Equation** form contains the following sections for defining the length scale.

# DOMAIN SELECTION

From the **Selection** list, choose the domains to use the distance equation with the length scale defined in this **Distance Equation** node.

#### DISTANCE EQUATION

Specify the length scale using the reference length  $l_{ref}$ . From the Length scale specification, choose from the following to compute the reference length:

- Select Automatic to use Equation 15-6 to compute  $l_{ref}$ . This is the default setting.
- Select Manual to specify the reference length (SI unit: m) manually in the l_{ref} field. The default value is 1.

# Initial Values

The **Initial Values** node adds an initial value for the reciprocal wall distance that can serve as initial guess for a nonlinear solver.

# DOMAIN SELECTION

From the Selection list, choose the domains to define an initial value.

#### INITIAL VALUES

Enter a value or expression for the initial value of the reciprocal wall distance G (SI unit: 1/m) in the **Reciprocal wall distance** field. The default value is  $G_0 = 2/l_{ref}$ .

The following boundary conditions are available:

• The default boundary condition is a homogeneous Neumann condition, which applies to all boundaries that are not walls:

$$\nabla G \cdot \mathbf{n} = 0$$

This boundary condition does appear as a node in the model tree.

• The Wall boundary condition (see below) for boundaries that are walls.



For axisymmetric models, COMSOL Multiphysics automatically takes the axial symmetry boundaries (at r = 0) into account, and prohibits the wall boundary node from being defined here.

# Wall

The **Wall** node implements the following boundary condition for walls:

$$G = G_0 = \frac{2}{l_{\text{ref}}}$$

#### **BOUNDARY SELECTION**

Select the boundaries that represent walls.

# Theory for the Wall Distance Interface

The Wall Distance Interface theory is described in this section:

- The Eikonal Equation
- Modified Eikonal Equation
- Reference for the Wall Distance Interface

# The Eikonal Equation

Turbulence models often use the distance to the closest wall to approximate the mixing length or for regularization purposes. One way to compute the wall distance is to solve the *Eikonal equation*:

$$\nabla D = 1 \tag{15-3}$$

with D = 0 on solid walls and  $\nabla D \cdot \mathbf{n} = 0$  on other boundaries. The Eikonal equation can be tricky to solve, and produces the exact distance to the closest wall. The modified equation described below is less computationally expensive to solve. It also uses a reference length to put more emphasis on solid objects larger than the reference length and reduce the emphasis on smaller objects. The introduction of a reference length produces a more relevant wall distance in the following instances:

- In convex regions of small dimensions, the wall distance is reduced to reflect the close proximity of several walls.
- When a small object, such as a thin wire for example, is present in free flow, the wall
  distance is affected only in a very small region around it.

# Modified Eikonal Equation

COMSOL Multiphysics uses a modified Eikonal equation based on the approach in Ref. 1. This modification changes the dependent variable from D to G = 1/D. Equation 15-3 then transforms to

$$\nabla G \cdot \nabla G = G^4 \tag{15-4}$$

Additionally, the modification adds some diffusion and multiplies  $G^4$  by a factor to compensate for the diffusion. The result is the following equation, which the Wall Distance interface uses:

$$\nabla G \cdot \nabla G + \sigma_{w} G (\nabla \cdot \nabla G) = (1 + 2\sigma_{w})G^{4}$$
(15-5)

where  $\sigma$  is a small constant. If  $\sigma_w$  is less than 0.5, the maximum error falls of exponentially when  $\sigma_w$  tends to zero. The default value of 0.1 is a good choice for both linear and quadratic elements.

The boundary conditions for Equation 15-5 is  $G = G_0 = C/l_{ref}$  on solid walls and homogeneous Neumann conditions on other boundaries. The effect of *C* is that the solution becomes less smeared the higher the value of *C*. The error tends asymptotically to  $0.2l_{ref}$  as *C* tends to infinity, but making it very large destabilizes Equation 15-5. *C* is 2 in the Wall Distance interface.

For a channel,  $l_{ref}$  should typically be set to the channel width or there about.  $l_{ref}$  has a lower bound in that it must be larger than all cells adjacent to any boundary where the boundary condition  $G = G_0$  is applied; otherwise, the solution displays oscillations.  $l_{ref}$  is the only parameter in the model, and the default value is half the shortest side of the geometry bounding box. If the geometry consists of several very slender entities, or if the geometry contains very fine details, this measure can be too large. Then define  $l_{ref}$  manually.

The initial value is by default defined as  $G_0 = 2/l_{ref}$ , in correspondence with the boundary conditions.

The wall distance  $D_{\rm w} = 1/G - 1/G_0$  is a predefined variable that is used for analysis. You have also access to a vector-valued variable that represents the direction toward the nearest wall, which is defined as

$$\frac{\nabla G}{\sqrt{\max(\nabla G^2, \operatorname{eps})}} \tag{15-6}$$

Reference for the Wall Distance Interface

1. E. Fares and W. Schröder, "A Differential Equation for Approximate Wall Distance," *International Journal for Numerical Methods in Fluids*, vol. 39, pp. 743–762, 2002.

# 16

# Sensitivity Analysis

This chapter describes how to perform sensitivity analysis using the Sensitivity interface, which is found under the Mathematics>Optimization and Sensitivity () branch in the Model Wizard.

In this chapter:

- Theory for the Sensitivity Interface
- The Sensitivity Interface

# Theory for the Sensitivity Interface

The Sensitivity Interface theory is described in this section:

- About Sensitivity Analysis
- Sensitivity Problem Formulation
- Theory for Stationary Sensitivity Analysis
- Specification of the Objective Function
- Choosing a Sensitivity Method
- Issues to Consider Regarding the Control Variable
- Issues to Consider Regarding the Objective Function

# About Sensitivity Analysis

The Sensitivity interface  $(h_{h_{h_{i}}})$  is special in the sense that it does not contain any physics of its own. Instead, it is a tool that makes it possible to evaluate the sensitivity of a model with respect to almost any variable.

Simulation is a powerful tool in science and engineering for predicting the behavior of physical systems, particularly those that are governed by partial differential equations. However, often a single simulation (or just a few) is not enough to provide sufficient understanding of a system. Hence, a more exploratory process might be needed, such as *sensitivity analysis*, where one is interested in the sensitivity of a specific quantity with respect to variations in certain parameters included in the model. Such an analysis can for example be used for estimating modeling errors caused by uncertainties in material properties, or for predicting the effect of a geometrical change.

Many times it is possible to reformulate problems of the above type as the problem of calculating derivatives, so differentiation plays a central role in solving such problems. The Sensitivity interface can calculate derivatives of a scalar *objective function* with respect to a specified set of *control variables*. The objective function is in general a function of the solution to a multiphysics problem, which is in turn parameterized by the control variables.

# Sensitivity Problem Formulation

Because the Sensitivity interface does not contain any physics, it is not intended for use on its own. When the interface is added to a multiphysics model, no new equations are introduced, and the set of solution variables remains the same. Instead, an objective function and a control variable can be specified. The physics interface can perform these distinct tasks:

- · Select a control variables and set their values
- Define a scalar objective function
- · Compute the sensitivities efficiently using the sensitivity solver



The control variables are independent variables whose values are not affected by the solution process, but they are also degrees of freedom (DOFs) stored in the solution vector. When defining a control variable, its *initial value* must be supplied. The initial value is used to initialize the control variable DOFs, which remain fixed during the solution step.

# Theory for Stationary Sensitivity Analysis

Evaluating the sensitivity of a scalar-valued objective function  $Q(\xi)$  with respect to the control variables,  $\xi$ , at a specific point,  $\xi_0$ , can be rephrased as the problem of calculating the derivative  $\partial Q/\partial \xi$  at  $\xi = \xi_0$ . In the context of a multiphysics model, Q is usually not an explicit expression in the control variables  $\xi$  alone. Rather,  $Q(u(\xi), \xi)$  is also a function of the solution variables u, which are in turn implicitly functions of  $\xi$ .

The multiphysics problem is a PDE, which after discretization is represented as a system of equations  $L(u(\xi), \xi) = 0$ . If the PDE has a unique solution  $u = L^{-1}(\xi)$ , the sensitivity problem can be informally rewritten using the chain rule as that of finding

$$\frac{d}{d\xi}Q(u(\xi),\xi) = \frac{\partial Q}{\partial\xi} + \frac{\partial Q}{\partial u} \cdot \frac{\partial u}{\partial L} \cdot \frac{\partial L}{\partial\xi}$$

The first term, which is an explicit partial derivative of the objective function with respect to the control variables is easy to compute using symbolic differentiation. The second term is more difficult. Assuming that the PDE solution has N degrees of freedom and that there are n control variables  $\xi_i$ ,  $\partial Q/\partial u$  is an N-by-1 matrix,  $\partial u/\partial L$  is an N-by-N matrix (since  $L^{-1}$  is unique) and  $\partial L/\partial \xi$  is an N-by-n matrix.

The first and last factors,  $\partial Q/\partial u$  and  $\partial L/\partial \xi$  can be computed directly using symbolic differentiation. The key to evaluating the complete expression lies in noting that the middle factor can be computed as  $\partial u/\partial L = (\partial L/\partial u)^{-1}$  and that  $\partial L/\partial u$  is the PDE Jacobian at the solution point:

$$\frac{d}{d\xi}Q(u(\xi),\xi) = \frac{\partial Q}{\partial\xi} + \frac{\partial Q}{\partial u} \cdot \left(\frac{\partial L}{\partial u}\right)^{-1} \cdot \frac{\partial L}{\partial\xi}$$
(16-1)

However, actually evaluating the inverse of the N-by-N Jacobian matrix is too expensive. In order to avoid that step, an auxiliary linear problem can be introduced. This can be done in two different ways, each requiring at least one additional linear solution step.

#### FORWARD SENSITIVITY METHOD

To use the *forward sensitivity* method, introduce the N-by-n matrix of solution sensitivities

$$\frac{\partial u}{\partial \xi} = \left(\frac{\partial L}{\partial u}\right)^{-1} \cdot \frac{\partial L}{\partial \xi}$$

These can be evaluated by solving n linear systems of equations

$$\frac{\partial L}{\partial u} \cdot \frac{\partial u}{\partial \xi_i} = \frac{\partial L}{\partial \xi_i}$$

using the same Jacobian  $\partial L/\partial u$ , evaluated at  $u(\xi_0)$ . Inserting the result into Equation 16-1, the desired sensitivities can be easily computed as

$$\frac{d}{d\xi}Q(u(\xi),\xi) = \frac{\partial Q}{\partial \xi} + \frac{\partial Q}{\partial u} \cdot \frac{\partial u}{\partial \xi}$$

#### ADJOINT SENSITIVITY METHOD

To use the *adjoint sensitivity* method, introduce instead the N-by-1 adjoint solution  $u^*$ , which is defined as

$$u^* = \frac{\partial Q}{\partial u} \cdot \left(\frac{\partial L}{\partial u}\right)^{-1}$$

Multiplying this relation from the right with the PDE Jacobian  $\partial L/\partial u$  and transposing leads to a single linear system of equations

$$\frac{\partial L^T}{\partial u} \cdot u^* = \frac{\partial Q}{\partial u}$$

using the transpose of the original PDE Jacobian.

# Specification of the Objective Function

The objective function may in general be a sum of a number of terms:

$$Q(u,\xi) = Q_{\text{global}}(u,\xi) + Q_{\text{probe}}(u,\xi) + \sum_{k=0}^{n} Q_{\text{int},k}(u,\xi)$$

where n is the space dimension of the multiphysics model and the different contributions in the sum above are defined as follows:

- $Q_{\text{global}}$  is the *global contribution* to the objective function Q. It is given as one or more general global expressions.
- $Q_{\text{probe}}$  is a *probe contribution* to the objective function Q. It is a *probe objective* so its definition is restricted to a point on a given geometrical entity. The *probe point* used for the point evaluation is a point given by the user and has to be contained in the domain.
- $Q_{int,k}$  is an *integral contribution* to the objective function Q. It is an *integral objective* so its definition is restricted to a specific set of geometrical entities of the same dimension. For integral contributions on points, the integration reduces to a summation.

Several global, probe, and integral contributions can be defined. In such cases, the total global, probe, and integral contribution is given as the sum of the aforementioned global, probe, and integral contributions that are actively selected in the solver feature settings for the optimization.

To evaluate sensitivities as part of a multiphysics problem solution, an auxiliary linear problem must be solved, in addition to the original equation. Choose between these methods:

- Select the *forward sensitivity* method to evaluate the derivatives of all solution variables and an optional objective function.
- Select the *adjoint sensitivity* method to look only at derivatives of a scalar objective function.

# FORWARD SENSITIVITY

Use the forward sensitivity method to solve for the derivatives of all dependent variables, plus an optional scalar objective function, with respect to a small number of control variables. The forward method requires one extra linear system solution for each control variable.

The linear system that must be solved is the same as the last linearization needed for solving the forward model. Thus, when using a direct solver (for example, PARDISO) the extra work amounts only to one back-substitution per control variable DOF. The iterative linear and segregated solvers can reuse preconditioners and other data but must otherwise perform a complete solution each time.

# ADJOINT SENSITIVITY

The adjoint method solves for the derivatives of a single scalar objective function with respect to any number of control variables, requiring only one single additional linear system solution. In addition to the objective function gradient, the discrete adjoint solution is computed. This quantity represents the sensitivity of the objective function with respect to an additional generalized force applied as a nodal force to the corresponding solution component.

The auxiliary linear system is in this case the transpose of the last linearization needed for solving the forward model. The MUMPS and PARDISO linear solvers can solve the transposed problem at the cost of a back-substitution, while the SPOOLES linear solver needs to do a new factorization if the problem is not symmetric or Hermitian. The iterative solvers can reuse most preconditioning information as can the segregated solver, which, however, loops over the segregated steps in reversed order.



Sensitivity analysis can be used together with all stationary and parametric standard solvers and with the BDF solver for transient studies. The available solvers are described in the section Solvers and Study Types. For technical details about the solution procedure, see the *COMSOL Multiphysics Reference Guide*.

Issues to Consider Regarding the Control Variable

# THE EFFECT OF DISCRETIZATION

The sensitivity analysis is always performed on the discretized system of equations. As already mentioned, the control variable can be a scalar/vector or an element in some infinite-dimensional function space. In the latter case it is represented on the finite element mesh, just like the solution variables, or global scalar quantities. When using a control variable field represented on the finite element mesh, the sensitivities are therefore associated with individual control variable degrees of freedom rather than with the field value at each point. This makes it difficult to interpret the result. For example, if a domain control variable is set up using a first-order Lagrange shape function representation to control the material density in your model, the solution contains the sensitivity of the objective function with respect to the discrete density value at each node point in the mesh. Because each node influences the density in a small surrounding region, the size of which varies from node to node, the individual sensitivities are not directly comparable to each other.

Displaying such domain control variables results in a plot that is not smooth due to the varying element size. It must therefore not be used to draw any conclusions about the physics and the effect of changing the physical field represented by the control variable. Some insight may, however, be gained by looking at the sensitivities divided by the mesh volume scale factor dvol. This makes the sensitivities in the plot comparable between different parts of the surface but still not mathematically well defined. In

particular, using discontinuous constant shape functions together with the division by dvol results in a plot that is proportional to the true pointwise sensitivity.



If the plan is to use the sensitivities in an automatic optimization procedure, as is done through the Optimization interface available with the optional Optimization Module, the discrete nature of the sensitivities causes no additional complication. The optimization solver searches for optimum values of the discrete control variables using the discrete gradient provided by the sensitivity analysis.

# GEOMETRICAL SENSITIVITY

Use the control variables directly to parameterize any aspect of the physics which is controlled by an expression. This applies for example to material properties, boundary conditions, loads and sources. However, the shape, size, and position of parts of the geometry cannot be changed as easily at solution time, and therefore require special attention.

Control variables cannot be used directly in the geometry description. Instead, the model must be set up using *ALE* and tie all physics to an *ALE frame* controlled by a Deformed Geometry physics interface (in 2D only) or a Moving Mesh (ALE) physics interface. Then use control variables to control the mesh movement, effectively parameterizing the geometry.



See The Deformed Geometry and Moving Mesh Interfaces for details about these physics interfaces and ALE in general.

Issues to Consider Regarding the Objective Function

# THE PRINCIPLE OF VIRTUAL WORK

*Potential energy* has a special status among scalar objective functions, because its derivatives with respect to scalar control variables can in many cases be interpreted as (true or generalized) forces.

# COMPLEX-VALUED OBJECTIVE FUNCTIONS

Sensitivity analysis can be applied only when the objective function is a real-valued differentiable function of the control variables. This is usually not a very severe

constraint, even for frequency-domain models where the PDE solution variables are complex valued. The reason is that physical quantities of interest to the analyst are always real valued, and if complex-valued control variables are required, it is possible to treat the real and imaginary parts separately.

Many common quantities of interest are time averages which can be written in the form  $Q = real(a \cdot conj(b))$ , where a and b are complex-valued linear functions of the solution variables and therefore implicit functions of the control variables. The problem with this expression is that while Q is indeed a real-valued differentiable function of the control variables, it is not an analytical function of a and b. This complicates matters slightly because the sensitivity solver relies on partial differentiation and the chain rule.

While the partial derivatives of Q with respect to a and b are, strictly speaking, undefined, it can be proven that if they are chosen such that

$$Q(a + \delta a, b + \delta b) \approx Q(a, b) + \operatorname{real}\left(\frac{\partial Q}{\partial a}\delta a + \frac{\partial Q}{\partial b}\delta b\right)$$
(16-2)

for any small complex increments  $\delta a$  and  $\delta b$ , the final sensitivities are evaluated correctly. The special function realdot(a,b) is identical to real(a*conj(b)) when evaluated but implements partial derivatives according to Equation 16-2. For that reason, use it in the definition of any time-average quantity set as objective function in a sensitivity analysis.

# The Sensitivity Interface

The Sensitivity interface (), found under the Mathematics>Optimization and Sensitivity () branch in the Model Wizard, has the tools for defining and solving sensitivity problems.



For a more extensive introduction to the mathematics implemented by this interface, see the Theory for the Sensitivity Interface.

The **Sensitivity** interface includes the tools for defining and solving sensitivity problems. The main purpose of the interface is its ability to solve stationary PDE-constrained sensitivity problems.

The objective functions and constraints are defined in terms of control and solution variables (the latter are given as the solution to the differential equations defined by the multiphysics model) and restrict these to specific domains or make them globally available. This flexibility is reflected in the user interface by grouping these settings according to the dimension of the domain to which they apply. In such a group of settings, the following settings can be specified, to each of which corresponds a separate feature and its settings window:

- Integral Objective
- Probe Objective
- Control Variable Field

The main Sensitivity interface node's settings window contains the following section:

# INTERFACE IDENTIFIER

The interface identifier is a text string that can be used to reference the respective physics interface if appropriate. Such situations could occur when coupling this interface to another physics interface, or when trying to identify and use variables defined by this physics interface, which is used to reach the fields and variables in expressions, for example. It can be changed to any unique string in the **Identifier** field.

The default identifier (for the first interface in the model) is sens.

Global Objective
Global Control Variables
See Also
Adding a Sensitivity Interface to a Model

# Integral Objective

An **Integral Objective** is defined as the integral of a closed form expression of control and solution variables (the latter are given as the solution to the differential equations defined by the multiphysics model) that are either global or available in the domain in question. Hence, its definition is restricted to a set of geometric entities of the same dimension. For integral objectives on points, the integration reduces to a summation.

# DOMAIN, EDGE, BOUNDARY, OR POINT SELECTION

From the **Selection** list, choose the geometric entity (domains, boundaries, edges, or points) used in the integration for the integral objective.

#### OBJECTIVE

Enter an **Objective expression** that is integrated over the geometric entity level in the integral objective.

### PAIR SELECTION

If **Integral Objective** is selected from the **Pairs** menu, choose the pair to define. An identity pair has to be created first. Ctrl-click to deselect.

# QUADRATURE SETTINGS

Specify the settings for the **Quadrature** used to numerically evaluate the integral in the integral objective: the integration order (default: 4) in the **Integration order** field and the frame to integrate on (default: the spatial frame), which is selected from the **Integrate on frame** list.

# Probe Objective

A **Probe Objective** is defined as a point evaluation of a closed form expression of control and solution variables (the latter are given as the solution to the differential equations defined by the multiphysics model) that are either global or available in the domain in question. The point used for the point evaluation has to be contained in the domain.

#### DOMAIN SELECTION

From the **Selection** list, choose the domain containing the point used for the point evaluation.

#### OBJECTIVE

Enter an **Objective expression** that is evaluated at the point in the domain.

# PROBE COORDINATES

Specify the **Probe coordinates** for the point in the domain where the expression for the objective is evaluated. After specifying the probe coordinates, select an option from the **Evaluate in frame—Spatial** (the default), **Material**, or **Mesh**.

# Control Variable Field

Specify the **Control Variable Field** specific to the geometric entity level (domain, edge, boundary, or point) in question.

#### DOMAIN, EDGE, BOUNDARY, OR POINT SELECTION

From the **Selection** list, choose the geometric entity (domains, boundaries, edges, or points) where the control variable field is defined.

#### PAIR SELECTION

If **Control Variable Field** is selected from the **Pairs** menu, choose the pair to define. An identity pair has to be created first. Ctrl-click to deselect.



• Identity and Contact Pairs

Specifying Boundary Conditions for Identity Pairs

# CONTROL VARIABLE

Enter a Control variable name and Initial value.

# DISCRETIZATION

This section contains settings for the element used to discretize the control variable. Select a Shape function type: Lagrange (the default) or Discontinuous Lagrange. Also select an Element order: Linear, Quadratic (the default), Cubic, Quartic, or Quintic. Specify the **Global Objective** contribution to the function.

# OBJECTIVE

Enter an **Objective expression** that defines the contribution to the objective function. It can be an expression of those components of the control and solution variable (the solution variable is given as the solution to the differential equations defined by the multiphysics model) that are globally available.

# Global Control Variables

Specify any globally available control variables.

# CONTROL VARIABLES

In the table, enter **Variable** names and **Initial values** of the control variables that are globally available.

To add a control variable to the table, click the **Add** button (  $\frac{1}{2}$  ). To remove a control variable and its values from the table, click the **Delete** button ( **X** ).

# Adding a Sensitivity Interface to a Model

You can add a **Sensitivity** interface when creating a new model or at any time during modeling. For a new model, select physics interfaces as the second step in the **Model Wizard** (after specifying the space dimension). In an active model, right-click the model node in the **Model Builder** and select **Add Physics**. In both cases, the **Add Physics** page appears with a list of interfaces.

- I Expand the Mathematics>Optimization and Sensitivity node in the list of physics interfaces.
- 2 Select Sensitivity ()).
- 3 Click the Add Selected button ( -) underneath the list to add the selected physics interface to the model. The physics interface then appears in the list under Selected physics.
- 4 When you are ready click the Next button ( ⇒) in the upper-right corner of the Model Wizard window.
- **5** Optionally, choose a study type for the sensitivity analysis on the **Select Study Type** page.

6 Click the Finish button (  $\swarrow$  ) in the upper-right corner of the Model Wizard window.

You also need to add a **Sensitivity** subnode to the **Solver** node in the solver configuration to fully define the sensitivity analysis.

# 17

# Multiphysics Modeling

This chapter discusses Creating Multiphysics Models using COMSOL Multiphysics for multiphysics modeling and coupled-field analyses. It describes various ways to build multiphysics models and includes an overview of the available predefined multiphysics interfaces in COMSOL Multiphysics and the add-on modules.

# Creating Multiphysics Models

In this section:

- Multiphysics Modeling Approaches
- Using Predefined Multiphysics Interfaces
- Acoustics
- Fluid Flow
- Heat Transfer
- Plasma
- Structural Mechanics
- Adding Physics Sequentially
- Building a Multiphysics Model Directly
- Adding Multiphysics Couplings
- Deleting Physics Interfaces

# Multiphysics Modeling Approaches

The ability to create multiphysics models—those with more than one type of physics or equation such as coupled-field problems—is one of COMSOL Multiphysics' most powerful capabilities. In such a model, the software can solve all the equations, taken from various areas of physics, as one fully coupled system.

Within COMSOL Multiphysics you can choose from several ways to approach multiphysics modeling and coupled-field analysis.



See Marangoni Convection for an example of combining the Laminar Flow and Heat Transfer in Fluids interfaces (Model Library path COMSOL_Multiphysics/Multiphysics/marangoni_convection).

# Using Predefined Multiphysics Interfaces

COMSOL Multiphysics and the add-on modules provide a number of predefined multiphysics interfaces. They appear in the **Model Wizard**'s list of physics interfaces, in folders with the names in the Category/Folder column in Table 17-1. The

multiphysics interfaces includes the functionality of two or more physics interfaces with additional features for the multiphysics couplings. Default settings provide the typical field couplings for the multiphysics application. The available multiphysics couplings vary depending on the installed modules (see Table 17-1 for details).

CATEGORY/ FOLDER	NAME	SPACE DIMENSION	REQUIRED MODULES	OPTIONAL MODULES
Acoustics	Acoustic-Solid Interaction	2D, 2D Axi, 3D	Acoustics	Structural Mechanics, MEMS
Acoustics	Acoustic-Shell Interaction	2D and 3D	Acoustics and Structural Mechanics	
Acoustics	Acoustic-Piezoelectric Interaction	2D, 2D Axi, 3D	Acoustics	Structural Mechanics, MEMS
Acoustics	Elastic Waves and Poroelastic Waves	2D, 2D Axi, 3D	Acoustics	
Acoustics	Aeroacoustics with Flow	All	Acoustics	
Fluid Flow	Fluid-Structure Interaction	2D, 2D Axi, 3D	Structural Mechanics or MEMS	CFD
Fluid Flow	Non-Isothermal Flow/ Conjugate Heat Transfer	2D, 2D Axi, 3D	CFD or Heat Transfer	
Fluid Flow	Free and Porous Media Flow	2D, 2D Axi, 3D	Batteries & Fuel Cells, CFD, Chemical Reaction Engineering, Subsurface Flow, or Microfluidics	
Heat Transfer	Joule Heating	2D, 2D Axi, 3D	None	AC/DC, Heat Transfer, MEMS
Heat Transfer	Induction Heating	2D, 2D Axi, 3D	AC/DC	Heat Transfer
Heat Transfer	Microwave Heating	2D, 2D Axi, 3D	RF	Heat Transfer
Heat Transfer	Heat Transfer with Surface-to-Surface Radiation	2D and 3D	Heat Transfer	

TABLE 17-1: PREDEFINED MULTIPHYSICS COUPLINGS

CATEGORY/ FOLDER	NAME	SPACE DIMENSION	REQUIRED MODULES	OPTIONAL MODULES
Heat Transfer	Heat Transfer with Radiation in Participating Media	2D and 3D	Heat Transfer	
Plasma	Capacitively Coupled Plasma	All	Plasma	
Plasma	DC Discharge	All	Plasma	
Plasma	Inductively Coupled Plasma	2D, 2D Axi, 3D	Plasma, AC/DC	
Plasma	Microwave Plasma	2D, 2D Axi, 3D	Plasma, RF	
Structural Mechanics	Electromechanics	2D, 2D Axi, 3D	MEMS	AC/DC
Structural Mechanics	Thermal Stress	2D, 2D Axi, 3D	Structural Mechanics or MEMS	Heat Transfer
Structural Mechanics	Joule Heating and Thermal Expansion	2D, 2D Axi, 3D	Structural Mechanics or MEMS	Heat Transfer, AC/DC
Structural Mechanics	Piezoelectric Devices	2D, 2D Axi, 3D	Structural Mechanics, MEMS, or Acoustics	
Structural Mechanics	Poroelasticity	2D, 2D Axi, 3D	Subsurface Flow	

TABLE 17-1: PREDEFINED MULTIPHYSICS COUPLINGS

The predefined multiphysics interfaces include all features in the optional modules if your license includes them; otherwise they include the corresponding but more limited physics interface in COMSOL Multiphysics or the required module. The couplings are identical in both cases, but the optional modules typically offer additional functionality in other areas. These predefined multiphysics interfaces are quick entry points for common multiphysics applications. It is possible to create the same couplings using any of the other methods for multiphysics modeling, and you can continue to add, modify, disable, and remove physics interfaces in a model that you start using one of the predefined multiphysics interfaces. If you want to add additional physics interfaces in the **Model Builder**, right-click the model node, choose **Add Physics** and then use the **Model Wizard** that opens.

# Acoustics

The **Acoustics** branch ( ))) contains a variety of multiphysics interfaces all requiring the Acoustics Module. For more information see the *Acoustics Module User's Guide*.

<mark>т</mark>р

For more information all the available interfaces with the Acoustics Module, see the specification chart on the COMSOL website: www.comsol.com/products/specifications/acoustics.

#### ACOUSTIC-SOLID INTERACTION

The Acoustic-Solid Interaction, Frequency Domain interface ( ) for acoustic-structural interaction is available with the Acoustics Module. This multiphysics interface combines pressure acoustics and solid mechanics and connects the acoustics pressure in a fluid domain with the structural deformation in a solid domain. Special interface conditions define the fluid loads on the solid domain and the structural acceleration's effect on the fluid. There is also a Acoustic-Solid Interaction, Transient () version of the interface available

# ACOUSTIC-SHELL INTERACTION

The Acoustic-Shell Interaction, Frequency Domain () interface for acoustic-structural interaction also requires the Structural Mechanics Module license. This multiphysics interface combines Pressure Acoustics and the Shell interface to connect the pressure acoustics in a fluid domain with the structural deformation of shell boundary. There is also a Acoustic-Shell Interaction, Transient () version of the interface available.

#### ACOUSTIC-PIEZOELECTRIC INTERACTION

The Acoustic-Piezoelectric Interaction, Frequency Domain ()) interface for acoustic-piezoelectric interaction in available with the Acoustics Module. This multiphysics interface combine Pressure Acoustics and the Piezoelectric Devices interface to connect the pressure acoustics in a fluid domain with a piezoelectric solid. There is also a Acoustic-Piezoelectric Interaction, Transient ()) version of the interface available.

## ELASTIC WAVES AND POROELASTIC WAVES

The **Elastic Waves** multiphysics interface (*m*) combines Pressure Acoustics and Solid Mechanics to connect the fluid pressure with the structural deformation in solids. The **Poroelastic Waves** (*m*) version of the interface models linear elastic waves in porous elastic materials damped by a pore fluid.

#### **AEROACOUSTICS WITH FLOW**

The **Aeroacoustics with Flow, Frequency Domain** interface ()) combines Aeroacoustics and Compressible Potential Flow and connects the result from compressible potential flow simulation with the Aeroacoustic model. It is where calculations of density and mean flow velocity potential in an ideal barotropic, irrotational fluid at constant entropy is combined with aeroacoustic modeling. There is also a **Aeroacoustics with Flow, Transient** ()) version of the interface available.

Fluid Flow



For more information about all the available fluid flow interfaces, see the specification chart on the COMSOL website:

www.comsol.com/products/specifications/fluid-flow

Various subbranches of the **Fluid Flow** branch ( $\gg$ ) have multiphysics interfaces available.

#### FLUID-STRUCTURE INTERACTION (FSI)

The **Fluid-Structure Interaction** interface (*for fluid-structure interaction* (FSI) combines fluid flow with structural mechanics, using a moving mesh to capture the fluid movement. The interface provides a predefined interface condition for the solid-fluid boundary. For more information and example models, see the *Structural Mechanics Module User's Guide* or the *MEMS Module User's Guide*.

#### FLOW WITH VARIABLE DENSITY-NON-ISOTHERMAL FLOW

The CFD Module and the Heat Transfer Module include the laminar and turbulent Non-Isothermal Flow/Conjugate Heat Transfer predefined multiphysics interface. In the CFD Module you select both laminar and turbulent non-isothermal flow in the **Non-Isothermal Flow** folder (5); in the Heat Transfer Module, you select a laminar or turbulent non-isothermal flow in the **Conjugate Heat Transfer** folder (5). For more information about these predefined couplings, see the *CFD Module User's Guide* or the *Heat Transfer Module User's Guide*.

#### FREE AND POROUS MEDIA FLOW

The **Free and Porous Media Flow** interface (**[**]) combines the Laminar Flow interface and the Brinkman Equations interface to model fluid flow in systems with both free and porous media flow and solving for the velocity field and pressure. <mark>⊕</mark> Tip For more information about all the available heat transfer interfaces, see the specification chart on the COMSOL website:

www.comsol.com/products/specifications/heat-transfer

The multiphysics interfaces found under the **Heat Transfer>Electromagnetic Heating** branch () couple electromagnetic fields and heat transfer:

There is also the Heat Transfer with Radiation in Participating Media multiphysics interface available under the **Heat Transfer>Radiation** branch (******), and the **Conjugate Heat Transfer** interfaces (described in Fluid Flow).

# JOULE HEATING

The Joule Heating Interface ( **(**), combines all feature from the Electric Currents interface with the Heat Transfer interface for modeling of *Joule heating* (*resistive heating* or *ohmic heating*). The interaction is coupled in both directions:

- The resistive heating appears as a heat source in the default **Electromagnetic Heat Source** node.
- The default setting is to use the value for the electrical conductivity  $\sigma$  from the material. By selecting **Linearized resistivity** from the  $\sigma$  list, the following temperature-dependent expression describes the electrical conductivity:  $1/(\rho_0(1 + \alpha(T T_{ref}))))$ , where *T* is the dependent variable for temperature from the heat transfer part, which automatically appears as a model input. By default, the values for  $\rho_0$  (resistivity at reference temperature),  $\alpha$  (temperature coefficient), and  $T_{ref}$  (reference temperature) are taken from the material. These settings are built into the Joule Heating Model node, which is the central feature in the Joule Heating interface.

You can use a stationary or time-dependent study.



Joule Heating of a Microactuator: Model Library path COMSOL_Multiphysics/Multiphysics/thermal_actuator_jh

#### INDUCTION HEATING

The **Induction Heating** interface ( $\mu_{n}$ ) combines the features of the Induction Currents interface with those of the Heat Transfer interface. The predefined interaction adds the resistive heating from the induction currents as a heat source.

For more information, see the AC/DC Module User's Guide.

#### MICROWAVE HEATING

The **Microwave Heating** interface (**MIC**) combines the features of an Electromagnetic Waves interface from the RF Module with those of the Heat Transfer interface. The predefined interaction adds the resistive heating from the electromagnetic waves as a heat source.

For more information, see the RF Module User's Guide.

#### HEAT TRANSFER WITH SURFACE-TO-SURFACE RADIATION

The Heat Transfer with Surface-to-Surface Radiation interface ( **j**, ) combines the Surface-to-Surface Radiation and Heat Transfer interfaces to model surface-to-surface radiation combined with heat transfer in solids and fluids. Solves for radiative intensity and temperature fields.

#### HEAT TRANSFER WITH RADIATION IN PARTICIPATING MEDIA

The **Heat Transfer with Radiation in Participating Media** interface (**K**) combines the Radiation in Participating Media and Heat Transfer interfaces to model radiative heat transfer inside a participating medium combined with heat transfer in solids and fluids. Solves for radiative intensity and temperature fields.

# Plasma

g

Τīp

The multiphysics interfaces found under the **Plasma** branch ( 🚱 ) all require the Plasma Module. For more information see the *Plasma Module User's Guide*.

For more information all the available interfaces with the Plasma Module, see the specification chart on the COMSOL website: www.comsol.com/products/specifications/plasma.

#### CAPACITIVELY COUPLED PLASMA

The **Capacitively Coupled Plasma** ( ) couples the Drift Diffusion, Heavy Species Transport, and Electrostatics interfaces into an integrated multiphysics interface to

study discharges that are sustained by a time-varying electrostatic field, solving for the electric potential and electron density.

# DC DISCHARGE

The **DC Discharge** (**III**) interface couples the Drift Diffusion, Heavy Species Transport, and Electrostatics interfaces. Used to study discharges sustained by a static electric field and solving for the electric potential and electron density. Townsend coefficients can be used instead of rate coefficients for electron source terms.

#### INDUCTIVELY COUPLED PLASMA

The **Inductively Coupled Plasma** () couples the Drift Diffusion, Heavy Species Transport, Electrostatics, and Magnetic Fields interfaces, and used to study discharges sustained by induction currents and solving for the magnetic vector potential, electric potential, and electron density. The induction currents are solved for in the frequency domain. This interface also requires the AC/DC Module.

#### MICROWAVE PLASMA

The **Microwave Plasma** () interface couples the Drift Diffusion, Heavy Species Transport, Electrostatics and Electromagnetic Waves interfaces and studies discharges sustained by electromagnetic waves (wave-heated discharge). The electromagnetic waves are solved for in the frequency domain and solving for the electric field, electric potential, and electron density. This interface also requires the RF Module.

# Structural Mechanics

For more information about all the available structural mechanics interfaces, see the specification chart on the COMSOL website:

www.comsol.com/products/specifications/structural-mechanics

The **Structural Mechanics** branch (=) has a variety of multiphysics interfaces, which all require additional module licenses.

#### THERMAL STRESS

g

Tiþ

The **Thermal Stress** interface ( $\rightleftharpoons$ ) combines solid mechanics with heat transfer for modeling of thermal expansion. It combines the features of a Solid Mechanics interface with those of a Heat Transfer interface.

The interaction is a one-way coupling using the temperature from the heat transfer interface to define the strain temperature.

You can use a steady-state or time-dependent study. For the time-dependent study, the software by default treats the structural part as static (quasi-static transient behavior).

By default, COMSOL Multiphysics solves for the temperature and displacements simultaneously. For large problems, you can take advantage of the one-way coupling and solve the problem sequentially (unless there are thermal properties that depend on the displacements): first solve for temperature and then perform the stress-strain analysis using the computed temperature field from the heat transfer equation using a segregated solution scheme.

#### ELECTROMECHANICS

The **Electromechanics** interface () combines solid mechanics and electrostatics with a moving mesh to model the deformation of electrostatically actuated structures. It is also compatible with piezoelectric materials. This interface requires the MEMS Module. It combines the features of an Electrostatics interface and a Moving Mesh interface with those of a Solid Mechanics interface from the MEMS Module.

The interactions include the force contribution that results from the electromechanical (or Maxwell) stress tensor in the adjacent free space domains, which is added as a surface force at the external interfaces of an electromechanical solid.

You can select from several study types, including frequency domain, stationary, and time dependent. By default, COMSOL Multiphysics solves for the electric potential and displacements simultaneously.

#### JOULE HEATING AND THERMAL EXPANSION

The **Joule Heating and Thermal Expansion** interface ( $\stackrel{\bullet}{\longleftarrow}$ ) combines Joule heating and thermal expansion for modeling, for example, thermoelectromechanical (TEM) effects. This interface requires the Structural Mechanics Module or the MEMS Module. It combines the features of a Heat Transfer interface and an Electric Currents interface with those of a Solid Mechanics interface from the Structural Mechanics Module or the MEMS Module or the MEMS Module.

The interactions include Joule heating, which is fully coupled in both directions (see Joule Heating), and thermal expansion, which is a one-way coupling (see Thermal Stress).

You can select a steady-state or transient analysis (where the conductive media and solid mechanics equations are stationary). By default, COMSOL Multiphysics solves for the temperature, electric potential, and displacements simultaneously.

#### PIEZOELECTRIC DEVICES

The **Piezoelectric Devices** interface ( ) combines Solid Mechanics and Electrostatics for modeling on piezoelectric devices where all or some of the domains contain a piezoelectric material. The piezoelectric coupling can be on stress-charge or strain-charge form. You also have access to all solid mechanics and electrostatics functionality.

#### POROELASTICITY

The **Poroelasticity** interface ( ) is available in the Subsurface Flow Module and combines the Darcy's Law physics interface from that module with a structural mechanics physics interface from the Structural Mechanics Module, which is required in addition to the Subsurface Flow Module. The Poroelasticity predefined multiphysics coupling is useful for modeling poroelastic phenomena such as diffusion in elastic solids or elasticity of fluid-infiltrated porous solids. For more information, see the *Subsurface Flow Module User's Guide* or the *Geomechanics Module User's Guide*.

# Adding Physics Sequentially

With this approach you can verify that each type of physics or equation gives the expected results before adding more complexity to the model by adding another physics or coupling fields.

Use these steps to add one physics at the time:

- I Start a new model using the Model Wizard.
- **2** Draw the geometry.
- **3** Define the physics settings.
- **4** Solve and visualize the results.

Then add another physics interface:

- 5 Right-click the model node in the Model Builder and choose Add Physics.
- 6 Add one or more new physics interfaces using the Model Wizard.
- 7 On the Select Study Type page, you can add a new study or replace the current study. Select (the default) or clear the Deactivate added physics in other studies check box

to control whether the new physics that you add should be active in other studies or not.

**8** Add and modify feature nodes in the physics interfaces, including couplings between the physics.

# Building a Multiphysics Model Directly

Another approach is to include multiple physics interfaces when you start creating the model in the Model Wizard:

- I On the Add Physics page, select an physics interface for the model.
- 2 Click the Add Selected button ( + ) underneath the list of available physics interfaces. The physics interface then appears in the list under Selected Physics.
- **3** If needed, the names of the dependent variables can be changed. For some physics interfaces and mathematical interfaces you can also adjust the number of dependent variables.
- 4 Continue selecting physics interfaces and adding them to the list under **Selected Physics** by clicking the **Add Selected** button.
- 5 When done, continue in the Model Wizard by clicking the Next button ( ⇒ ) at the top of the Add Physics page.

# Adding Multiphysics Couplings

*Model inputs* appear in the equation model node's **Model Inputs** section. Model inputs are fields such as temperature and velocities that act as inputs for material models and model equations. They appear in the **Model Inputs** section if a material is defined so that a material property becomes a function of the temperature, for example. The program automatically connects the model input to an existing field (dependent variable) within the physics interface (but not to available fields in other physics interfaces).

With more than one physics interface in the model, coupling of the fields is easy: all applicable fields that can serve as inputs in another physics interface automatically appears in the other physics interface's settings window's **Model Inputs** section. For example, with a Heat Transfer (ht) interface for heat transfer in fluids and a Laminar Flow (spf) interface, you can select **Velocity field (spf/fp1)**, which the **Fluid Properties I {fp1}** node in the **Laminar Flow** branch defines, from the **Velocity field** list in the **Model Inputs** section of the **Heat Transfer in Fluids** node's settings window. For a coupling in the other direction (if you use temperature-dependent fluid properties, for example),

you can select **Temperature (ht/fluid1)**, which the **Heat Transfer in Fluids I {fluid1}** node in the **Heat Transfer** branch defines, from the **Temperature** list in the **Model Inputs** section of the **Fluid Properties** node's settings window.

A list in the **Model Inputs** section becomes grayed out if the physics interface itself defines the field because it is then automatically connected to that field. For example, with a Heat Transfer (ht) interface for heat transfer in fluids the **Temperature** list is grayed out in the **Heat Transfer in Fluids I {fluid1}** node. This automatic connection selects the **Temperature (ht/fluid1)** field because it is defined by the Heat Transfer interface. As long as the list is grayed out, you cannot change it. If you want to use another temperature field or an expression, you first make the list editable by clicking the **Make All Model Inputs Editable** button (**[]**).

In the case that you want to use another expression for these model inputs, select **User defined** to enter a user-defined value or expression in the associated text field.

# Deleting Physics Interfaces

To delete a physics interface from a model:

- I Select the main feature node for the physics interface under the model node in the **Model Builder**.
- 2 Right-click and choose **Delete** from the context menu or press the Delete key.
- 3 Click OK.

# 8

# The Deformed Geometry and Moving Mesh Interfaces

This chapter explains how to use the modeling interfaces that control mesh deformation and are found under the **Mathematics>Deformed Mesh** branch (*Proceeding Processing Proces* 

In this chapter:

- Deformed Mesh Fundamentals
- The Moving Mesh Interface
- The Deformed Geometry Interface

# Deformed Mesh Fundamentals

In this section:

- About Deformed Meshes
- Deformed Geometry vs. Moving Mesh
- Arbitrary Lagrangian-Eulerian Formulation (ALE)
- Frames
- Mathematical Description of the Mesh Movement
- · Derivatives of Dependent Variables
- Smoothing Methods
- Limitations of the ALE Method
- · Tips for Modeling Using Deformed Meshes
- Remeshing a Deformed Mesh
- Remeshing a Deformed Geometry—A Quick Example

# About Deformed Meshes

A deformed mesh can be useful if the boundaries of your computational domain are moving in time or deform as a function of some parameter. The deformation can also be physics induced—for example, depend on computed velocities or solid deformation. The point is that a new mesh need not be generated for each configuration of the boundaries—instead, the software perturbs the mesh nodes so they conform with the moved boundaries.

In COMSOL Multiphysics, control the movement of the interior nodes in these ways:

By propagating the moving boundary displacement throughout the domain to
obtain a smooth mesh deformation everywhere. This is done by solving PDEs for
the mesh displacements (a Laplace, Winslow, or hyperelastic smoothing PDE, or
one borrowed from continuum mechanics) with boundary conditions given by the
movement of the boundaries.

- By specifying an explicit formula for the mesh deformation. The formula can make use of other dependent variables, such as the displacement components of structural mechanics.
- By leaving the control of the mesh displacement to a Solid Mechanics interface, which has built-in deformed mesh functionality, or to a multiphysics interface of which Solid Mechanics is part.

# Deformed Geometry vs. Moving Mesh

There are two physics interfaces implementing different types of deformed meshes: the Deformed Geometry interface ( $\blacksquare$ ) and the Moving Mesh interface ( $\blacksquare$ ). Both are found under the **Mathematics>Deformed Mesh** branch ( $\blacksquare$ ) in the **Model Wizard**.

In the Deformed Geometry interface, the material does not follow the change in shape. Deformation of the geometry boundaries therefore corresponds to addition or removal of material. In the Moving Mesh interface, solid materials follow the mesh deformation and deform in the same way as the mesh. Fluids and gases, on the other hand, are added or removed so as to always fill the current shape of the domain—any effects of compression or expansion must be introduced explicitly into the equations.

- Use a Deformed Geometry interface to study the behavior of different shapes of an original object. In a Deformed Geometry interface the material never follows a perturbation of the shape. The total mass of the first shape is not the same as the mass for the second, perturbed, geometry. Any deformation can be regarded as removal or addition of material.
- Use a Moving Mesh interface to study how a solid object deforms as the results of physical load, and how fluids in adjacent domains react to displacement of the domain boundaries—for example, how a tank impeller moves a fluid, or how a MEMS switch moves under the influence of an electric field. Using the Moving Mesh interface, a solid material follows the mesh deformation. A movement of a boundary can therefore be regarded as bending or punching the original object. Undeformed and deformed solid objects have the same mass, but the total amount of fluid in an a domain whose boundaries deform may change.

# Arbitrary Lagrangian-Eulerian Formulation (ALE)

The partial differential equations of physics are usually formulated either in a *spatial* coordinate system, with coordinate axes fixed in space, or in a *material* coordinate system, fixed to the material in its reference configuration and following the material

as it deforms. The former is often referred to as an *Eulerian* formulation, while the latter is a *Lagrangian* formulation.

Structural mechanics and other fields of physics dealing with a possibly anisotropic, solid, material are most conveniently simulated using material coordinates. The Lagrangian formulation makes the anisotropic material properties independent of the current spatial orientation of the material.

If, on the other hand, the focus is on simulating the physical state at fixed points in space, an Eulerian formulation is usually more convenient. In particular, when liquids and gases are involved, it is often unreasonable to follow the state of individual material particles. Rather, the quantities of interest are pressure, temperature, concentration, etc., at fixed positions in space.

An inherent problem with the pure Eulerian formulation is that it cannot handle moving domain boundaries, since physical quantities are referred to fixed points in space, while the set of spatial points currently inside the domain boundaries changes with time. Therefore, to allow moving boundaries, the Eulerian equations must be rewritten so as to describe all physical quantities as functions of some coordinate system in which the domain boundaries are fixed. The finite element mesh offers one such system: the *mesh* coordinates.

In the mesh coordinate system, the domain is fixed, and there is a one-to-one map from the mesh coordinates to the current spatial configuration of the domain. Otherwise, the mesh coordinate system can be defined freely and separately from both the spatial and material systems. The natural choice is to let the mesh coordinate system, at least initially, coincide with the *geometry* coordinates. This follows immediately from the way meshes are created, and means that points in the domain are identified by their position in the original geometry.

As the domain—and mesh—deforms, the map from mesh coordinates to spatial coordinates can become increasingly ill-conditioned. Before the degradation of the mesh mapping goes too far you can, through a remeshing operation, stop the simulation, create a new mesh in the current configuration of the domain, and map all quantities to the new mesh. When the simulation is restarted, points in the domain are internally identified by their new mesh coordinates, which coincide with the spatial coordinates at the state where the simulation was stopped. Therefore, the geometry and mesh coordinates of a given point will differ after remeshing the deformed geometry.

Rewriting physics equations in this way, on a freely moving mesh, results in an *arbitrary Lagrangian-Eulerian* (ALE) method. In the special case when the map

from mesh coordinates to spatial coordinates follows the material deformation, a Lagrangian method is recovered. Similarly, when the map is an identity map, the ALE method becomes entirely Eulerian.

The ALE method is therefore an intermediate between the Lagrangian and Eulerian methods, and it combines the best features of both—it allows moving boundaries without the need for the mesh movement to follow the material.

# Frames

COMSOL Multiphysics refers to the spatial, material/reference, geometry and mesh coordinate systems described above as *spatial frame*, *material frame* (reference frame), *geometry frame*, and *mesh frame*, respectively. Physics can be formulated on the spatial frame or on the material frame, depending on whether it is more convenient to interpret the equations as Eulerian or Lagrangian, respectively. It is not possible to use the geometry and mesh frames and their associated coordinates to formulate physics because they are neither connected to the material nor to the true Euclidean space.

Conceptually, all four frames always exist, but all or some of them may point to the same actual coordinate system. It is the actual coordinate system that decides the names of the independent variables (the coordinate names like x, y, z or r, phi, z). Before adding a Moving Mesh or Deformed Geometry interface to a model, all four frames coincide and use the spatial coordinate names. Also all interfaces based on solid mechanics include moving mesh functionality and by default behave much in the same way as a Moving Mesh interface.

When a Moving Mesh or Solid Mechanics interface is added, the spatial frame is separated from the material frame, which is given a new set of independent variable names (by default capital X, Y, Z or R, PHI, Z). From this point, Eulerian and Lagrangian formulations behave differently since they, among other things, define derivatives with respect to different sets of independent variables.

The geometry frame and the material frame share coordinate system until a Deformed Geometry interface is added. At that point, a new geometry coordinate system is created and given a new set of independent variable names (by default Xg, Yg, Zg or Rg, PHIg, Zg). The new geometry frame refers to the geometry as it is represented by the Geometry Sequence. By inserting a nontrivial transformation from geometry coordinates to material coordinates, the shape of the geometry can be effectively changed without having to create a new mesh. This can in some situations be useful as

a means of parameterizing the geometry, for example before performing optimization or sensitivity analysis.

Using Deformed Geometry affects both Eulerian and Lagrangian physics in the same way. The reason is that the Deformed Geometry interface controls the material frame in relation to the geometry frame. Unless there is also a Moving Mesh or Solid Mechanics interface present, the material frame and the spatial frame still refer to the same coordinate system. The three frames refer to three different sets of coordinates only when there is both a Deformed Geometry and some Moving Mesh interface active in the model.

The geometry frame and the mesh frame coincide until a manual or automatic remeshing operation is performed. At that point, a new mesh is created in the original geometry together with a new set of coordinates (independent variable typically Xm, Ym, Zm or Rm, PHIm, Zm). The original geometry coordinates are mapped and stored together with the new mesh such that any Deformed Geometry interface can still define the material frame relative to the original geometry frame.

To avoid confusion, note that:

- The *spatial frame* is the usual, fixed, global, Euclidean coordinate system with the *spatial coordinates* (*x*, *y*). In the ALE context, the spatial coordinate system as such is fixed while the spatial coordinates (*x*, *y*) of each material point and mesh node can be functions of time. Therefore, it is correct to refer to the model as having a *moving mesh*.
- The *material frame* is a coordinate system which identifies material points by their spatial coordinates (X, Y) in some—actual or imagined—reference configuration. Think of the material coordinate system as having been printed on the material in the reference configuration such that it follows it during deformation. It is therefore in general curvilinear and cannot be used directly to measure true distances and angles. See also Figure 18-1 and Figure 18-2
- The *geometry frame* is a coordinate system which identifies points by their spatial coordinates  $(X_g, Y_g)$  in the original geometry. It is often natural to use the original geometry also as reference state to define material coordinates. Therefore, the geometry frame and material frame usually coincide. The only exception is when a Deformed Geometry interface is used to deform or parameterize the original geometry.
- The *mesh frame* is a coordinate system used internally by the finite element method. It identifies mesh points by their spatial coordinates  $(X_m, Y_m)$  at the time the mesh was created. The original mesh is always created based on the original geometry.

Therefore, the mesh frame coincides with the geometry frame until a new mesh is created in the—then current—deformed configuration.



Figure 18-1: An undeformed mesh. In the reference configuration, which may be the actual configuration at a reference time or a hypothetical state, the spatial frame (x, y) and the material frame  $(X, \Upsilon)$  coincide.



Figure 18-2: After deformation of the material, the spatial frame (x, y) remains the same, while the material coordinate system (X, Y) has been deformed, following the material. Meanwhile, the material coordinates of each material point remains the same, but its spatial coordinates have changed.

Mathematical Description of the Mesh Movement

Though moving meshes are also possible in 3D, consider a 2D geometry for simplicity, where the spatial and material frame coordinates are called (x, y) and (X, Y), respectively. Let  $(X_0, Y_0)$  be the spatial coordinates of a mesh node in the initial material configuration. The spatial coordinates  $(x_0, y_0)$  of the same mesh node at some other time, t, are then given by the functions

$$x_0 = x(X_0, Y_0, t), \quad y_0 = y(X_0, Y_0, t)$$
 (18-1)

These functions can be either explicit transformations (expressions) or be the solution to a mesh smoothing equation. The mesh node's material coordinates  $(X_0, Y_0)$  may in turn bee seen as functions of an underlying system of geometry coordinates  $(X_g, Y_g)$  and a parameter, p, such that

$$X_0 = X(X_g, Y_g, p), \qquad Y_0 = Y(X_g, Y_g, p) \tag{18-2}$$

with similar options for the transformations. Obviously, the transformations can also be chained such that  $(x_0, y_0)$  are seen as functions of  $(X_g, Y_g)$ , t, and p.

Introducing a vector notation for the coordinates:

- Spatial coordinates  $\mathbf{x} = [x, y, z]$
- Material coordinates  $\mathbf{X} = [X, Y, Z]$
- Geometry coordinates  $\mathbf{X}_g = [X_g, Y_g, Z_g]$
- Mesh coordinates  $\mathbf{X}_m = [X_m, Y_m, Z_m]$

the general relation between the frames can be written

$$\begin{split} \mathbf{x} &= \mathbf{f}(\mathbf{X},t) = \mathbf{f}(\mathbf{g}(\mathbf{X}_g,p),t) \\ \mathbf{X} &= \mathbf{g}(\mathbf{X}_g,p) \\ \mathbf{X}_m &= \mathbf{h}(\mathbf{X}_g,i) \end{split}$$

where  $\mathbf{f}$ ,  $\mathbf{g}$ , and  $\mathbf{h}$  are vector valued functions, t is time, p is some set of parameters controlling a Deformed Geometry interface, and i is number of times the geometry has been remeshed. From the physics point of view, the domain is fixed in the geometry frame coordinates  $\mathbf{X}_{g}$ , which are therefore seen as constant in the above formulas.

From the finite elements' point of view, it is instead the mesh frame coordinates  $\mathbf{X}_m$  which are constant and  $\mathbf{X}_g = \mathbf{h}^{-1}(\mathbf{X}_m, i)$ . Therefore when assembling the finite-element matrices, the relation actually used is

$$\mathbf{x} = \mathbf{f}(\mathbf{g}(\mathbf{h}^{-1}(\mathbf{X}_m, i), p), t)$$

where **f** is a unit map if the spatial and material frames coincide, **g** is a unit map if the material and geometry frames coincide, and the inverse mapping  $\mathbf{h}^{-1}(\mathbf{X}_m, i)$  is initially a unit map and then updated by interpolation after each remeshing operation.

In addition to the different sets of coordinate variables, some other geometric variables that the software defines are available for both the spatial and the material frames (see Geometric Variables).

# Derivatives of Dependent Variables

When solving for some physical quantity, u, COMSOL Multiphysics always stores the solution for a fixed set of mesh nodes. That is, the dependent variable u is treated internally as a function of the mesh coordinates,  $u(X_m, Y_m, t)$ . The essence of the ALE system is that it allows treating the physical quantities as functions of the material or spatial coordinates, u(X, Y, t) or u(x, y, t), instead. This transformation is possible only if the mappings given by Equation 18-1 and Equation 18-2 are invertible.

# SPATIAL DERIVATIVES

With respect to spatial differentiation, each dependent variable is treated as a function of one or more of the frames present in the model. Most physics interfaces are based on a formulation which is either Eulerian or a Lagrangian. They therefore lock their dependent variables to the spatial or the material frame, respectively. A few physics interfaces can formulate their equations in either material or spatial frame, as set by the **Frame type** setting found under **Discretization** in the Physics interface settings.

For a dependent variable u, there is typically two possibilities:

- The variable is defined on the spatial frame and its derivatives with respect to the spatial coordinates are denoted ux and uy in the software.
- The variable is defined on the material frame and its derivatives with respect to the material coordinates are denoted uX and uY in the software.

In a few cases, both sets of derivatives exist, but normally in COMSOL Multiphysics it is only possible to use one of these types of derivatives of each dependent variable.

#### TIME DERIVATIVES

When using ALE, the software defines two kinds of time derivatives:

• The common *frame time derivative*, valid for a fixed point in the frame on which the variable is defined. This derivative is always denoted ut in the software. For example, for u defined on the spatial frame:

$$u_t(x_0, y_0) = \frac{\partial u}{\partial t} \bigg|_{x_0, y_0}$$

• The *mesh time derivative*, which is taken for a fixed point in the mesh:

$$u_{\text{TIME}}(X_m, Y_m) = \frac{\partial u}{\partial t}\Big|_{X_m, Y}$$

This derivative is denoted uTIME in the software. Since internally, everything is formulated on the mesh frame, the mesh time derivative is the one computed by the solvers and stored in the solution vector.

The two derivatives are related by the chain rule:

$$u_t = u_{\text{TIME}} - u_x x_{\text{TIME}} - u_y y_{\text{TIME}}$$

where  $(x_{\text{TIME}}, y_{\text{TIME}})$  is the mesh velocity. The mesh time derivative is often less important from the user point of view because its value depends on the mesh movement, which in itself has no physical significance. However, for the special case when the mesh follows the material's motion, the mesh time derivative is physically significant and is also called the *material time derivative*.

# Smoothing Methods

In the domains with free displacement, the Moving Mesh interface solves an equation for the mesh displacement. This equation smoothly deforms the mesh given the constraints placed on the boundaries. Choose between *Laplace smoothing*, *Winslow smoothing*, and *hyperelastic smoothing*. To specify the smoothing methods, use the **Mesh smoothing type** list in the **Free Deformation Settings** section of the **Moving Mesh** or **Deformed Geometry** node. To see how these smoothing methods differ, let x and y be the spatial coordinates of the spatial frame, and let X and Y be the reference coordinates of the material frame.

• If Laplace smoothing is selected, the software introduces deformed mesh positions *x* and *y* as degrees of freedom in the model. In the static case, it solves the equation

$$\frac{\partial^2 x}{\partial X^2} + \frac{\partial^2 x}{\partial Y^2} = 0$$

and in the transient case it solves the equation

$$\frac{\partial^2}{\partial X^2} \frac{\partial x}{\partial t} + \frac{\partial^2}{\partial Y^2} \frac{\partial x}{\partial t} = 0$$

Similar equations hold for the y coordinate.

• If Winslow smoothing is selected, the software solves the equation

$$\frac{\partial^2 X}{\partial x^2} + \frac{\partial^2 X}{\partial y^2} = 0$$

and does the same for Y. Equivalently, X and Y satisfy Laplace equations as functions of the x and y coordinates.

• The hyperelastic smoothing method searches for a minimum of a mesh deformation energy inspired by neo-Hookean materials:

$$W = \int_{\Omega} \frac{\mu}{2} (I_1 - 3) + \frac{\kappa}{2} (J - 1)^2 dV$$

where  $\mu$  and  $\kappa$  are artificial shear and bulk moduli, respectively, and the invariants J and  $I_1$  are given by

$$\begin{split} J &= \det(\nabla_X x) \\ I_1 &= J^{-2/3} \mathrm{tr}((\nabla_X x)^T \nabla_X x) \end{split}$$

Like the Winslow smoothing equation, hyperelastic smoothing is nonlinear. Both are therefore more expensive than the Laplace smoothing, but at the same time more robust. Hyperelastic smoothing can give a smoother result than Winslow, in particular in regions where the mesh is stretched.

# Limitations of the ALE Method

The following limitations apply to the ALE method in general and therefore to the Moving Mesh and Deformed Geometry interfaces:

- The connectivity of the mesh remains unchanged during the mesh deformation, which means that topological changes in the geometry are not allowed.
- When the mesh deformation becomes large, the quality of the mesh created by the smoothing equations can deteriorate. If this happens, the solver runs into convergence problems. Sometimes the warning **Inverted mesh element** displays in the **Progress** window for the solver, which means that a mesh element has (partially)

warped inside-out. Sometimes, introducing extra boundaries with explicit deformation inside the domains can help. A new mesh can be generated for the region covered by the deformed mesh and let the solver continue by deforming the new mesh; see the section Remeshing a Deformed Mesh. See also Tips for Modeling Using Deformed Meshes below.

• When using **Geometry shape order** larger than 1 in the Moving Mesh and Deformed Geometry interfaces, the mesh moving techniques often produce elements with distorted shapes. If there are warnings about inverted mesh elements, consider reducing the geometry shape order to 1. This, however, makes the geometry representation polygonal, which might affect accuracy. Note also that the measure of mesh quality does not capture these distorted shapes because it is computed from the positions of the corners of the mesh element (ignoring midside nodes, for instance).

# Tips for Modeling Using Deformed Meshes

When working with a deformed mesh to move things around, the computational mesh gets deformed. If the deformations become too large, some of the mesh elements might get inverted. This means that the accuracy of the solution deteriorates and eventually the solvers diverge due to an ill-conditioned system. Here are some tips how to keep the mesh under control:

- Try a different mesh. It is often preferable to start from a reasonably uniform mesh. One way to achieve this is to first select a coarse mesh in the predefined mesh size settings and then set a small maximum element size. Also, quad meshes and mapped meshes tend to perform better than triangles.
- Try a different smoothing type. Winslow smoothing is slightly slower, more memory consuming, and usually, but not always, more stable than Laplace smoothing. Hyperelastic smoothing sometimes works better than the other methods (in some fluid-structure interaction problems, for example). See Smoothing Methods for more information.
- If solving a time-dependent problem, try to solve the equations more accurately. This is achieved by reducing the absolute and the relative tolerances for the time-dependent solver.
- Help the mesh deformation by sliding the boundary elements along with the general movement of the mesh. This can be achieved by adding a prescribed deformation on the boundary that moves the boundary elements according to the deformation of some point in the model. Define a coupling operator under the

**Definitions** node and use it to couple the deformation from the point to the boundary mesh.

# Remeshing a Deformed Mesh

When the mesh deformation has become so large that the quality of the mesh is too bad, generate a new mesh for the deformed configuration and then continue the solution process. To do so, follow these steps:

- I Add a stop condition.
- 2 View the deformed mesh.
- 3 Copy the solution.

Note

See Also

- **4** Create a Deformed Configuration (*#?*).
- **5** Remesh the deformed configuration.
- 6 Continue solving with the new mesh.

To make the Deformed Configuration mesh represent the deformed geometry you must use a Moving Mesh (ALE) interface to model the mesh deformation or, for structural mechanics models, use the option in the study to include geometric nonlinearity (requires the Structural Mechanics Module, MEMS Module, or Acoustics Module).



• Solution Data Sets

The following sections contain details about these steps and some additional information.

#### ADDING A STOP CONDITION

Add a stop condition in the solver to make it stop when the mesh quality becomes too bad. If the time-dependent solver is used, do this by right-clicking, for example,

Study I>Solver Configurations>Solver I>Time Dependent Solver I and selecting Stop Condition from the context menu. If the parametric stationary solver is used, right-click for example Study I>Solver Configurations>Solver I>Stationary Solver I>Parametric I and select Stop Condition from the context menu. In the Stop expression field enter a scalar expression. For example, enter mod1.ale.relVolMin-0.01 to stop before the minimum relative element volume becomes less than 0.01. The solver stops when the stop expression becomes negative.

The following variables are useful for defining a stop condition and to monitor the mesh deformation:

- The minimum relative element volume, ale.relVolMin, must be > 0, otherwise the mesh elements are inverted. A suitable stop criterion is that minimum relative element volume must be larger than a small positive number.
- An alternative measurement is the minimum mesh quality, ale.minqual, must also be > 0; an acceptable mesh quality is typically larger than 0.1 (where the quality measure is a number between 0 and 1).
- The local relative element volume, ale.relVol, is a quantity that is plotted using a surface plot, for example, to show how the mesh elements become distorted in parts of the geometry. By plotting this quantity while solving, monitor how the mesh deforms and where it might become too distorted.

#### VIEWING THE DEFORMED MESH

View the deformed mesh in a surface plot or volume plot by selecting the **Wireframe** check box under **Coloring and Style**, and selecting **No refinement** in **Resolution** under **Quality**. In 3D, it is instructive to use an **Element scale factor** less than 1 under **Shrink Elements**.

#### COPYING THE SOLUTION

To keep the first solution, right-click **Study I>Solver Configurations>Solver I** and select **Solution>Copy**. The copied solution appears as a new solver **Copy 2** under **Solver Configurations**.

#### CREATING A DEFORMED CONFIGURATION

Create a deformed configuration by right-clicking, for example,

**Results>Data Sets>Solution 2** and selecting **Remesh Deformed Configuration** (*MP*). The deformed configuration appears as a new **Deformed Configuration 1** node (*MP*) under **Meshes**. The deformed configuration works as a new geometry but with restricted functionality. For example, its context menu only contains **Measurements, Export to File, Mesh, Delete, Rename, Properties,** and **Dynamic Help**. The settings window of the deformed configuration indicates which solution it was constructed from. Also change the parameter or time for which the deformed configuration was generated. If this is done, click the **Update** button to see the corresponding deformed configuration in the graphics.

#### REMESH THE DEFORMED CONFIGURATION

Expanding the **Deformed Configuration I** node ( ) shows that a new mesh sequence has been added beneath it. This mesh sequence only contains a **Size** node ( ) and a **Reference I** node ( ). The reference node refers to the original mesh sequence. This means that the new mesh sequence uses the same features as the original mesh sequence. Build the new mesh sequence by selecting **Build All** from its context menu or pressing F8. To make changes to the new mesh sequence before building it, right-click **Reference I** and select **Expand** ( ). Then the features from the original mesh sequence are copied to the new mesh sequence. Also add and remove features in the new mesh sequence. It several meshes are needed on the deformed configuration (for the multigrid solver, for example), add an additional mesh sequence by right-clicking **Deformed Configuration I** ( ) and selecting **Mesh** ( ).

#### CONTINUE SOLVING WITH THE NEW MESH

- In the settings window for the study step (for example, Study I>Step1: Time Dependent), use the Mesh list under Mesh Selection to select the new mesh sequence (Mesh 2, for example).
- 2 Change the **Times** list or the **Parameter values** list under **Study Settings** to include only the time or parameter corresponding to the deformed configuration plus the remaining times or parameters.
- 3 Change the initial value to be the last time or parameter of the previous solution. Do this by selecting Study I>Solver Configurations>Solver I>Dependent Variables. Under Initial Values of Variables Solved For, change Method to Solution and Solution to Solver I (for example), and select the appropriate time or parameter value in the list Time or Parameter value. Usually the Automatic alternative, which selects the last time or parameter value, suffices. Change the settings under Values of Variables Not Solved For similarly.
- 4 Solve for the remaining times or parameters by right-clicking Study 1 and selecting Compute.

#### **REMESHING SEVERAL TIMES**

Remesh several times by iterating the above steps. For each of the solver runs you get a copy of the solution (**Copy 2**, **Copy 3**, **Copy 4**, and so on) and a corresponding data set (**Solution 2**, **Solution 3**, **Solution 4**, and so on). In the plot group, select one of these data sets for results analysis and visualization.

#### ALTERNATIVE PROCEDURE USING SEVERAL STUDIES

The above procedure uses a single study that is modified for each solver run. To recompute the whole sequence of runs, an alternative that uses one study for each run is better. To do that, add a new study after meshing each deformed configuration. The copy solution step is not needed in this case. If the settings are changed in the study or its solver sequence, make these changes also in the new study. For example, the stop condition has to be added.

# Remeshing a Deformed Geometry—A Quick Example

This section describes the remeshing technique by building a simple model where a force bends a steel beam. This causes the mesh to become distorted. You must then remesh using the deformed geometry to be able to continue the simulation. To build this example model, use the following steps:

- I In the Model Wizard, select 2D on the Select Space Dimension page. Click Next ( 📥 ).
- 2 On the Add Physics page, select Structural Mechanics>Solid Mechanics (=). Click Add
   Selected ( + ).
- 3 Select Mathematics>Deformed Mesh>Moving Mesh (ﷺ). Click Add Selected ( ♣ ). Then click Next ( ➡).
- 4 On the Select Study Type page, select Preset Studies for Selected Physics> Time Dependent (1) for a time-dependent study.
- 5 Click Finish ( 🐋 ).
- Geometry Modeling
- 1 Right-click Geometry 1 in the Model Builder and select Rectangle to create a rectangle with a Width of 1.6, Height of 1.2, and with its lower-left corner coordinates (x, y) at (-0.6, -0.4).
- Create a second rectangle with a Width of 1.4, Height of 0.2, and its lower-left corner coordinates (x, y) at (-0.6, -0.2). Click Build All (

#### Materials

Use structural steel as the material for the beam. No material is required for the surrounding domain where only the moving mesh is active. To add the structural steel material:

- I Right-click Materials and select Open Material Browser ( 🏥 ).
- 2 In the Material Browser, right-click Built-In>Structural steel and select Add Material to Model.

3 In the settings window for the **Structural steel** node, select domain 1 in the list under **Geometric Scope** and then click the **Remove from Selection** button ( ) to remove the material from domain 1 (the air) and keep it in domain 2 (the beam) only.

# Physics Settings—Solid Mechanics

<mark>е</mark> Тір

- Click the Solid Mechanics node. In its settings window, select domain 1 in the list under Domain Selection and then click the Remove from Selection button ( ) to remove the solid mechanics physics from domain 1 (the air) and keep it in domain 2 (the beam) only. Also select Plane stress from the 2D approximation list and type 0.01 in the field for the thickness d.
- **2** Click the **Linear Elastic Material** node. It uses values from the structural steel material no settings need to be changed.
- **3** Add some damping to stabilize the transient solution. To do so, right-click the **Linear Elastic Material** node and select **Damping**.
- 4 Verify that **Rayleigh damping** is selected in the **Damping type** list (the default damping type). Type 1 in the  $\alpha_{dM}$  field for the mass damping parameter and 0.001 in the  $\beta_{dK}$  field for the stiffness damping parameter.

For the boundary conditions, the left side of the beam is fixed whereas the other boundaries are subject to a boundary load that increases with time.

- I Right-click the **Solid Mechanics** node and select **Fixed Constraint**. Select boundary 3 (the leftmost boundary and right-click to add it to the selection of boundaries for the **Fixed Constraint** node.
- 2 Right-click the Solid Mechanics node and select Boundary Load. Select boundaries 4, 6, and 8; then right-click to add them to the selection of boundaries for the Boundary Load node. Select Load defined as force per unit length from the Load type list and then enter a force that acts in the negative y direction (downward) and increases with time by setting the y component of  $F_L$  to -1[MN/m]*t[1/s], where the unit syntax [1/s] makes the time variable t dimensionless. Leave the x component of  $F_L$  at zero.

To obtain a correct solution, use the support for geometric nonlinearity (large deformations). This functionality is available only in the extended Solid Mechanics interface available in the Structural Mechanics Module and MEMS Module.

#### Physics Settings-Moving Mesh

- Click the Moving Mesh node. In its settings window, select domain 2 in the list under Domain Selection and then click the Remove from Selection button ( -) to remove the moving mesh from domain 2 (the beam) and keep it in domain 1 (the air) only.
- **2** In the air domain, the moving mesh is free to deform. Right-click the **Moving Mesh** node and select **Free Deformation**. Select domain 1 (the air) and right-click to add it to the selection of domains for the **Free Deformation** node.
- **3** The default boundary condition is that the mesh does not move at the boundaries: a **Prescribed Mesh Displacement** node with 0 as the prescribed mesh displacement in all directions.
- 4 Right-click the Moving Mesh node and select Prescribed Mesh Displacement to add another Prescribed Mesh Displacement node. Select boundaries 4, 6, and 8 (the moving boundaries of the beam) and right-click to add them to the selection of boundaries for the Prescribed Mesh Displacement node. Enter u in the dx field and v in the dy field to make the mesh displacement follow the displacements in the solid. The variables u and v are the *x*-direction and *y*-direction displacements in the Solid Mechanics interface, respectively.

#### Mesh Generation

- I Click the Mesh node, and then select Extra fine from the Element size list in the Mesh node's settings window.
- 2 Click the **Build All** button ( ) in the **Mesh** node's settings window toolbar to create the mesh.

#### Computing the Solution

To make the solver stop when the mesh elements become poor, first enable a stop condition. Also specify the time steps for the time dependent solution.

- I Click Study I>Step 1: Time Dependent. In the study step's settings window, type range(0,0.01,0.3) in the Times field. This means that the simulation starts at 0 s and runs until 0.3 s with steps of 0.01 s in the solution data.
- 2 Right-click the Study I node (22) and select Show Default Solver (20). This creates a Solver node with a Time Dependent Solver subnode (and a couple of other subnodes).
- 3 Right-click the Time-Dependent Solver node (10) and select Stop Condition ( 10).
- 4 In the **Stop Condition** node's settings window, type mod1.ale.relVolMin-0.01 in the **Stop expression** field. The solver then stops when the minimum relative element volume becomes less than 0.01.

- 5 Right-click the Results node ( ) and select 2D Plot Group ( ) to create a surface plot of the local relative element volume that the program displays. For the surface plot, right-click the 2D Plot Group I node and select Surface ( ). In the Surface I node's settings window, under Expression, select Moving Mesh>Local relative element volume (ale.relVol) from the Replace Expression list ( ).
- 6 Click the Step I: Time Dependent node (1) and, in its settings window's Results While Solving section, select the Plot check box to plot the local relative element volume for each result that the time dependent solver stores in the solution.
- 7 Right-click the Study I node ( $\cong$ ) and select Compute ( $\equiv$ ) to start the solver.

The solver stops somewhere around t = 0.08. The plot of the local relative element volume shows that mesh elements are stretched above the beam and compressed beneath it.

You can use automatic remeshing instead of the stop condition. The software then creates new meshes when the mesh quality drops below the specified level. To do so, click the **Step I: Time Dependent** node () and then select the **Automatic remeshing** check box in the settings window's **Study Extensions** section. To use the same condition as for the stop condition above, type mod1.ale.relVolMin in the **Mesh quality** expression edit field and 0.01 in the **Minimal mesh quality** edit field in the settings window for the **Automatic Remeshing** () node. The following steps are then not needed, and the results while solving plots are not supported.

#### Geometry Modeling-Deformed Mesh

<mark>е</mark> Тір

Next, create a new geometry and mesh from the deformed mesh. To do this, first copy the solution and then remesh the deformed configuration:

- Right-click the Study I>Solver Configurations>Solver I node (
   Solution>Copy (
   ). This creates a copy of the solver in a Copy 2 node in the Study branch and an associated Solution 2 data set (
   ) under Results>Data Sets (
- 2 Right-click the Solution 2 data set node and select Remesh Deformed Configuration (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   (
   <li
- 3 Click the default Mesh 2 subnode () and then click the Build All button () in the Mesh 2 node's settings window toolbar to create a mesh for the deformed geometry.

#### Computing the Solution

- I Click Study I>Step I: Time Dependent. In the study step's settings window, type range(0.08,0.01,0.3) in the Times field to start from the last time of the current solution. Generally when solving time-dependent problems this is not absolutely necessary, but in this case it is important because the force in the Solid Mechanics interface depends on time explicitly.
- 2 Also select Mesh 2 from the Mesh list in the Mesh Selection section to restart using the new mesh based on the deformed geometry.
- 3 When you continue solving the model, it is important to use the solution from the last time step as the new initial value when restarting the solver. In the Study I>Solver Configurations>Solver I>Dependent Variables node's settings window, select Solution from the Method list and Solver I from the Solution list in both the Initial Values of Variables Solved For and the Values of Variables Not Solved For sections to use the previously computed solution as the initial value.
- 4 Right-click the Study I node ( 🔐 ) and select Compute ( 🚍 ) to start the solver again.

The solver continues solving and stops when the mesh elements again becomes poor. Repeat the same procedure to remesh and continue the solution process from the time where the solver stopped.

# The Moving Mesh Interface

With the **Moving Mesh** interface (**ZZ**), found under the **Mathematics>Deformed Mesh** branch (**ZZ**) in the **Model Wizard**, models can be created where the geometry (actually the mesh) changes shape due to some physics in the model. Study both stationary states and time dependent deformations where the geometry changes its shape due to the dynamics of the problem. In this section:

- Moving Mesh
- Fixed Mesh
- Free Deformation
- Prescribed Deformation
- Prescribed Mesh Displacement
- Prescribed Mesh Velocity
- Prescribed Normal Mesh Velocity
- Zero Normal Mesh Velocity
- Zero Normal Mesh Displacement
  - Electrochemical Polishing: Model Library path
     COMSOL_Multiphysics/Electromagnetics/electrochemical_polishing



 Sloshing Tank: Model Library path COMSOL Multiphysics/Fluid Dynamics/sloshing_tank

#### PREDEFINED VARIABLES

The **Moving Mesh** interface defines the following predefined variables, which can be of interest, for example, for monitoring the quality of the mesh and defining a stop criterion for remeshing (see Adding a Stop Condition):

- The local relative element volume, ale.relVol, is a quantity that shows how the mesh elements become distorted in parts of the geometry.
- The minimum relative element volume, ale.relVolMin, must be > 0, otherwise the mesh elements are inverted.

- The maximum relative element volume, ale.relVolMax, is a positive scalar number that represents the maximum value of the relative element volume.
- The minimum mesh quality, ale.minqual, must be > 0; an acceptable mesh quality is typically larger than 0.1 (where the quality measure is a number between 0 and 1).

#### Moving Mesh

Use the **Moving Mesh** interface to specify stationary or transient deformation of the simulation domain.

#### INTERFACE IDENTIFIER

The interface identifier is a text string that can be used to reference the respective physics interface if appropriate. Such situations could occur when coupling this interface to another physics interface, or when trying to identify and use variables defined by this physics interface, which is used to reach the fields and variables in expressions, for example. It can be changed to any unique string in the **Identifier** field.

The default identifier (for the first interface in the model) is ale.

#### DOMAIN SELECTION

From the Selection list, choose the domains (extent) for the interface.



The Moving Mesh interface does not need to be applied in domains for which the displacements appear among the dependent variables, for example, when Solid Mechanics is active.

#### FRAME SETTINGS

Specify the names of the spatial coordinates of the base frame for the interface—the material frame—in the **Material frame coordinates** fields. The defaults are the coordinates of the spatial frame in uppercase letters (**X**, **Y**, and **Z**). You can change the names in the fields for the **First, Second**, and **Third** coordinate. The field labels include the default spatial coordinate names in parentheses.

The **Geometry shape order** setting controls the order of polynomials—I (linear), **2** (quadratic—the default), **3** (cubic), **4** (quartic), or **5** (quintic, 2D only)—used for representing the geometry shape in the spatial frame. The same order is used for Lagrange shape functions defining the mesh position in domains where **Free displacement** has been activated.

#### FREE DEFORMATION SETTINGS

Select the smoothing type for freely deformed domains from the **Mesh smoothing type** list. Choose between Lagrange, Winslow, and Hyperelastic smoothing. The default is Laplace smoothing.



• Smoothing Methods

Show More Physics Options

# Fixed Mesh

Use the **Fixed Mesh** feature to specify that the selected domains remain at their reference material shape and do not move. This is the default.

#### DOMAIN SELECTION

From the Selection list, choose the domains to specify no displacement.

#### Free Deformation

The **Free Deformation** feature constrains the mesh displacement only by the boundary conditions on the surrounding boundaries. The displacement in the domain is obtained by solving a PDE.



Smoothing Methods

#### DOMAIN SELECTION

From the Selection list, choose the domains to specify free displacement.

#### INITIAL DEFORMATION

Give initial values for mesh displacements, relative to the material frame, in the **Initial mesh displacement** fields.

# Prescribed Deformation

Use the **Prescribed Deformation** feature to define the deformation explicitly using expressions, or want the spatial coordinates to follow a deformation computed by, for example, a Solid Mechanics interface. (You can also achieve the latter effect by excluding the domains where the Solid Mechanics interface is defined from the domains where the Moving Mesh interface is active.)

#### DOMAIN SELECTION

From the Selection list, choose the domains to prescribe displacement.

#### PRESCRIBED MESH DISPLACEMENT

Specify expressions that define the deformation in the **Prescribed mesh displacement** fields (dx, dy, dz for 3D models, for example) (SI unit: m). The default is for no mesh displacement.

# Prescribed Mesh Displacement

Use the **Prescribed Mesh Displacement** feature on the boundary of domains with free deformation. The spatial frame in the adjacent domain moves in accordance with the displacement.

#### COORDINATE SYSTEM SELECTION

Specify the coordinate system to use for specifying the mesh displacement. From the **Coordinate system** list select from:

- Global coordinate system (the default)
- **Boundary System** (a predefined normal-tangential coordinate system)
- Any additional user-defined coordinate systems

#### BOUNDARY SELECTION

From the Selection list, choose the boundaries to prescribe displacement.

## PRESCRIBED MESH DISPLACEMENT

Select the check box for each coordinate direction to prescribe the displacement. The default settings provide a fixed boundary (zero displacements in all directions).

For boundaries adjacent to domains where displacement variables are defined, for example domains where a Solid Mechanics interface is active, let these variables drive the mesh displacement by typing the component field names in the corresponding fields (for example, setting dx to u, dy to v, and dz to w in 3D).

# CONSTRAINT SETTINGS

Click the **Show** button ( $rac{1}{20}$ ) and select **Advanced Physics Options** to display this section. Then select the **Use weak constraints** check box to use weak constraints instead of the default strong constraints.

# Prescribed Mesh Velocity

On the boundary of domains with free displacement, specify the velocity of the boundary. Right-click the **Free Deformation** node to add a **Prescribed Mesh Velocity** node. The spatial frame in the adjacent domains moves in accordance with the velocity.

#### **BOUNDARY SELECTION**

From the Selection list, choose the boundaries to prescribe a velocity.

# COORDINATE SYSTEM SELECTION

Specify the coordinate system to use for specifying the mesh displacement. From the **Coordinate system** list select from:

- Global coordinate system (the default)
- **Boundary System** (a predefined normal-tangential coordinate system)
- · Any additional user-defined coordinate systems

#### PRESCRIBED MESH VELOCITY

Select the check box for each coordinate directory to prescribe a velocity. The default settings provide zero velocities in all directions.

#### CONSTRAINT SETTINGS

Click the Show button ( $\flat_{\overline{\infty}}$ ) and select Advanced Physics Options to display this section. Then select the Use weak constraints check box to use weak constraints instead of the default strong constraints.

#### Prescribed Normal Mesh Velocity

Use the **Prescribed Normal Mesh Velocity** node, available under the **Moving Mesh** node, to specify the normal velocity of the boundary. The node can be used on the boundary of domains with free displacement. No constraints are set on the tangential velocity.

Simulations using moving meshes, with a boundary moving in the normal direction, can sometimes need a stabilizing term to suppress the formation of local boundary segments of high curvature. This can be of particular importance in an automatic remeshing sequence, where the remeshing step might amplify local curvature artifacts.

The Moving Boundary Smoothing option smooths the normal mesh velocity of the Prescribed Normal Mesh Velocity feature according to the following equation:

$$\frac{\partial \mathbf{X}}{\partial t} \cdot \mathbf{n} = v_0 + v_{\text{mbs}}$$

where  $v_0$  is the desired normal mesh velocity, and  $v_{mbs}$  is a smoothing velocity according to:

$$v_{\rm mbs} = \delta_{\rm mbs} v_0 h H$$

Here  $\delta_{\text{mbs}}$  is a moving boundary smoothing tuning parameter (unitless), *h* is the mesh element size (SI unit: m), and *H* the mean surface curvature (SI unit: 1/m), defined as:

$$H = -\frac{1}{2}\nabla_T \cdot \mathbf{n}$$

where  $\nabla_T$  is the surface gradient operator.

#### **BOUNDARY SELECTION**

From the Selection list, choose the boundaries to define the prescribed mesh velocity.

#### NORMAL MESH VELOCITY

Enter a value or expression for the **Normal mesh velocity**  $v_n$  (SI unit: m/s).

#### MOVING BOUNDARY SMOOTHING

By default, the **Enable moving boundary smoothing** check box is not selected. To enable boundary smoothing, click to select the check box, and then enter a value or expression for the **Moving boundary smoothing tuning parameter**,  $\delta_{mbs}$  (unitless). The default value is 0.5.

# Zero Normal Mesh Velocity

Use the **Zero Normal Mesh Velocity** node, which is added from the **Moving Mesh** submenu, to set the normal velocity of the boundary to zero. The node can be used on the boundary of domains with free displacement. No constraints are set on the tangential velocity.

#### **BOUNDARY SELECTION**

From the Selection list, choose the boundaries to define the zero normal mesh velocity.

# Zero Normal Mesh Displacement

Use the **Zero Normal Mesh Displacement** node to set the displacement in the normal direction of the boundary to zero. The node can be used on the boundary of domains with free displacement. No constraints are set in the tangential direction.

# **BOUNDARY SELECTION**

From the **Selection** list, choose the boundaries to define the zero normal mesh displacement.

# The Deformed Geometry Interface

Using the **Deformed Geometry** interface (**I**), found under the **Mathematics>Deformed Mesh** branch (*M*) in the **Model Wizard**, study how the physics changes when the geometry changes as a function of a parameter. The only real difference between the Deformed Geometry interface and the Moving Mesh interface is that the former defines a deformation of the material frame relative to the geometry frame, while the latter defines a displacement of the spatial frame relative to the material frame.



#### Electrochemical Polishing: Model Library path

COMSOL_Multiphysics/Electromagnetics/electrochemical_polishing

In this section:

- Deformed Geometry
- Free Deformation
- Free Deformation
- Prescribed Deformation
- Fixed Mesh

**Q** See Also

- Prescribed Mesh Displacement
- Prescribed Mesh Velocity

For detailed information about selecting geometric entities (domains, boundaries, edges, and points), see Selecting and Deselecting Geometric Entities

For more information about deformed meshes, see The Moving Mesh Interface.

# Deformed Geometry

Use the **Deformed Geometry** feature to specify the domains and properties of the deformed geometry interface.

#### INTERFACE IDENTIFIER

The interface identifier is a text string that can be used to reference the respective physics interface if appropriate. Such situations could occur when coupling this interface to another physics interface, or when trying to identify and use variables defined by this physics interface, which is used to reach the fields and variables in expressions, for example. It can be changed to any unique string in the **Identifier** field.

The default identifier (for the first interface in the model) is dg.

#### DOMAIN SELECTION

From the Selection list, choose the domains (extent) for the interface.



The Deformed Geometry interface requires a domain selection which covers all domains in which some physics is active.

#### FRAME SETTINGS

Specify the spatial coordinates of the base frame for the interface— the geometry frame—in the **Geometry frame coordinates** fields. The default is upper case versions of the spatial coordinates followed by a lowercase g (for example, **Yg**). You can change the names in the fields for the **First**, **Second**, and **Third** coordinate. The field labels include the default spatial coordinate names in parentheses.

The **Geometry shape order** setting controls the order of polynomials used for representing the geometry shape in the material frame. The same order is used for Lagrange shape functions defining the mesh position in domains where **Free displacement** has been activated.

# FREE DEFORMATION SETTINGS

Select the smoothing type for freely deformed domains. Choose between Lagrange, Winslow, and Hyperelastic smoothing.



• Smoothing Methods

Show More Physics Options

# Free Deformation

The **Free Deformation** feature constrains the mesh displacement only by the boundary conditions on the surrounding boundaries. The material frame displacement in the domain is obtained by solving a PDE.



Smoothing Methods

#### DOMAIN SELECTION

From the **Selection** list, choose the domains to prescribe free displacement.

#### INITIAL DEFORMATION

Give initial values for mesh displacements, relative to the material frame, in the **Initial mesh displacement** fields.

# Prescribed Deformation

Use the **Prescribed Deformation** feature to define the deformation of the material frame explicitly using expressions.

#### DOMAIN SELECTION

From the Selection list, choose the domains to prescribe displacement.

#### PRESCRIBED MESH DISPLACEMENT

Specify expressions that define the deformation in the **Prescribed mesh displacement** fields. Select the check box to enable the prescribed mesh displacement in the directions to use such a displacement condition. Use one expression per spatial coordinate.

# Fixed Mesh

Use the **Fixed Mesh** feature to specify that the selected domains retain their original shape as defined by the geometry and original mesh. This is the default.

#### DOMAIN SELECTION

From the Selection list, choose the domains to specify no displacement.

Add the **Prescribed Mesh Displacement** feature on the boundaries of domains with free deformation. The material frame in the adjacent domain moves in accordance with the displacement.

### **BOUNDARY SELECTION**

From the Selection list, choose the boundaries to prescribe the mesh displacement.

### COORDINATE SYSTEM SELECTION

Specify the coordinate system to use for specifying the mesh displacement. From the **Coordinate system** list select from:

- Global coordinate system (the default)
- **Boundary System** (a predefined normal-tangential coordinate system)
- Any additional user-defined coordinate systems

### PRESCRIBED MESH DISPLACEMENT

Select the check box for each coordinate direction where you want to prescribe the displacement. The default settings provide a fixed boundary (zero displacements in all directions).

### CONSTRAINT SETTINGS

Click the **Show** button ( $rac{1}{2}$ ) and select **Advanced Physics Options** to display this section. Select the **Use weak constraints** check box to use weak constraints instead of the default strong constraints.

### Prescribed Mesh Velocity

Use the **Prescribed Mesh Velocity** feature on the boundary of domains with free displacement. The material frame in the adjacent domains moves in accordance with the velocity.

### **BOUNDARY SELECTION**

From the Selection list, choose the boundaries to prescribe a velocity.

#### COORDINATE SYSTEM SELECTION

Specify the coordinate system to use for specifying the mesh displacement. From the **Coordinate system** list select from:

- Global coordinate system (the default)
- Boundary System (a predefined normal-tangential coordinate system)
- · Any additional user-defined coordinate systems

### PRESCRIBED VELOCITY

Select the check box for each coordinate directory to prescribe a velocity. The default settings provide zero velocities in all directions.

### CONSTRAINT SETTINGS

Click the Show button ( $rac{1}{20}$ ) and select Advanced Physics Options to display this section. Then select the Use weak constraints check box to use weak constraints instead of the default strong constraints.

# 19

# Meshing

This chapter summarizes how to create and control your mesh for 1D, 2D, and 3D geometries in COMSOL Multiphysics.

In this chapter:

- Creating Meshes
- Free Meshing
- Structured Meshes
- Mesh Control Entities
- Clearing Meshes and Deleting Meshing Sequences
- Displaying Mesh Element Quality and Size
- Avoiding Inverted Mesh Elements

# Creating Meshes

The **Mesh** ( ) features enable the discretization of the geometry model into small units of simple shapes, referred to as *mesh elements*.

In this section:

- About Mesh Elements for 1D, 2D, and 3D Geometries
- The Meshing Toolbar and Features
- Meshing Techniques

C See Also • Meshing Features in the COMSOL Multiphysics Reference Guide

• Mesh in the COMSOL Java API Reference Guide

About Mesh Elements for 1D, 2D, and 3D Geometries

### ELEMENTS FOR ID GEOMETRIES

The mesh generator discretizes the domains (intervals) into smaller intervals (or mesh elements). The endpoints of the mesh elements are called *mesh vertices*.

The boundaries (or vertices) defined in the geometry are represented in the mesh by *boundary elements* (or *vertex elements*).

### ELEMENTS FOR 2D GEOMETRIES

The mesh generator discretizes the domains into *triangular* or *quadrilateral* mesh elements. If the boundary is curved, these elements represent only an approximation of the original geometry. The sides of the triangles and quadrilaterals are called *mesh edges*, and their corners are *mesh vertices*. A mesh edge must not contain mesh vertices in its interior.

The boundaries defined in the geometry are discretized (approximately) into mesh edges, referred to as boundary elements (or *edge elements*), which must conform with the mesh elements of the adjacent domains.

The geometry vertices are represented by vertex elements.

### ELEMENTS FOR 3D GEOMETRIES

The mesh generator discretizes the domains into *tetrahedral*, *hexahedral*, *prism*, or *pyramid* mesh elements whose faces, edges, and corners are called *mesh faces*, *mesh edges*, and *mesh vertices*, respectively.

The boundaries in the geometry are discretized into triangular or quadrilateral boundary elements. The geometry edges are discretized into edge elements.

Similar to 2D, the geometry vertices are represented by vertex elements.

### Pyramid Elements

Pyramid elements appear in the mesh in these situations. If you:

- Import a NASTRAN file containing pyramid elements
- Create a swept mesh where the source and destination faces share an edge and the source face contains a triangular mesh
- Convert a quad mesh to a triangular mesh for a face adjacent to a domain that contains a mesh
- Create a boundary layer mesh in 3D for a geometry with sharp edges

# The Meshing Toolbar and Features

A meshing toolbar is available as well as access to features when you right-click nodes and select items from the context menu (Table 19-2). Buttons on the toolbar also have predefined size element features available from the lists (Table 19-2) for each mesh type. These fine tuning features are also available on the **Size** (

C See Also For more examples and detail, see Meshing Features in the COMSOL Multiphysics Reference Guide.

TARIF 19-1.	MESHING TOO	DIRAR RUT	TONS AND	CONTEXT	MENU FEATURES
I/(DEE 1/-1.			101107110	CONTEXT	

NAME	BUTTON	USE AND DESCRIPTION
Size		This default node is added to all meshes. It provides access to predefined and custom element size settings.
Free Tetrahedral		A meshing technique generating an unstructured mesh with tetrahedral elements for 3D models.

NAME	BUTTON	USE AND DESCRIPTION
Swept	<b>i</b>	A meshing technique generating a structured mesh (at least in the direction of the sweep) with prism or hexahedral elements for 3D models.
Boundary Layers		A meshing technique generating structured layers of elements along specific boundaries integrating into an existing structured or unstructured mesh for 2D or 3D models.
Boundary Layer Properties		To specify the location of the boundary layers and the properties, such as the number and thickness of the boundary layers. Right-click the Boundary Layers node to add. For 2D or 3D models. See Boundary Layer Properties in the COMSOL Multiphysics Reference Guide for information.
Free Triangular	R	A free meshing technique generating an unstructured mesh with triangular elements for 2D or 3D models.
Free Quad	Ø	A free meshing technique generating an unstructured mesh with quadrilateral elements for 2D or 3D models.
Mapped	▦	A meshing technique generating a structured mesh with quadrilateral elements for 2D or 3D models. Also right-click to add Edge Groups to this node.
Edge Groups		To specify the four groups of edges around a boundary (3D) /domain (2D) that is used to determine the mapped mesh of the boundary/domain. See Edge Groups in the COMSOL Multiphysics Reference Guide for information.
Convert		A meshing technique used to create a simplex mesh. For example, create a structured triangular mesh for 2D models by using the convert operation, which introduces a diagonal edge to each quadrilateral element. See Convert in the COMSOL Multiphysics Reference Guide for information.
Copy Face	î)	To copy mesh between faces in a 3D geometry. For example, mesh Face I of a block and copy the mesh to the opposite Face 6. Right-click to add an Edge Map, One-Point Map, or Two-Point Map node. See Copy Domain (2D, 3D), Copy Face (3D) and Copy Edge (2D, 3D) in the COMSOL Multiphysics Reference Guide for information.

TABLE 19-1: MESHING TOOLBAR BUTTONS AND CONTEXT MENU FEATURES

NAME	BUTTON	USE AND DESCRIPTION
Edge Map	Ra I	Right-click the Copy Face or the Copy Domain node to add. Specify an edge map for a face copy or a domain copy operation. Use the feature if you need to control how the source and destination faces/domains are matched in a copy mesh operation. For example, create a block and mesh Face I with a fine mesh on Edge I. Copy this mesh to face 6 and ensure that the fine mesh of Edge I ends up on Edge I2. See Edge Map in the COMSOL Multiphysics Reference Guide for information.
One Point Map	Ra International Astronomy International Astronomy Int	Right-click the Copy Face or the Copy Domain node to add. Use this if you need to control how the source and destination faces/domains are matched in a copy mesh operation. For example, create a block and mesh face 4 with a fine mesh near Point 8. Copy this mesh onto Face 3 and ensure that the fine mesh near Point 8 ends up near Point 3. See Onc-Point Map in the COMSOL Multiphysics Reference Guide for information.
Two Point Map	<b>F</b>	Right-click the Copy Face or the Copy Domain node to add. Use this feature if you need to control how the source and destination faces/domains are matched in a copy mesh operation. For example, create a block and mesh face 2. Copy this mesh onto the opposite Face 5 and ensure that Point 6 is mapped to Point 4 and Point 5 is mapped to Point 8. See Two-Point Map in the COMSOL Multiphysics Reference Guide for information.
Copy Edge	or DE	To copy an edge mesh from one edge to another. You can use the Copy Edge mesh operation to define periodic boundary conditions, where the solution on the two periodic boundaries has to be identical. Right-click to add Edge Map, One-Point Map, or Two-Point Map nodes. See Copy Domain (2D, 3D), Copy Face (3D) and Copy Edge (2D, 3D) in the COMSOL Multiphysics Reference Guide for information.
Edge		Use the Edge operation to create and fine tune edge mesh to give you control over the number of elements along edges. See The faces around the source and destination domains in 3D are also allowed to be partitioned differently with exactly that same limitation (source to destination face mapping must be many-to-one). in the COMSOL Multiphysics Reference Guide for information.

NAME	BUTTON	USE AND DESCRIPTION
Copy Domain	or B	To copy mesh between domains in a 2D or 3D geometry. For example, mesh block I and copy the mesh to the block 2. Right-click to add an Edge Map, One-Point Map, or Two-Point Map node. See Copy Domain (2D, 3D), Copy Face (3D) and Copy Edge (2D, 3D) in the COMSOL Multiphysics Reference Guide for information.
Refine	4	To refine elements of the mesh. By default, all elements are refined once. The default refinement method in 2D is regular refinement, where all of the specified triangles are divided into four triangles of the same shape. In 3D, the default refinement method is longest. The regular refinement method is only implemented for uniform refinements (that is, when all elements are refined). In 1D, regular refinement, where each element is divided into two elements of the same shape, is always used. See <u>Refine</u> in the <i>COMSOL</i> <i>Multiphysics Reference Guide</i> for information.
Reference		To refer to another meshing sequence. For example, create a mixed mesh with quads and triangles on a geometry. Create a second meshing sequence with a scale feature and a reference to the first meshing sequence. The result is a coarser version of the first mesh. Right-click to add a Scale or Expand node. See <u>Reference</u> in the <i>COMSOL Multiphysics Reference Guide</i> for information.
Expand	52	Right-click the Reference node to add and to replace the reference with a copy of the referred sequence, where the attributes have been scaled with the scale attribute features of the reference. See <u>Reference</u> in the COMSOL Multiphysics Reference Guide for information.
Scale	₽	To scale size properties defined in a sequence. For example, create a block and mesh it with 10-by-10-by-10 hexahedra. Setting scale to 2 gives you a block with 5-by-5-by-5 hexahedra and setting the scale to 0.5 gives you a block with 20-by-20-by-20 hexahedra. Right-click the Reference node to add. See <u>Scale</u> in the <i>COMSOL Multiphysics Reference Guide</i> for information.

NAME	BUTTON	USE AND DESCRIPTION
Distribution		Mesh element distribution properties. You can specify a mesh element distribution by specifying the number of elements only, by specifying the number of elements together with properties determining the distribution of the elements, or by specifying the element distribution explicitly. This feature can be assigned to edges in 2D and 3D, domains in 3D or the entire geometry. See <u>Distribution</u> in the <i>COMSOL Multiphysics Reference Guide</i> for information.
Plot	8	Create a Mesh plot and view it in the Graphics window. See $\underline{Mesh}\ Plots$ for information.
Import	æ	To import a mesh into a sequence without a corresponding geometry. It is only possible to use this feature when the geometry sequence is empty. If the sequence already contains a mesh, the imported mesh is added to the existing mesh. See Import in the COMSOL Multiphysics Reference Guide for more information.
Ball	<b>B</b>	To split geometric entities in an imported mesh by an element set defined by a ball. See <u>Ball</u> in the COMSOL Multiphysics Reference Guide for more information.
Box	<b>1</b>	To split geometric entities in an imported mesh by an element set defined by a box. See Box in the COMSOL Multiphysics Reference Guide for more information.
Create Vertex	8	To create an additional vertex in an imported mesh. See <u>Create Vertex</u> in the <i>COMSOL Multiphysics Reference Guide</i> for more information.
Delete Entities		To delete geometric entities from an imported mesh. See Delete Entities in the COMSOL Multiphysics Reference Guide for more information.
Join Entities	<b>B</b>	To join adjacent geometric entities in an imported mesh. See Join Entities in the COMSOL Multiphysics Reference Guide for more information.
Export to File	B	Export a mesh to a file. See Exporting a Mesh to File in the COMSOL Multiphysics Reference Guide for information.
Measure	↔ Iniii	To measure the volume, area, or length of a selected domain, face, or edge. The result displays in the Messages window. It is also possible to view the coordinates of a vertex, the distance between two vertices, or the number of entities and the geometry representation (if you have license for the CAD Import Module) of a geometry object.

NAME	BUTTON	USE AND DESCRIPTION
Statistics	ailt	To gather some information about the mesh, including the number of mesh elements of different types and the quality of elements. See <u>The Statistics Page</u> in the COMSOL Multiphysics Reference Guide for information.
Build Selected	a	To build all features from the first up to the selected feature.
Build All		To build all features in the sequence.

#### TABLE 19-2: PREDEFINED ELEMENT SIZE BUTTONS

BUTTON	NAME	BUTTON	NAME
	Extremely Fine		Normal
	Extra Fine		Coarse
<u>a</u>	Finer		Coarser
<u>a</u>	Fine		Extra Coarse
			Extremely Coarse

### Meshing Techniques

### PHYSICS-CONTROLLED MESHING

The default is to use a mesh that is controlled by the physics. The mesh is then adapted to the current physics settings in the model. For example, for a fluid-flow model you get a somewhat finer mesh than the default with a boundary layer mesh along the no-slip boundaries. If you want to modify the overall element size of the physics-induced mesh you select another element size in the settings window of the main mesh node and rebuild the mesh. If you change the physics settings in the model

and rebuild the meshing sequence, COMSOL Multiphysics creates a new mesh adapted to the new physics settings. To edit a physics-induced meshing sequence, or to see the errors and warnings of a failing mesh build, right-click the Mesh node and select **Edit Physics-Induced Sequence** (Sequence). The program then adds the nodes under the main **Mesh** node that together form the physics-controlled mesh.

Note

For more information on problems caused by **Boundary Layers** nodes see Boundary Layer Meshing Failures. For general tips on resolving meshing issues, see Troubleshooting Free Tetrahedral Mesh Generation.

### USER-CONTROLLED MESHING

Alternatively, you can use a user-controlled mesh. It is then possible to manually build and edit the meshing sequence using the meshing techniques described below for creating a 2D and 3D meshes.



If you select **User-controlled mesh** from the **Sequence type** list in the main **Mesh** node's settings window, the program adds a **Size** node and a node for the default mesher (**Free Triangular** in 2D, for example). If the **Sequence type** list is set to **Physics-controlled** mesh and you add a **Size** node, for example, the mesh sequence switches to a user-controlled mesh, but no default mesher is added.

C See Also

Meshing Features in the COMSOL Multiphysics Reference Guide

### 2D MESHING OPTIONS

#### Unstructured Meshes (Free Meshing)

Free meshing generates an unstructured mesh with triangular or quadrilateral elements.

Structured Meshes

 Create a structured triangular mesh by using the convert operation to introduce a diagonal edge to quadrilateral elements. • Mapped meshing generates a structured mesh with quadrilateral elements.

Compared to an unstructured mesh the interior mesh vertices in a structured mesh are adjacent to the same number of elements. If you want to use mapped meshing on a geometry, you must build the geometry so that the domains are reasonably "regular" in shape and do not contain holes.

Free Meshing

• Generating a 2D Free Mesh

### 3D MESHING OPTIONS



2

See Also

Platforms handle floating-point operations differently, which sometimes results in slight differences between identical model files that are generated on two different computers.

### Unstructured Meshes (Free Meshing)

Free meshing generates an unstructured mesh with tetrahedral elements.

Structured Meshes

- Swept meshing generates a structured mesh (at least in the direction of the sweep) with prism or hexahedral elements.
- Boundary layer meshing generates structured layers of elements along specific boundaries integrating into an existing structured or unstructured mesh.

Ca See Also	• Free Meshing
	• Generating a 3D Free Tetrahedral Mesh
	• Generating a 3D Swept Mesh
	Generating a Boundary Layer Mesh

# Free Meshing

In this section:

- About Free Meshing
- Generating a 2D Free Mesh
- Generating a 3D Free Tetrahedral Mesh
- Troubleshooting Free Tetrahedral Mesh Generation

# About Free Meshing

The free mesher is available in all dimensions, and you can use it for all types of geometries regardless of their topology or shape. If you have not defined or generated a mesh, the free mesher automatically creates an unstructured mesh and adds a corresponding node to the Model Builder when you compute a study.

When you use the free mesher:

- The number of mesh elements is determined by the shape of the geometry and various mesh parameters.
- You control mesh parameters for the free mesher by Size and Distribution features in the meshing sequences.

You can also control the size of the mesh generated by a specific Free Triangular, Free Quadrilateral, or Free Tetrahedral node by adding Size ( ) or Distribution ( ) subnodes.

Size	
Build Selected 📔 Build All	2
Geometric Entity Selection	
Geometric entity level: Entire geometry	
Element Size	
Calibrate for:	
General physics	-
Predefined     Normal	-
Oustom	
▼ Element Size Parameters	
Maximum element size:	_
0.5	
Minimum element size:	_
0.09	
Maximum element growth rate:	
1.5	
Resolution of curvature:	
0.6	
Resolution of narrow regions:	
0.5	

Figure 19-1: An example of custom element mesh sizes. You can also select Predefined element sizes.

**Q** See Also Generating a 2D Free Mesh

# • Generating a 3D Free Tetrahedral Mesh

# Generating a 2D Free Mesh

Use the free mesher in 2D to create an unstructured mesh with triangular elements or quadrilateral elements. You can combine triangular and quadrilateral meshes by adding domains to the Domain list in the corresponding mesh operation's settings. From here, you can define specific meshing operations to each domain in your model. Figure 19-2 shows the resulting mesh when combining the Free Triangular and Free

Quad features to create a meshing sequence that generates the mesh. The model represents a cross section of a heat sink for high power applications.



Ca See Also	• Free Triangular and Free Quad in the COMSOL Multiphysics Reference Guide			
	About Free Meshing			
	Generating a 3D Free Tetrahedral Mesh			



Figure 19-2: A combined triangular and quadrilateral mesh.

<mark>т</mark>р

Adding a Free Triangular or a Free Quad Mesh to a 2D Model I Open a 2D file or create a 2D object.

> If you saved a copy of the geometry from Creating a 2D Geometry Model, then open this file.

- 2 On the mesh toolbar, click the Free Triangular ( March ) or Free Quad ( J) button.
- 3 In the Model Builder, click the Free Triangular ( ) or Free Quad ( ) node. In the settings window, under Domain Selection, select Domain as the Geometric entity level.
- **4** In the **Graphics** window, left-click and then right-click any or all of the domains (in this example, there is only one domain) to add to the **Selection** list.
- 5 If the geometry requires it, you can now control the number of mesh elements along an edge. In this case, when **Free Quad** ( ) is selected as the mesh, the following example applies.

### Controlling the Number of Elements on Edges

In this example, when **Free Quad** is selected as the mesh, Figure 19-3 shows that the two cooling fins at 45 degrees to the horizontal are only meshed with one mesh element at their attachment to the base. Use the **Edge** feature to fine tune the mesh and to give you control over the number of elements along the edge separating the fins and the base.



Figure 19-3: A Free Quad mesh with only one mesh element at the attachment to the base

Insert an **Edge** operation before the **Free Quad** operation to control the mesh at the interface between the base and the fin.

I Right-click the first Size node ( []) (under Mesh I) and select Build Selected ( []).

2 Right-click Mesh I and select More Operations>Edge ().

When inserting a node to the sequence it appears after the current feature. The current feature is indicated by a quadratic frame around its icon.



- 3 In the **Graphics** window, left-click and then right-click the edges to add to the **Selection** list. Or click the **Paste** button (
  ) and enter the edge numbers (for this example: 4,6) in the **Paste Selection** window.
- **4** Right-click **Edge** () and select **Distribution** (). The **Distribution** node inherits the same list of edges from the **Edge** node.
- **5** Click the **Distribution** node (**)** and under Distribution, change the Number of elements from 5 (the default) to 30.
- 6 Click **Build Selected** ( ). In this example, the mesh elements are generated along the selected edges (Figure 19-4).
- 7 Click the Free Quad node ( ) and select Remaining from the Geometric entity level list. Click Build Selected ( ).



Figure 19-4: Adding a distribution attribute to two edges and rebuilding the mesh defines a finer mesh.

Generating a 3D Free Tetrahedral Mesh



Free Tetrahedral in the COMSOL Multiphysics Reference Guide



For a 3D free tetrahedral mesh example see the Busbar model: Model Library path **COMSOL_Multiphysics/Multiphysics/busbar** 

### ADDING A FREE TETRAHEDRAL FEATURE

I Open a 3D model or create a 3D model.

If you saved a copy of the geometry from Creating a 3D Geometry Model, then open this file.

- **2** On the mesh toolbar, click the **Free Tetrahedral** button ( A.).
- **3** In the Model Builder, click the Free Tetrahedral node ( A.).
- **4** In the settings window, under **Domain Selection**, select **Domain** as the **Geometric entity level**.
- **5** In the **Graphics** window, left-click and then right-click any or all of the domains to add to the **Selection** list, or use any of the selection methods described in Working with Geometry and User-Defined Selections.

#### SPECIFYING THE MESH SIZE



Тір

To adapt the mesh for the selected domains, add a **Size** feature to the **Free Tetrahedral** node. Otherwise the Size node directly following the main Mesh node governs the mesh-element size for all Free Tetrahedral nodes.

Figure 19-5 shows a meshing sequence consisting of two Free Tetrahedral mesh operations, one for each meshed domain that correspond to pillars in a heat sink geometry. The mesh sizes are assigned as follows:

- The first Size node (under Mesh I) is defined as Extra Coarse, which is selected from the Predefined Element Size list or from the mesh toolbar. In this example, the left pillar is selected to have the extra coarse mesh size and this is generated by the first Free Tetrahedral I operation.
- The mesh size of the second pillar is defined under the **Free Tetrahedral 2** operation, it has its own **Size I** attribute (**Coarser**), a finer mesh that is also selected from the **Predefined Element Size** list or the mesh toolbar.



Figure 19-5: An example of two free tetrahedral meshing sizes.

The difference between the two meshes is based on the following.

### SPECIFYING A CUSTOM ELEMENT SIZE



To create a predefined element size, on the mesh toolbar, click the **Mesh I** node (to display the toolbar) and then click the small arrow next to the **Free Tetrahedral** button (  $\bigtriangleup$ ) to select one of the predefined mesh sizes as described in Table 19-2.

- I In the Model Builder, click Size ( $\triangle$ ) to display the settings window. See Figure 19-1.
- **2** Under **Element Size**, click **Custom**. Under **Element Size Parameters**, define the mesh by entering values in the fields as required.
  - Enter the Maximum element size allowed (SI unit: m).
  - Enter the **Minimum element size** allowed (SI unit: m). You can use this value to, for example, prevent the generation of many elements around small parts of the geometry.
  - Enter the **Maximum element growth rate** at which the element size can grow from a region with small elements to a region with larger elements. The value must be greater or equal to one. For example, with a maximum element growth rate of 1.5, the element size can grow by at most 50% (approximately) from one element

to another. Figure 19-6 shows the base of the heat sink meshed using different two different element growth rates for otherwise identical settings.

- Enter the **Resolution of curvature** to determine the size of boundary elements compared to the curvature of the geometric boundary. The curvature radius multiplied by the resolution of curvature, which must be a positive scalar, gives the maximum allowed element size along the boundary. A lower value gives a finer mesh along curved boundaries.
- Enter the **Resolution of narrow regions** to control the number of layers of elements that are created in narrow regions (approximately). The value must be a non-negative scalar. If the value of this parameter is less than one, the mesh generator might create elements that are anisotropic in size in narrow regions.



Element growth rate = 1.9

Element growth rate = 1.1

Figure 19-6: A comparison of mesh element growth rates in a heat sink.

### SPECIFYING MESH DISTRIBUTION

In addition to customizing the mesh size, you can also add a Distribution attribute to a Free Tetrahedral feature. In the settings for this Distribution, constrain the number of elements for the selected edges. Figure 19-7 shows three heat sink pillars with different mesh sizes and distribution.



The settings in the **Distribution** attribute overrule the settings in the **Size** node. See Distribution in the *COMSOL Multiphysics Reference Guide*.



Figure 19-7: Specifying element distribution in heat sink pillars.



### Troubleshooting Free Tetrahedral Mesh Generation

This section gives you some suggestions how to solve problems you might encounter when creating tetrahedral meshes.

### **BUILD A FINER MESH**

As a general rule, it is easier to construct a mesh with smaller elements than a mesh with larger elements. If you get errors or low-quality elements when you try to mesh certain domains, try to decrease the element size using appropriate **Size** ( $__$ ) attributes on these domains.

### USE AN APPROPRIATE MINIMAL ELEMENT SIZE

If your geometry contains details that are very small compared to the total volume of the mesh, you must ensure that the Minimum element size parameter in the corresponding **Size** ( ) attribute is at least as small as the smallest detail you wish to resolve. If this parameter is too large, you will get warnings when building the feature. For example, the warning "Edge is much shorter than the specified minimum element

size" indicates that there are edges significantly shorter than the specified minimum element size. The resulting mesh gets badly shaped elements.



#### **REMOVE UNWANTED GEOMETRY DETAILS**

P

Tip

<mark>т</mark>р

Sometimes, the geometry contains small features, like sliver faces and short edges, which you do not wish to resolve at all. Then you can use Virtual Operations in the Geometry sequence to ignore disturbing details of the geometry (see Using Virtual Geometry Operations). If you have a license for the CAD Import Module, you can also use CAD defeaturing operations to simplify the geometry.

### PARTITION THE GEOMETRY INTO SIMPLE DOMAINS

If the geometry has very complex domains or very complex faces that you have trouble meshing, you can try to partition you geometry into less complex entities. On a philosophical level, this method could be classified as a divide and conquer strategy. It is often possible to use a work plane in the geometry to embed a face that splits a complex domain into two domains. You can use a Mesh Control Faces node to make this partitioning only when building the mesh (see Mesh Control Entities).

To split a solid geometry object into parts using a Work Plane, place the work plane where you want to cut the domain. Then draw a rectangle (or another 2D primitive) in the work plane, making it sufficiently large to cover the cut. Finally, add a Convert to Solid node with the object you want to split and the surface rectangle as input. COMSOL then calculates the exact shape of the splitting face for you.

# Structured Meshes

In this section:

- About 2D Mapped Meshing
- About 2D and 3D Boundary Layer Meshes
- Generating a Boundary Layer Mesh
- About 3D Swept Meshes
- Generating a 3D Swept Mesh

About 2D Mapped Meshing



Mapped in the COMSOL Multiphysics Reference Guide

### GEOMETRY REQUIREMENTS

For the 2D mapped meshing technique to work properly, the geometry must be reasonably regular. The following conditions must be satisfied:

- Each domain must be bounded by at least four boundary segments.
- Each domain must be bounded by only one connected boundary component (that is, no holes are allowed).
- The domains must not contain isolated or embedded vertices or boundary segments.
- The shape of each domain must not differ significantly from a rectangle.

For a geometry model that does not initially meet these criteria, it is usually possible to modify it so that a mapped mesh is generated, usually this is done by splitting it into simpler domains.



For an example of a 2D mapped mesh, see Tubular Reactor: Model Library path COMSOL_Multiphysics/Chemical_Engineering/tubular_reactor

A boundary layer mesh is a mesh with dense element distribution in the normal direction along specific boundaries. This type of mesh is typically used for fluid flow problems in order to resolve the thin boundary layers along the no-slip boundaries.

- In 2D, a layered quadrilateral mesh is used along the specified no-slip boundaries.
- In 3D, the boundary layer mesh is a layered prism mesh or a hexahedral mesh, depending on whether the corresponding boundary-layer boundaries contain a triangular or quadrilateral mesh.

Boundary layer meshes can also be used to resolve large temperature gradients close to heated surfaces subjected to sudden changes over time. In the heat sink model, you can see the introduction of a boundary layer mesh at the surfaces of the inner half-circle arc.

### BOUNDARY LAYER MESHING FAILURES

The boundary layer meshing algorithm is very sensitive to the topology of the model geometry. If you get an error when trying to build a **Boundary Layers** node you should try the following:

 Remove unnecessary interior boundaries such as boundaries (resulting from Boolean operations of geometry objects) that do not separate materials or physics. An efficient way to do this is to mark these boundaries use Mesh Control Entities. Mark these boundaries as mesh control entities in the Geometry Sequence. Then you mesh the domains, using Free Tetrahedral or Swept Mesh. When the domains are meshed, the control boundaries are automatically removed, and you can insert boundary layers, ignoring the interfering boundaries.

• Use boundary layer mesh trimming instead of splitting. By default, the boundary layer mesher creates a boundary layer split at each sharp corner in 2D and along each sharp edge in 3D.

If you have the:

 Batteries & Fuel Cells Module, see Soluble Lead-Acid Redox Flow Battery (2D): Model Library path Batteries_and_Fuel_Cells_Module/ Batteries/pb_flow_battery



- CFD Module, see Turbulent Flow Over a Backward Facing Step (2D): Model Library path CFD_Module/Single-Phase_Benchmarks/ turbulent_backstep
- Heat Transfer Module, see Turbulent Flow Over a Backward Facing Step: Model Library path Heat_Transfer_Module/Verification_Models/ turbulent_backstep

In the COMSOL Multiphysics Reference Guide see:



- Removing Interior Boundaries in Union Operations
- To turn off boundary layer splits, see Boundary Layers

Generating a Boundary Layer Mesh

- I In the Model Builder, right-click Mesh (
  ) and select Boundary Layers (
  ).
- 2 Click the **Boundary Layer Properties** node () and in the settings window, select the boundaries where boundary layers should be applied. See Figure 19-8.



Figure 19-8: Adding boundary layer elements.

# About 3D Swept Meshes

The swept mesher operates on a 3D domain by meshing a source face and then sweeping the resulting face mesh along the domain to an opposite destination face. A swept mesh is structured in the sweep direction and can be either structured or unstructured orthogonally to the sweep direction.

You can use several connected faces as source faces. Also the destination may consist of several faces, as long as each destination face correspond exactly to one or more source faces; the partitioning of the source side into faces must be a refinement of the partitioning on the destination side. Each face about a domain that is to be operated on by the swept mesher is classified as either a source face, a destination face, or a linking face. The linking faces are the faces linking the source and destination faces (see Figure 19-9). The swept mesher can handle domains with multiple linking faces in the sweep direction.

The linking edges are the edges, or the chains of edges, connecting the source and destination faces. For a domain to be possible to sweep, there must be at least one linking edge or chain of edges.



- Thin-Layer Diffusion: Model Library path COMSOL_Multiphysics/ Diffusion/thin_layer_diffusion
- Joule Heating of a Microactuator: Model Library path COMSOL_Multiphysics/Multiphysics/thermal_actuator_jh





Figure 19-9: Classification of the boundaries about a domain used for swept meshing.

### Generating a 3D Swept Mesh

Figure 19-10 shows the 3D swept mesh for a simple geometry but with a layered structure typical for printed circuit boards or MEMS geometries. In such cases, the swept mesh generation presents an alternative to using a free tetrahedral meshing.



Figure 19-10: An example of the layered geometry used for creating a swept mesh.

I Right-click Mesh () and select More Operations>Free Triangular ().

- **2** Add the first level boundary to the selection list (see Figure 19-10 for an example of a suitable geometry).
- A Right-click Mesh () and select Swept ().
  Select the domain in the first level.
  Right-click Swept I and select Distribution ()).
  Enter the Number of elements in the field (for example, 2).
  Click Build Selected ()).
  Select for example, 2).
  Click Build Selected ()).
- **3** Click **Build Selected** ( ). The mesh below displays.

9 Right-click Mesh ( ) and select More Operations>Free Triangular (  $\mathbb{N}_{0}$  ).



**IO** Select the boundaries at the second level and click the **Build Selected** button(

II Repeat the same swept operations for the first level domains but now for the second level.



12 Mesh the third level boundaries using the Free Triangular mesh operation.



**13** Mesh the third level domain. Use the **Swept** mesh operation and enter 4 for the **Number of elements** in the corresponding **Distribution** attribute.



The meshing sequence displayed in the **Model Builder** makes it possible to return to your attribute settings and change mesh sizes and distributions. After making any changes, click the **Build All** button ( ) or press F8 to rebuild the entire meshing sequence.

# Mesh Control Entities

In this section:

- About Mesh Control Entities
- Using Mesh Control Entities to Control Element Size
- Using Structured and Unstructured Mesh with Boundary Layers

# About Mesh Control Entities

Sometimes it is desirable to use certain geometric entities only to control the mesh. For example, you can add a curve inside a domain to control mesh element size there. If you mark this curve as a mesh control entity, it is not included in the geometry used when defining the physics. An advantage is that the final mesh need not respect this curve exactly; it is used only to control element size.

Another situation where you may want to use mesh control entities is when you need very precise control of mesh in certain regions of the geometry. In these regions you typically use a structured mesh with distribution features to control the mesh. In other regions of the geometry you may have to use free mesh.

Suppose that you also want to insert boundary layers. If the boundaries separating the domains with structured and free mesh are ordinary geometry boundaries, the boundary layers have to respect them. This can lead to various problems, including low-quality elements or even meshing failures. If you instead mark such boundaries as mesh control entities, the boundary layer mesh algorithm has more freedom to move mesh nodes and to construct a better mesh.

### Using Mesh Control Entities to Control Element Size

Figure 19-11 shows a 2D geometry with two holes, and a Bézier Polygon that is intended not to be a part of the model but is included only to control mesh size inside the domain.

I Right-click Geometry () and select Virtual Operations>Mesh Control Edges (). Select the edges of the Bézier Polygon in the Edges to include selection.



Figure 19-11: A geometry with a Bézier Polygon used to define mesh size inside the domain.

- 2 Click Build Selected ( _). Note that the selected edges are removed.
- 3 Right-click Mesh ( ) and select Free Triangular ( ). Note that the edges removed in the previous step are now visible again.
- **4** Right-click **Free Triangular I** and select **Size** (
- **5** Select Boundary as Geometric entity level, and select the edges of the Bézier Polygon.
- 6 Select the Extra fine as Predefined element size.

7 Click the **Build All** button ()) or press F8 to build the entire mesh. Note that the edges of the Bézier Polygon are now removed (Figure 19-12) and that the only trace of them is the fine mesh size inside the domain.



Figure 19-12: Fine mesh inside the domain.

# Using Structured and Unstructured Mesh with Boundary Layers

This example demonstrates a geometry where free tetrahedral mesh is used in one domain, swept mesh is used in an other domain. The domains are separated by a mesh control face, which is automatically removed once the domains on both sides are meshed. Finally boundary layers are added, without the need to respect the (now removed) mesh control face.

I Right-click Geometry (♪) and select Virtual Operations>Mesh Control Faces (▲). Select the face separating the domains in the Faces to include selection.



- 2 Click **Build Selected** (_____). Note that the face is removed. There is now only one domain.
- **3** Right-click **Mesh** () and select **Free Tetrahedral** (). Note that the face has reappeared, and that there are two domains.
- **4** Add the cylinder shaped domain with a hole to the selection list.
- **5** Click on the **Size** ( ) node, and select the **Finer** as **Predefined** element size. Build the mesh ( ).



- 6 Right-click Mesh () and select Swept ().
- 7 Right-click Swept I and select Distribution (

8 Select Predefined distribution type and enter 10 in the Number of elements field and 3 in the Element ratio field. Build the mesh (



9 Right-click Mesh ( ) and select Boundary Layers ( ).

10 Click the Boundary Layer Properties  $(\bigcirc)$  node under Boundary Layers 1.

II Add (for example) the sides of the geometry to the selection list.



12 Click the Build All button ()) or press F8 to build the entire mesh. Note that the mesh control face is now removed, and that the boundary layer mesh nodes are not located where the boundary was.



# Clearing Meshes and Deleting Meshing Sequences

Use a **Clear** function to keep the features and be able to recreate the mesh by building the sequence again. Use a **Delete** function to completely remove a mesh.



Remember, **Undo** is not possible for nodes that are built directly, such as geometry objects, meshes, solutions, and plots.

## CLEARING ALL MESHES FOR ALL GEOMETRIES

If you have a model geometry with several meshes you can clear all meshes at the same time. From the main menu, select **Edit>Clear All Meshes** (  $\frac{1}{2}$  ).

#### CLEARING A MESH FOR A SPECIFIC GEOMETRY

Under the **Geometry** node where you want to clear the mesh, right-click the **Mesh** node and select **Clear Mesh** (  $\frac{1}{2}$  ) from the context menu.

#### DELETING A MESHING SEQUENCE

To delete a meshing sequence completely, right-click the **Mesh** node in the **Model Builder** and select **Delete Sequence** ( $[\times]$ ). Click **Yes** or **No** to confirm the deletion.

# Displaying Mesh Element Quality and Size

# Introduction

The mesh resolution and mesh element quality are important aspects to consider when validating a model. Low mesh resolution—in relation to the variations in the solution and the geometry—can lead to inaccurate results, and a low mesh element quality—which measures the regularity of the mesh elements' shapes—can lead to inverted mesh elements (see Avoiding Inverted Mesh Elements) and convergence issues.

COMSOL includes predefined variables for these mesh quantities:

- h, the local mesh size
- qual, the mesh element quality, which is a dimensionless quantity between 0 and 1, where 1 represents a perfectly regular element, and 0 represents a degenerated element.

# Displaying Mesh Element Quality and the Mesh Element Size

You can display the mesh element quality and the mesh element size using, for example, a surface plot in 2D or a volume plot in 3D. You can always use a Mesh data set to display these quantities as soon as you have created a mesh. If you have a solution, you can also use a Solution data set. For a model with a mesh, do the following steps to display the mesh element quality or mesh element size:

- I Right-click the **Mesh** node and select **Plot** (S). Doing so creates a plot group with a **Mesh** plot node (S).
- 2 By default, this plot shows the mesh element quality. In the **Mesh** node's settings, select **Size** instead of **Quality** from the **Element color** list to plot the mesh element size instead.

Alternatively, you can access the variables for mesh element quality and size in a surface plot, for example:

I Under Results ( ), right-click Data Sets ( ) and select Mesh ( ) to add a Mesh data set.

- 2 Add a 2D or 3D Plot Group using the Mesh data set as the group's data set, and then add a Surface or Volume plot. For example, in a 2D Plot Group>Surface node ( ), select Mesh element size (h) or Mesh element quality (qual) from the predefined quantities (under Geometry and Mesh).
- **3** Click the **Plot** button ( $\swarrow$ ) to display a plot of the selected mesh quantity.

For statistical information about the mesh element quality, right-click the **Mesh** node (()) and select **Statistics** (). The **Statistics** window includes information about the minimum and average mesh element quality and a mesh element quality histogram, which shows the relative frequency of mesh elements with different quality values.

# Avoiding Inverted Mesh Elements

In this section:

- Inverted Mesh Elements
- Using Linear Geometry Shape Order
- Modifying the Geometry or Mesh
- Visualizing Inverted Mesh Elements

# Inverted Mesh Elements

If you have a mesh that is coarse along a curved boundary you might get problems with inverted mesh elements. This means that a mesh element is wrapped inside-out or has zero area (in 2D) or volume (in 3D). More precisely, there is some coordinate for which the Jacobian matrix for the mapping from local to global coordinates has a negative or zero determinant. In most cases, the linear (straight) mesh elements that you see in a mesh plot are not inverted, but the higher-order curved mesh elements used for computing the solution might be. Studying the minimum element quality therefore does not reveal the presence of inverted mesh elements in most cases.

Inverted mesh elements in themselves do not pose any immediate threat to the overall accuracy of your solution. However, if you are using an iterative solver, it might fail to converge. If you reach convergence and the solution looks good, it likely is. It is worth bearing in mind that the faces along which there are inverted elements are less than perfectly resolved. If these faces are important for your results, you might want to pursue a mesh without inverted elements or at least make sure that the mesh resolution is sufficiently fine to guarantee an accurate solution. The easiest way to get an idea of the accuracy is to try a few different meshes and see how the solution changes. If the variation does not exceed your limits of acceptance, you are fine.

The solver prints warnings about inverted mesh elements to the **Log** window ([]]]) if they appear. Warning nodes (?) also appear in the solver sequence where the inverted mesh elements appear. It is often possible to avoid problems with inverted mesh elements by reducing the geometry shape order or by modifying the geometry or the mesh.

# Using Linear Geometry Shape Order

When solving a model, the solver ensures that no inverted mesh elements are created. This is done by reducing the geometry shape order for the corresponding elements to first order. By default, the solver does this automatically. Alternatively, you can avoid problems with inverted mesh elements by using linear geometry shape order for all elements. You do this by choosing **Linear** from the **Geometry shape order** list in the **Model Settings** section of the settings window for the main Model node.

# Modifying the Geometry or Mesh

If you do not want to use linear geometry shape order to avoid problems with inverted mesh elements you can try any of the following:

- Create an extruded, revolved, or swept 3D mesh instead of using the free mesher.
- Avoid small curved boundaries such as fillets unless they are important for the result.

# Visualizing Inverted Mesh Elements

You can visualize inverted mesh elements using the reldetjacmin variable, which is the minimum of the determinant of the Jacobian matrix for the mapping from local (element) coordinates to global coordinates. A minimum value less than zero for an element means that the element is wrapped inside-out; that is, it is an inverted mesh element.

A typical visualization uses reldet jacmin as the quantity to plot as a volume plot. To display only the inverted elements, add a **Filter** subnode using the logical expression reldet jacmin<0 to include only the inverted elements.

# 20

# Solvers and Study Types

This chapter lists the Solver Studies and Study Types in COMSOL Multiphysics and explains the study steps and solver configurations. It also describes the major solvers and settings as well as batch jobs, parametric sweeps, and cluster computing. See also the COMSOL Multiphysics Reference Guide and the Optimization Module User's Guide for other supplementary information.

In this chapter:

- Solver Studies and Study Types
- Harmonic Perturbation, Prestressed Analysis, and Small-Signal Analysis

# Solver Studies and Study Types

In this section:

- Introduction to Solvers and Studies
- Adding a Study
- Available Study Types
- Adding Study Steps
- · Working With Study Steps
- · Generating Solver Configurations and Job Configurations
- Editing Solver Configurations
- Clearing, Deleting, Disabling, and Enabling a Solver or Solutions
- Selecting a Stationary, a Time-Dependent, or an Eigenvalue Solver
- Linear Solvers vs. Nonlinear Solvers
- · Remarks on Solver-Related Model Characteristics
- Computing a Solution
- Updating the Model
- Computing the Initial Values
- · Getting Results While Solving
- Progress and Log Information
- Convergence Plots

In the COMSOL Multiphysics Reference Guide:

• Solver Features



• Advanced Solver Topics

In the COMSOL Java API Reference Guide:

• Solver

# Introduction to Solvers and Studies

The process of solving a problem in COMSOL Multiphysics is divided into a hierarchy of varying details. On the coarsest level, containing the least amount of detail, is the

**Study** node (). Selecting any of the predefined *study types* adds a Study node to the **Model Builder** tree () and also a corresponding *study step* and, in some cases, additional study steps. The study steps represent the next level of detail. Most study steps are used to control the form of the equations, which physics interfaces are included and which meshes are used. These study steps correspond to a part of a solver sequence, which is the next level of detail (for example, there are also study steps that are used for cluster computing, which correspond to a part of a job sequence). A solver sequence contains nodes that define variables to solve for, the solvers and their settings, and additional sequence nodes for storing the solution, for example. The solvers also contain nodes which allow you to control the solver settings at varying level of detail.

Solving a problem can amount to simply right-clicking the **Study** node for a predefined study type and selecting **Compute** ( $\equiv$ ), which generates the a default solver sequence for the corresponding study steps and computes the solution. But you may also control the settings at any level of detail. There might not be any predefined study type which corresponds to the simulations you are interested in doing, in which case you can add individual study steps. Also, by changing the settings in the solver sequence, you can, for example, control the desired tolerance for the error in the solution or which time-integration method or linear solver to use. If you want to continue an interrupted parametric or time dependent solution, for example, right-click the **Study** node for a predefined study type and select **Continue** ( $\implies$ ).

# Adding a Study

There are two ways to add a study to a model:

- You can add a study when creating a model using the **Model Wizard** (*X*), which includes a **Select Study Type** page (the last page), where you can select from preset studies for the physics interfaces solved for and other, custom studies.
- You can also add a study by right-clicking the root node in the Model Builder and selecting Add Study. This opens the Select Study Type page in the Model Wizard. The list of preset studies is then based on the existing physics interfaces you choose to solve for in the new study, using the Solve for column in the Selected physics table. From the list under Studies, select Add study (the default) to add the selected study to the model (and keep all existing studies), or select, for example, Replace Study I to replace an existing study.

You can have more than one study (each generating one or more solutions) for different scenarios using the same geometry and physics.

# Available Study Types

The following study types are available in the Preset Studies branch of the **Studies** list on the **Select Study Type** page. Some of the study types are only available with certain add-on modules:

TABLE 20-1: STUDY TYPES

STUDY TYPE	ICON	DESCRIPTION				
AC Impedance Stationary	1000	Creates two study steps, where the first solves for a stationary problem, and the second step solves for a harmonic perturbation in the frequency domain of the stationary solution. See AC Impedance Stationary in the COMSOL Multiphysics Reference Guide.				
AC Impedance Time Dependent	1000	Creates two study steps, where the first solves for a time-dependent problem, and the second step solves for a harmonic perturbation in the frequency domain of the solution at the last time step. See AC Impedance Time Dependent in the COMSOL Multiphysics Reference Guide.				
Boundary Mode Analysis		A boundary mode analysis combines a mode analysis on a port (boundary) (which can represent, for example, a cross section of a waveguide) with a frequency domain study for the full geometry. Adds a Boundary Mode Analysis study step followed by a Frequency Domain study step to the Study node. See Boundary Mode Analysis in the COMSOL Multiphysics Reference Guide.				
Coil Current Calculation	<b>1</b>	This study is available with the AC/DC Module using the Magnetic Fields interface coil features. See Coil Current Calculation Study in the COMSOL Multiphysics Reference Guide.				
Eigenfrequency	հել	Similar to an Eigenvalue study but computes the eigenfrequencies instead of the eigenvalues. Adds an Eigenfrequency study step to the Study node. See Eigenfrequency in the COMSOL Multiphysics Reference Guide.				
Eigenvalue	Ъц	This study uses a formulation to compute eigenvalues and eigenmodes using an eigenvalue solver. Adds an Eigenvalue study step to the Study node. See <u>Eigenvalue</u> in the COMSOL Multiphysics Reference Guide.				
Empty Study	-69 10	An empty study that initially does not contain any study steps.				

TABLE 20-1: STUDY TYPES

STUDY TYPE	ICON	DESCRIPTION			
Frequency Domain	1 <u>000</u> 1	For a study in the frequency domain such as solutions to a wave equation or frequency response. Adds a Frequency Domain study step to the Study node. See Frequency Domain in the COMSOL Multiphysics Reference Guide.			
Frequency-Domain, Perturbation	1000	This study is available with a variety of interfaces. See Frequency-Domain, Perturbation in the COMSOL Multiphysics Reference Guide.			
Frequency-Domain Modal	1 <u>000</u> 1	For analyzing wave problems in the frequency domain using a modal solver, the Frequency Domain Modal study adds an Eigenfrequency study step followed by a Frequency Domain Modal study step to the Study node. See Frequency Domain Modal in the COMSOL Multiphysics Reference Guide.			
Frequency-Stationary	Ècci	This study is available with the Induction Heating and Microwave Heating interfaces and the settings are the same as for the Stationary study. See <u>Frequency-Stationary</u> in the COMSOL Multiphysics Reference Guide.			
Frequency-Transient	₩ş	This study is available with the Induction Heating, Microwave Heating, Inductively Coupled Plasma, and Microwave Plasma interfaces. The settings are the sar for the Time-Dependent study. See Frequency-Tran in the COMSOL Multiphysics Reference Guide.			
Linear Buckling	IS	A linear buckling study for a structural model includes a Stationary study step followed by a Linear Buckling study step, which solves for the critical load factor using an eigenvalue solver. See Linear Buckling in the COMSOL Multiphysics Reference Guide.			
Mean Energies	ir:	The Mean Energies study is available with the Boltzmann Equation, Two-Term Approximation interface in the Plasma Module. See <u>Mean Energies</u> in the COMSOL Multiphysics Reference Guide.			
Mode Analysis	20	A mode analysis computes the modes for an acoustics or electromagnetic wave using an eigenvalue solver. Adds a Mode Analysis study step to the Study node. See Mode Analysis in the COMSOL Multiphysics Reference Guide.			
Particle Trajectories		Available with the Particle Tracing Module. See Particle Trajectories Study in the COMSOL Multiphysics Reference Guide.			

TABLE 20-1: STUDY TYPES

STUDY TYPE	ICON	DESCRIPTION			
Prestressed Analysis, Eigenfrequency	<b>È−</b> ₫	For computing eigenfrequencies which are influenced by a prior static load. It is necessary to have geometric nonlinearities active in order to perform this type of analysis. Adds a Stationary and an Eigenfrequency study step to the Study node. See <u>Prestressed Analysis</u> , <u>Eigenfrequency</u> in the COMSOL Multiphysics Reference Guide.			
Prestressed Analysis, Frequency Domain	<u>⊧</u>	For computing the response to harmonic loads fluctuating around a static preload. It is necessary to have geometric nonlinearities active in order to take the influence on the stiffness from the preload into account. Adds a Stationary and a Frequency Domain study step to the Study node. See Prestressed Analysis, Frequency Domain in the COMSOL Multiphysics Reference Guide.			
Reduced Electric Fields	Ŀr.	The Reduced Electric Fields study is available with the Boltzmann Equation, Two-Term Approximation interfa in the Plasma Module. See <u>Reduced Electric Fields</u> in <i>COMSOL Multiphysics Reference Guide</i> .			
Small-Signal Analysis, Frequency Domain	<u>t</u>	For perturbed frequency domain studies of small oscillation about a bias solution. The study creates two study steps, a Stationary study step solves for a stationary problem, and a Frequency Domain, Perturbation step solves for a harmonic perturbation in the frequency domain of the stationary solution. See <u>Small-Signal</u> <u>Analysis, Frequency Domain</u> in the COMSOL Multiphysics Reference Guide.			
Stationary	For a stationary or steady-state situation wh use a stationary solver and an equation form where all time derivatives vanish. This study used for optimization problems which are co with a stationary PDE problem. Adds a Station step to the Study node. See Stationary in the Multiphysics Reference Guide.				
Stationary with Initialization	ł.	For stationary two-phase flow models that require an initialization of a level set function or phase field function. Adds a Wall Distance Initialization study step followed by a Stationary study step to the Study node. See Stationary with Initialization in the COMSOL Multiphysics Reference Guide.			

TABLE 20-1: STUDY TYPES

STUDY TYPE	ICON	N DESCRIPTION		
Stationary Plug Flow	ŀÇ.	For use with predefined Plug flow reactor type in the Reaction Engineering interface, available with the Chemical Reaction Engineering Module. Adds a Stationary Plug Flow step to the Study node that solves for the molar flow rate as function of reactor volume. See Stationary Plug Flow in the COMSOL Multiphysics Reference Guide.		
Time Dependent	ì۵	For a time dependent or transient simulation using a time dependent solver for computing the solution over time. This study type is also used for optimization problems which are constrained with a time dependent PDE problem. Adds a Time Dependent study step to the Study node. See Time Dependent and Time Discrete in the <i>COMSOL Multiphysics Reference Guide</i> .		
Time-Dependent with Initialization, Fixed Geometry and Time Dependent with Initialization	ΕQ	Use this to exclude the deformation/ALE (X, Y, Z) variables from the variables that are actually solved for. Useful, for example, to look at time-dependent electrochemistry in cases were the mesh deformation is small. It adds a Current Distribution Initialization study step and Time-Dependent, Fixed Geometry study step to the Study node. See Time-Dependent with Initialization, Fixed Geometry and Time-Dependent with Initialization in the COMSOL Multiphysics Reference Guide.		
Time-Dependent Modal	<u>к</u>	For analyzing time-dependent wave problems using a modal solver, the Time-Dependent Modal study adds an Eigenfrequency study step followed by a Time-Dependent Modal study step to the Study node. See <u>Time-Dependent Modal</u> in the COMSOL Multiphysics Reference Guide.		
Transient with Initialization	Ŕ	For time dependent two-phase flow models that require an initialization of a level set function or phase field function. Adds a Wall Distance Initialization study step followed by a Time Dependent study step to the Study node. See Transient with Initialization in the COMSOL Multiphysics Reference Guide.		

# C See Also

Harmonic Perturbation, Prestressed Analysis, and Small-Signal Analysis

Additionally, you can add *adaptive mesh refinement* (adaptive remeshing) to a Stationary, Eigenvalue, Eigenfrequency, or Time Dependent study by selecting the **Adaptive mesh refinement** check box in the **Study Extensions** section of the study step's settings window. The solver then minimizes the error according to a specified error norm by adaptively refining the mesh.

For a parametric stationary PDE problems that arise when you vary some parameter of interest in the equations, constraints, or expressions, you can activate the *parametric continuation solver* by selecting the **Continuation** check box and specifying the continuation parameter and its values in the Stationary study step's settings window. To make a parametric study where the parameter varies the geometry, for example, use a parametric sweep.

# Adding Study Steps

The predefined study types correspond to the most commonly performed simulations for the different physics interfaces. However, sometimes you might want to do other investigations. For example, you may first want to solve a stationary problem for a physical quantity and use that solution as input to a time dependent simulation for another physical quantity. You can do this by adding (by right-clicking the study node) a **Stationary** study step () followed by a **Time Dependent** study step () and selecting in each study step which physics interfaces to include.



See Study Types in the COMSOL Multiphysics Reference Guide for details about each of the following features.

Most study steps correspond to a part of a solver sequence which includes a solver for the specific problem:

• **Stationary**: Generates equations without time derivatives. Corresponds to a **Stationary solver**.



If the **Optimization** check box is selected, then the Stationary study step corresponds to an **Optimization** solver. This solver requires an Optimization Module license.

- Time Dependent, Time Discrete: Generates equations for transient (time-dependent) simulations. Corresponds to a Time Dependent Solver, Time Discrete Solver, or Time Explicit Solver.
- **Eigenvalue**: Generates equations formulated for computing eigenvalues and eigenfunctions. Corresponds to an **Eigenvalue Solver**.
- **Eigenfrequency**: Similar to an **Eigenvalue** study step. Corresponds to an **Eigenvalue Solver** which is set to transform eigenvalues to eigenfrequencies.
- **Frequency Domain**: Generates stationary equations which are used for a frequency sweep. Corresponds to a stationary parametric solver that is preset to linearize the equations. By selecting the **Use asymptotic waveform evaluation** check box, this study step corresponds to an **AWE Solver**.
- **Time-Dependent Modal:** Generates equations for time-dependent modal analysis. Corresponds to a **Modal Solver** with **Study type** set to **Time dependent**.
- Frequency Domain Modal: Generates equations for modal analysis in the frequency domain. Corresponds to a Modal Solver with Study type set to Frequency domain.

There are some study steps that do not generate equations and which can only be used in combination with other study steps. These study steps do not correspond to any part of a solver sequence. Instead, they correspond to a part of a job sequence. The available study steps of this type are:

• **Parametric Sweep** (1111): Used to formulate a sequence of problems that arise when you vary some parameters in the model. The problem at a fixed parameter value is defined by the rest of the study steps in the study. Generates a **Parametric** job sequence, unless the problem and parameters are such that the parametric sweep can be realized through a **Stationary Solver** with a **Parametric** node (1112), in which case such a solver is generated in the solver sequence. The parametric sweep can include multiple independent parameters directly, but you can also add more than one

**Parametric Sweep** node to create nested parametric sweeps. In the **Study** branch, indentations of the node names indicate that the parametric sweeps are nested.

- **Batch** (**MAP**): Creates a job that can be run without the graphical user interface and which stores the solution on disk. Generates a **Batch** job sequence.
- **Batch Sweep**: Used to formulate a sequence of problems that arise when you vary some parameter in the model. Each parameter tuple generates a batch job that runs the model with the given tuple. The results are stored on file and updated into the model. Generates a **Batch** job sequence and a **Parametric** job sequence.
- **Cluster Computing** (**b**): Used to solve the problem on a distributed-memory computer architecture. Generates a **Cluster Computing** job sequence and a **Batch** job sequence.
- **Cluster Sweep**: Used to formulate a sequence of problems that arise when you vary some parameter in the model. Each parameter tuple will solve the problem on a distributed-memory computer architecture. The results are stored on file and updated into the model. Generates a **Cluster Computing** job sequence and a **Batch** job sequence and a **Parametric** job sequence.

## Working With Study Steps

The study steps form a solver sequence that computes the solutions for the study. The study steps contain the following sections—in addition to specific study settings for each type of study step—in the **Setting** windows that can be used to control the study.

## **RESULTS WHILE SOLVING**

Specify which plot to display while solving and also which probes to include.

#### MESH SELECTION

Specify—for each geometry—which mesh to use for the study step.

#### PHYSICS AND VARIABLES SELECTION

Control and specify different cases where the physics to solve for is varied, or, for various analysis cases, which variables and physics features (for example, boundary conditions and sources) to use. The default is to solve for all physics interfaces that are compatible with the study type.

#### STUDY EXTENSIONS

These are extensions to the study's main solver such as adaptive mesh refinement and automatic remeshing. The options vary depending on the study type.

#### VALUES OF DEPENDENT VARIABLES

Specify the source of the values of variables that you do not solve for. It can be the specified initial values or the values from an existing solution.

#### In the COMSOL Multiphysics Reference Guide:



- Selecting Physics and Variables in the Study Steps
- Individual study steps described for the Study Types

# Generating Solver Configurations and Job Configurations

When you have added the study steps to the study, a solver sequence (and maybe a job sequence) is generated after right-clicking the study and selecting **Compute** ( $\equiv$ ).

The generated solver sequence is displayed under the **Solver Configurations** node  $( []_{P_P})$  and if applicable, under a **Job Configurations** node  $( []_{P_P})$ . The **Job Configurations** node  $( []_{P_P})$  is only visible if you click the **Show** button  $( ]_{\overline{C}} )$  and select **Advanced Study Options**. The node automatically displays if the **Job Configuration** node has content.

It is possible to have several solver sequences under a Solver Configuration node. The particular sequence that is enabled and runs when selecting **Compute** has a green border around its icon. An enabled sequence can be disabled by right-clicking it and selecting **Disable** (*O*). If no sequence is enabled when the study attempts to generate a sequence, a new sequence with default settings is generated. Only one sequence per study can be enabled.



Job Configurations and Solver Configurations in the COMSOL Multiphysics Reference Guide.

# Editing Solver Configurations

The study automatically generates the nodes in the **Solver Configurations** branch that represents the solvers, dependent variables, and other study-related functionality that the study steps require. You can edit the nodes in the **Solver Configurations** branch to, for example, adjust solver settings. If you edit any settings in a subnode to a **Solver** node, an asterisk in the **Solver** node's icon indicates that the settings differ from the default settings for the study types in the study. You can show the nodes in the **Solver** 

**Configurations** branch before solving by right-clicking the **Study** node and selecting **Show Default Solver** (

# Clearing, Deleting, Disabling, and Enabling a Solver or Solutions

Use a **Clear** function to keep the features and be able to recreate the solver configurations by computing again. Use a **Delete** function to completely remove a solver configuration or solver sequence.

Note

The **Undo** operation is not possible for nodes that are built directly, such as geometry objects, meshes, solutions, and plots.

#### DISABLING AND ENABLING A SOLVER NODE

- To disable a solver, right-click it and select **Disable** ( <a>2</a>).
- To enable a disabled solver, right-click it and select **Enable** (). The icon of the enabled solver has a green border.

## CLEARING ALL SOLUTIONS FOR ALL MODELS

To clear all solutions for all models at the same time, from the main menu, select **Edit>Clear All Solutions** (  $\frac{1}{2}$  ).

#### CLEARING A SOLUTION

To clear a set of solutions under a specific study, right-click the Solver Configurations node and select Clear Solutions ( $\frac{1}{2}$ ).

#### CLEARING A SOLVER SOLUTION

Right-click the **Solver** node under **Solver Configurations** and select **Solutions>Clear** (  $\frac{1}{2}$  ) from the context menu.

#### DELETING A SOLVER NODE

To delete one **Solver** node under **Solver Configurations**, right-click the corresponding node in the **Model Builder** and select **Delete** ( $\bigotimes$ ) or press the Delete key. Click **Yes** or **No** to confirm the deletion.

#### DELETING ALL SOLVER NODES UNDER SOLVER CONFIGURATIONS

To delete all Solver nodes under Solver Configurations, right-click Solver Configurations and select Delete Solvers ( $[\times]$ ). Click Yes or No to confirm the deletion. You can also

choose whether or not to remove the Results nodes (data sets and plots, for example) associated with the solver configuration.

# Selecting a Stationary, a Time-Dependent, or an Eigenvalue Solver

The study type adds appropriate solvers for the study, so that you do not need to select one yourself. If you nevertheless prefer to make a selection, the first question to ask is whether the problem is stationary or time-dependent.

Most real-world phenomena develop in time, but you might know that the system under study approaches a *steady state* described by a stationary solution.

For a stationary problem, select the stationary solver. When solving the time-dependent coefficient form problem

$$e_{a}\frac{\partial^{2} u}{\partial t^{2}} + d_{a}\frac{\partial u}{\partial t} + \nabla \cdot (-c\nabla u - \alpha u + \gamma) + \beta \cdot \nabla u + \alpha u = f$$

the stationary solver searches for a solution where  $\partial u/\partial t = 0$ .

The time-dependent solver and the stationary solver both handle linear as well as nonlinear problems.

In some cases you might want to study the natural harmonic oscillations of a time-dependent problem. This involves finding the eigensolutions u with their associated eigenvalues  $\lambda$  in a PDE problem of the following form:

$$\nabla \cdot (-c\nabla u - \alpha u) + \beta \cdot \nabla u + au = \lambda d_a u - \lambda^2 e_a u$$

Such an analysis is particularly interesting in electromagnetics, structural mechanics, acoustics, and wave propagation. To study the eigensolutions and compute the eigenvalues (or eigenfrequencies), select the eigenvalue solver.

In addition to these fundamental solvers, COMSOL Multiphysics includes additional solvers for special applications such as an optimization solver, a time-discrete solver, an AWE solver, and a plugflow solver. Some of these solvers are connected to special functionality in the add-on modules.



Solution Operation Features in the COMSOL Multiphysics Reference Guide

#### AUTOMATIC NONLINEARITY DETECTION

COMSOL Multiphysics automatically detects nonlinearity, so you normally do not need to decide whether to use a linear or a nonlinear solver.

The automatic detection works through analysis of the variables contributing to the residual Jacobian matrix and the constraint Jacobian matrix. If the algorithm finds that both these matrices are complete and do not depend on the solution, the stationary solver (including parametric sweeps) uses a linear solver algorithm. Otherwise, the solver uses a nonlinear solver algorithm. "Complete" here means that the algorithm only found contributing variables for which the correct Jacobian will be computed.

#### OVERRIDING THE AUTOMATIC NONLINEARITY DETECTION

In some cases you might want to specify explicitly that the stationary solver uses the linear or nonlinear solver algorithm. Such cases include:

- Linear models where the automatic detection of linearity makes COMSOL Multiphysics use the nonlinear solver. This can happen, for example, for models that involve some less common types of coupling variables (directly or indirectly as part of some boundary conditions). The nonlinear solver usually converges directly for linear problems, but if that is not the case, you can switch to the linear solver.
- Using the linear solver to single-step Newton's method for a nonlinear problem.
- Using the linear solver to solve a linearized (nonlinear) problem.

To explicitly control which solver algorithm the stationary solver uses, click the **Stationary Solver** node to open its settings window and locate the **Linearity** list in the **General** section. Then, from the **Linearity** list, select **Linear** to use the linear solver, **Nonlinear** to use the nonlinear solver, or **Linear perturbation** for small-signal analysis, for example. With the default setting, **Automatic**, COMSOL Multiphysics detects nonlinearity automatically.



Stationary in the COMSOL Multiphysics Reference Guide

#### WHICH MODELS ARE NONLINEAR?

How do you determine if a problem is linear or nonlinear? Finding out is not always easy, but for most of the physics interfaces you can apply the following criterion: if any coefficient or material property contains a dependent variable the model is nonlinear. The same holds true for models based on a PDE in the coefficient form, again with the same criterion.

Note a few special cases that arise with some modeling interfaces. First, in the Heat Transfer interfaces, if you include radiation terms for black-body radiation, which depend on temperature according to the Stefan-Boltzmann law, the problem is nonlinear. Second, the Single-Phase Flow interface is always nonlinear unless  $\rho = 0$ , resulting in the linear Stokes equations.

Whether your problem is linear or nonlinear, it is important to realize that the solvers break it down into one or several linear systems of equations. The choice of solver for linear systems thus affects the solution time and memory requirements also for nonlinear models.



Linear System Solver Selection Guidelines in the COMSOL Multiphysics Reference Guide

# Remarks on Solver-Related Model Characteristics

#### THE IMPORTANCE OF A CORRECT JACOBIAN MATRIX

As mentioned above, the solvers break down each problem—whether linear or nonlinear—into one or several linear systems of equations by approximating the given problem with a linearized problem. The coefficient matrix of the discretized linearized problem is called the *Jacobian matrix* (or *stiffness matrix*). In most cases COMSOL Multiphysics computes a correct Jacobian matrix, especially when using the weak solution form. For other cases, though, the software treats certain terms in the PDEs and boundary conditions as if they did not depend on the sought solution, and then an incorrect Jacobian results.

The consequences of an incorrect Jacobian matrix depend on the solver in use:

- The linear stationary solver and the eigenvalue solver simply give an incorrect solution.
- The nonlinear stationary solver and the time-dependent solver take longer time to convergence to the correct solution, and in some cases the solver even fails to find a solution. However, if the ignored terms have a very weak dependence on the sought solution, the impact on convergence speed is small.

An incorrect Jacobian matrix can occur in the following cases:

- If you supply an incorrect derivative of some of the functions in the **Functions** dialog box, and the software uses this function in some PDE or boundary condition with arguments that depend on the solution.
- If you use a MATLAB M-file function for which you have specified no derivative, and then call this function in some PDE or boundary condition with arguments that depend on the solution. To avoid this problem, define the function and its derivatives.
- If you use nonanalytic functions in a complex-valued problem, such as real, imag, conj, abs, or arg.
- If you use the nojac operator.
- If you use a solution form that is not suited for the equations you are solving.
   Selecting Automatic in the Solution form list on the Advanced page in the Solver
   Parameters dialog box ensures a correct solution form (this is the default setting).



- Global and Local Functions
- MATLAB Functions (Global Only)

#### WORKING WITH COMPLEX-VALUED PROBLEMS

When a problem contains complex numbers, be sure to consider the following two aspects:

 For time-dependent problems, the time-stepping algorithm must know if a problem is complex valued. If your model uses a complex-valued initial solution, COMSOL Multiphysics detects this and classifies the problem accordingly. If the problem is complex-valued because of a complex-valued PDE coefficient or other material property, go to the **Solver Parameters** dialog box, find the **General** page, and select the **Allow complex numbers** check box.

• If you expect to receive complex outputs from real inputs in elementary functions such as sqrt, log, and asin, then go to the Solver Parameters dialog box, click the Advanced tab, and select the Use complex functions with real input check box. By default, COMSOL Multiphysics gives an error message if a real input to a function generates a complex output, for instance sqrt(-1).

# Computing a Solution

Computing a solution can be done in a few different ways. The most straightforward way is to right-click the **Study** node and select **Compute** ( $\equiv$ ), or to press F8. This always runs the enabled solver sequence with a green border around its icon. However, if a solver sequence is disabled, you can still run it by right-clicking it and selecting **Compute** ( $\equiv$ ).

Sometimes, the default settings in the study steps are not sufficient to specify the details of how to obtain a solution. For example, you may want to change a tolerance or use a different time-stepping method. This is done in the attached solver sequences. If you want to run such a solver sequence, which has been manually altered, right-click the solver sequence and select **Compute** ( $\equiv$ ). Alternatively, enable the solver sequence, right-click the study, and select **Compute** ( $\equiv$ ).

If your solver sequence consists of several solvers you can run a particular solver by right-clicking it and selecting **Compute to Selected** ( $\equiv$ ), or by pressing F7. You can also choose **Compute From Selected** ( $\equiv$ ) to run the selected solver and all solvers below it in the sequence. Choosing the option **Compute All** ( $\equiv$ ), or pressing F8, runs all solvers in the solver sequence.

By default, a study creates a **Solution** data set and plot groups with results plots suitable for the physics interfaces that you compute the solution for. If you do not want to generate plots automatically, clear the **Generate default plots** check box in the **Study Settings** section in the main **Study** nodes' settings windows.

# Updating the Model

To update the model for a particular study, right-click the **Study** node and select **Update Solution** ( **C** ) or press F5. Pressing F5 updates the current study if selected or all studies if no study is selected. This is useful in the following situations when you have:

- Added or edited variables and want to use these during analysis without having to solve the model again.
- Edited the equations, material properties, or boundary conditions and want to use these without having to solve the model again.
- Changed the element order and want to interpolate the solution onto the new elements for results analysis or other purposes.
- Remeshed or modified a geometry and want to interpolate the solution onto the new geometry for results analysis or other purposes.

In all these cases the software passes, or interpolates, the solution to the resulting data sets, but does not recompute it to reflect any changes in variables, equations, mesh, or geometry.

# Computing the Initial Values

In some situations you may want to evaluate and plot values, expressions, or functions that need not be solved for, such as initial values. To make the initial values available for results evaluation and plotting, generate a solver sequence, right-click the **Dependent Variables** node ( $u_{,V,W}$ ), and select **Compute to Selected** ( $\equiv$ ). By default this plots the initial values of the variables solved for as specified by the **Field** subnode ( $\bigcup_{U,T,P}$ ). More precisely, choosing **Initial values** from the **Keep solution** list, makes the variables solved for available for results evaluation and visualization. To evaluate the initial values the settings of the corresponding **Method** list is used. The method **Initial expression** uses the settings of the **Initial Values** node, whereas **Solution** uses a solution object.

Note

The **Compute to Selected** ( **=** ) command runs everything above the **Dependent Variables** node, including any solvers, which might be computationally expensive.

(Note, however, that this runs everything above the **Dependent Variables** node, including any solvers, which might be computationally expensive.)

Also variables not solved for (such as a solution from a previous time dependent or parametric analysis) can be made available for results evaluation and visualization. Select **Variables not solved for** from the **Keep solution** list and edit the corresponding **Method** list accordingly.

# Getting Results While Solving

The ability to get numerical results and plots of the intermediate solution while solving can be useful for diagnosing problems and for monitoring the progress of the solution process. COMSOL Multiphysics supports two ways of displaying results while solving:

- Plots in the **Graphics** window: you can select any of the plot groups in the model to display while solving.
- Probe data in the **Results** window and associated line graphics in a separate **Probe Plot** window: you can include any probe defined in the model. See Probes.

In the study step nodes settings windows' **Results While Solving** sections you can control which plots to display while solving: Select the **Plot** check box to activate the plotting in the **Graphics** window. You can then select the plot group to use and, for time dependent simulations, at which time steps to update the plot: the output times or the time steps taken by the solver. You can also control which probes to tabulate and plot the values from. The default is to tabulate and plot the values from all probes in the **Results** window and a **Probe Plot** window.

# Progress and Log Information

While a problem is being solved it is useful to know its progress. For that purpose COMSOL Multiphysics provides the **Progress** (**____**) and **Log** (**____**) windows, which are selected from the **View** menu. You can monitor the progress for the solvers during the solution process in the **Progress** window and inspect convergence information and other data from the latest and earlier runs in the **Log** window.

#### CANCELING SOLVERS

Sometimes you might realize that you are solving the wrong problem, or perhaps it is taking too long; to cancel the process, click the **Cancel** button in the **Progress** window. The solver attempts to cancel the computation as soon as possible and return the program to where it was before starting to solve.

## THE PROGRESS WINDOW

The solvers call each other in a hierarchical order: the adaptive solver calls the linear, nonlinear, parametric, eigenvalue, or time-dependent solver; the parametric solver calls the nonlinear or linear solver; the time-dependent, eigenvalue, linear, and nonlinear solvers all call both the assembly and the linear system solver. The solver hierarchy is visible in the **Progress** window (**____**) because each solver adds its own line when it is called.

		Solving linea	r system			
Description	Progress	Convergence	Parameter	Value		
Adaptive solver	96 %		Ngen	1	Stop	
inear solver	92 %				Stop	
MRES	73 %	0.03	Iteration	2	Stop	
	-	-	ie.		Stop	

Figure 20-1: The Progress window for the solution of a linear stationary problem using the adaptive mesh refinement solver.

The **Progress** window contains the following columns:

- The Description column shows the solver's name.
- The Progress column shows an estimate of the solver's progress.
- The Convergence column shows an estimate of the solver's convergence if available.
- The **Parameter** and **Value** columns contain solver-dependent information: the adaptive solver shows the adaptive mesh generation number; the time-dependent solver shows the time; the parametric solver shows the parameter value; and the nonlinear solver and iterative linear system solvers show the iteration number.

#### Using the Stop Buttons

You can use the **Stop** buttons that appear at each solver level to stop the solver's execution. When you click a **Stop** button, COMSOL Multiphysics returns a current approximation to the solution if possible. For example, when you click it at the adaptive solver level, the underlying linear, nonlinear, parametric, eigenvalue, or time-dependent solver continues until it is finished, but the adaptive solver stops at its current generation, immediately returning a solution for analysis. Similarly, you can click the **Stop** button to return the current iteration for the nonlinear solver or an iterative solver. Also use the **Stop** button during time stepping to return all time steps

up to the current one. The parametric solver works similarly: to return the solutions for all parameter values up to the current one, click the **Stop** button.



There is also a **Cancel** button ( $\bigotimes$ ) on the status bar in the lower-right corner of the COMSOL Desktop that you can use to cancel the solver process (that is, stop without returning any solution data).

#### THE LOG WINDOW

The **Log** window (**III**) contains logs from the solvers. When a solver starts, the log window displays logs from all solver calls.

#### The Adaptive and Parametric Solver Logs

The adaptive solver prints a section in the log for each adaptive generation containing the current number of elements and an error indicator. The parametric solver similarly outputs one section to the log for each parameter value.

The stationary, time dependent, and eigenvalue solvers log their iterations.

#### The Nonlinear Solver Log

The log from the nonlinear solver contains the following information:

- The iteration number (**Iter**).
- A relative error estimate (**ErrEst**).
- The damping factor used in each Newton step (**Damping**).
- Fraction of Newton and Cauchy steps for Double dogleg (Newton, Cauchy).
- The size of the undamped Newton step (Stepsize) in the error estimate norm.
- The numbers of residuals (**#Res**), Jacobians (**#Jac**), and linear-system solutions computed (**#Sol**) so far.

#### The Iterative Linear System Solver Logs

The iterative linear system solvers produce a log that additionally contains the total number of linear iterations (Linlt), a relative error estimate (LinErr), and the relative residual (LinRes). The relative error estimate is a factor times the relative

(preconditioned) residual. The relative residual is the Euclidean norm of the residual divided by the norm, |b|, of the linear system's right-hand side.

# C See Also

Convergence Criteria in the COMSOL Multiphysics Reference Guide

# The Time Dependent Solver Log

The time-stepping algorithm produces a log that contains

- The time step number (**Step**).
- Time (Time; output times are indicated with **out**).
- The step size (Stepsize).
- The number of residuals (**Res**), Jacobians (**Jac**), and linear system solutions (**Sol**) computed.

You can see also the order of accuracy of the method (**Order**), the number of error test failures in time stepping (**Tfail**), and the number of failures in the nonlinear iterations (**NLfail**). For iterative linear system solvers, the log also contains the total number of linear iterations, a linear error estimate, and a relative residual (see above).

The Eigenvalue Solver Log

The eigenvalue solver produces a log that contains the iteration number (**Iter**), an error estimate (**ErrEst**), the number of converged eigenvalues (**Nconv**), and— if you are using an iterative linear solver— the number of linear iterations (**Linlt**).

The Optimization Solver Log



The **Optimization** solver requires the Optimization Module.

The optimization algorithm used by the solver **SNOPT** is an iterative procedure that involves *major* and *minor* iterations. A major iteration results in a new solution candidate. For each major iteration, the optimization solver solves a quadratic-programming subproblem using an iterative procedure; these iterations are the minor iterations.

The log produced by the optimization solver **SNOPT** contains the following data:

- The cumulative number of minor iterations (ltns).
- The current major iteration number (Major).
- The number of minor iterations for the current major iteration (Minor). This value should be 1 when the solver is close to the solution.
- The step length taken in the current search direction (**Step**). This value should be 1 when the solver is close to the solution.
- The number of times the multiphysics model has been solved (**nPDE**).
- The maximum complementarity gap (**Error**). It is an estimate of the degree of non-optimality of the reduced costs. For convergence, this value should be smaller than the **Optimality tolerance**.
- The current value of the objective function (**Objective**).

The optimization solver **Levenberg-Marquardt** is an iterative procedure used to solve least squares problems. The log produced by the solver **Lenenberg-Marquardt** contains the following data:

- The number of Levenberg-Marquardt iterations (ltns).
- The current Levenberg-Marquardt factor (ImFact). A small factor typically indicates fast convergence.
- The number of times the multiphysics model has been solved (**nPDE**).
- The maximum absolute value of the gradient (with respect to the control variables) of the objective function (**Gradient**).
- The estimated error based on the gradient, the objective function and the control variables (**Error**). For convergence, this value should be smaller than the **Optimality tolerance**.
- The current value of the objective function (**Objective**).

# Convergence Plots

Convergence plots use graphics to show how an error estimate or time step evolves during the solution process for nonlinear, time-dependent, and parametric solvers.

# CONVERGE PLOT SETTINGS

In the **Preferences** dialog box, click **Results** and then select the **Generate convergence plots** check box for the convergence plots to appear. This is the default setting. There is also a **Convergence plot buffer size (steps per plot)** field that controls the size of the

buffer used for storing the steps in the convergence plot. The default value is 10,000 steps. You can also control whether to generate convergence plots or not for a study from the main **Study** node using the **Generate convergence plot** check box in the **Study** node's settings window.

To control which solvers that generate convergence plots, use the **Convergence Plot Settings** menu button ( $\searrow$ ) on the **Progress** window's toolbar. Click the button to select or clear the convergence plots for each solver. For example, for a nonlinear time-dependent model, the menu that appears when you click the menu button contains the following solvers:

- Nonlinear solver
- Time-dependent solver (Generalized-alpha)

By default, all solvers are selected, and the convergence plot for each solver appears in its own **Convergence Plot** window. Clear the check mark for a solver to turn off its convergence plot.

Click the **Copy Convergence Data to Model** button (**IGP**) on the **Progress** window's toolbar to copy the convergence data to a table in a **Results** window.



NaNs (Not-a-Number entries) that appear in the tabulated convergence data represent breaks between multiple convergence cycles in an interactive solution process.

#### CONVERGENCE INFORMATION IN THE PLOTS

The convergence plots show an error estimate against the iteration number for the nonlinear solver and for the iterative linear system solvers (the Conjugate gradients, BiCGStab, GMRES, FGMRES, and multigrid solvers).

For the nonlinear solver, the convergence plots show the relative error estimate for each nonlinear iteration number. This number also appears in the **Log** window as **ErrEst**.

For the iterative linear system solvers, the error estimate for each linear iteration is a factor times the relative (preconditioned) residual. This number also appears in the **Log** window as **LinErr**. When these solvers are used together with the nonlinear solver, the graphs for the different linear-system solution steps are merged, and the plots use the accumulated number of iterations.

When using the parametric solver, the graphs for the different parameter steps are merged, and the convergence plots use the accumulated number of iterations.

When using a time-dependent solver, the graph in the **Convergence Plot** window shows the reciprocal of the time step size versus the time step. That is, a convergence plot with decreasing values shows that the time-dependent solver takes longer time steps, and vice versa.

The error estimate numbers for the last iteration also appear in the **Convergence** column in the **Progress** window.

Click the **Copy to Figure** button to create a copy of the convergence plot in a separate figure window.

# Harmonic Perturbation, Prestressed Analysis, and Small-Signal Analysis

In general, how the perturbation concept (and the study) is named is based on the application. For example, in the AC/DC Module it is referred to as *small-signal analysis*, whereas in the Structural Mechanics Module it is referred to as *prestressed analysis*. For the Batteries & Fuel Cells Module and the Electrodeposition Module, the studies are called *AC impedance*. For the CFD Module, and fluid flow in general, the term *perturbation* is sufficient.

See these studies in the *COMSOL Multiphysics Reference Guide* for details about availability by module and interface:

- Frequency-Domain, Perturbation
- Contraction (Contraction)

₩ Tip

- Small-Signal Analysis, Frequency DomainPrestressed Analysis, Eigenfrequency
- Prestressed Analysis, Frequency Domain
- AC Impedance Stationary
- AC Impedance Time Dependent

In this section:

- Frequency-Domain Perturbation Study and Study Step
- · Harmonic Perturbation—Exclusive and Contributing Nodes
- Prestressed Frequency Analyses Study

If you have the Acoustics Module and AC/DC Module, see Loudspeaker Driver: Model Library path Acoustics_Module/Industrial_Models/ loudspeaker_driver.



If you have the AC/DC Module, see Small-Signal Analysis of an Inductor: Model Library path ACDC_Module/Inductive_Devices_and_Coils/ small_signal_analysis_of_inductor.

# Frequency-Domain Perturbation Study and Study Step

Use perturbed frequency domain analysis to study small oscillations about a bias solution. With the **Frequency-Domain**, **Perturbation** study and study step (1000), small-signal analysis (ac/dc), prestressed analysis (structural mechanics), or harmonic perturbation (fluid flow) types of analyses can be performed. When this is added as a Study from the Model Wizard, two study steps are added under the Study node. When it is added as a study step (for example, with the **AC Impedance Stationary** study), it is also part of a two step study that is added under the Study node.

In all cases, the first step is usually a **Stationary** study step that computes the stationary (or bias) solution. The second step is this **Frequency-Domain**, **Perturbation** step, which computes a perturbed solution of the linearized problem around the linearization point (or bias point) computed in the first step.

Usually, two different right-hand-side contributions (or loads) must be defined for each step. The first step needs a stationary value for the contribution, and the second step needs the perturbed value for the contribution. The definition of these contributions differs between exclusive and contributing features, and this relates to the **Harmonic Perturbation** node, which can be added to a wide variety of physics interface features (for example, the **Electric Potential** and **Electric Ground** nodes for the **Electric Currents** interface).



If you have the Acoustics Module and AC/DC Module, see Axisymmetric Condenser Microphone with Electrical Lumping: Model Library path Acoustics_Module/Industrial_Models/ condenser_microphone_lumped.

# **Q** See Also

<mark>т</mark>р

For different plot settings made available by using this feature, see Small-Signal Analysis, Prestressed Analysis, and Harmonic Perturbation Plot Settings.

# Harmonic Perturbation—Exclusive and Contributing Nodes

A feature that is exclusive has a **Harmonic Perturbation** subfeature. This subfeature adds harmonic perturbations to the right-hand-side contributions of its parent node (for example, a **Boundary Load** on the **Solid Mechanics** interface or a **Terminal** node on the **Electric Currents** interface). In the settings window, the perturbation is entered for these contributions, which is only used when you solve for a **Frequency-Domain**, **Perturbation** study type. The parent node defines the stationary value for the contribution, which is not present for the **Frequency-Domain**, **Perturbation** study.

Harmonic perturbation nodes have a tilde over the top of the node, as in
this example of a boundary level node ( 📸 ).

Contributing nodes have a yellow dot to the left of the node, as in this example of a boundary level node ( $\mathbf{s}_{\overline{a}}$ ).

Exclusive nodes are of two types—Override ((a)) and Overridden ((a))— and in both types a red arrow is used at the top (override) or bottom (overridden) left corners.

Features that are contributing (typically sources) may add their contributions as a harmonic perturbation. To define the stationary value for the contribution, you typically add another feature of the same type with the harmonic perturbation setting cleared.

For exclusive loads there is only one way of doing it due to the exclusivity—as a subfeature. This subfeature cannot, in general, be a full copy of the original feature because only some subsets of data may be changed.

As an example (prescribed displacement in structural mechanics), the prescribed displacement must have the same local system and the harmonic perturbation can only be applied to degrees of freedom already prescribed in the parent node.

Also, all contributing features are free to use the full set of settings. A static point load can be at one point in the global direction, and a local system for the harmonic contribution can be used.

- Physics Exclusive and Contributing Feature Node Types
- Key to the Nodes and Toolbar Buttons



 For different plot settings made available by using this feature, see Small-Signal Analysis, Prestressed Analysis, and Harmonic Perturbation Plot Settings.

# Prestressed Frequency Analyses Study

Vibrating MEMS structures are often prestressed. For example, a cantilever structure could be prestressed by applying a DC voltage bias between the cantilever and a nearby ground plane, then vibrations could be driven at resonance by applying an additional AC bias. Another common example would be a clamped-clamped beam with a residual thermal stress.

COMSOL includes two study types to address this situation—**Prestressed Analysis, Eigenfrequency**  $(\uparrow_{-1})$  and **Prestressed Analysis, Frequency Domain**  $(\downarrow_{-1})$ .

Each of these study types first performs a stationary analysis of the problem to compute the prestressed state and then performs the appropriate prestressed analysis. In both cases the prestressed state can be computed using any stationary problem that COMSOL can solve.

#### PRESTRESSED ANALYSIS, EIGENFREQUENCY

The **Prestressed Analysis, Eigenfrequency** study (1-1) performs a **Stationary** study (step 1) followed by an **Eigenfrequency** analysis (step 2), which is performed on the prestressed structure. To perform this study, no additional forces need to be added to the physics settings as only the modes and mode frequencies are returned.

#### PRESTRESSED ANALYSIS, FREQUENCY DOMAIN

The **Prestressed Analysis, Frequency Domain** study ( $\underbrace{Im}$ ) performs a **Stationary** study (step 1) followed by an **Frequency Domain** analysis (step 2), which is performed on the prestressed structure. For this study type, it is necessary to specify the magnitude of the harmonic load, as this determines the magnitude of the system response. In order to do this, a **Harmonic Perturbation** force must be added to the model. For contributing loads (that is to say, loads that can be added without overwriting the same type of

node, such as a boundary load in solid mechanics), right-click the node and select **Harmonic Perturbation**. In this case, a load to generate the prestress must be added separately to the model.

For exclusive boundary conditions (that is to say, loads which overwrite previously added loads of the same type, such as the potential load in electrostatics), **Harmonic Perturbation** is added as a subnode to the boundary condition node. Its magnitude is added in the subnode itself.



For different plot settings made available by using this feature, see Small-Signal Analysis, Prestressed Analysis, and Harmonic Perturbation Plot Settings.

# 21

# Results Evaluation and Visualization

To help you analyze results COMSOL Multiphysics provides numerous result-evaluation and visualization tools, including advanced graphics, data display, and export functions. This chapter gives details about how to use these tools in the following sections:

- Processing and Analyzing Results
- Defining Data Sets
- About Plot Groups and Plotting
- Common Plot Settings
- Creating 1D, 2D, 3D, and Polar Plots
- Creating Cross-Section Plots and Combining Plots
- Defining Derived Values and Tables
- Exporting Data and Images
- Creating Reports

# Processing and Analyzing Results

During results analysis and visualization there are these main operation features: *data* sets, plots and plot groups, derived values and tables, export of data and images, and reports.

	• Results Analysis and Plots in the COMSOL Multiphysics Reference
2	Guide
See Also	• Results in the COMSOL Java API Reference Guide



The links to the features described in the *COMSOL Multiphysics Reference Guide* do not work in the PDF, only from the online help in COMSOL Multiphysics.



To locate and search all the documentation, in COMSOL, select **Help>Documentation** from the main menu and either enter a search term or look under a specific module in the documentation tree.

#### DATA SETS

Data sets contain the source of data for plotting, for example, by indicating a solution and geometry or by transforming another data set. Go to Defining Data Sets.

#### PLOT GROUPS AND PLOTTING

A plot group is a collection of plot features to display simultaneously in the **Graphics** window. You can enable or disable plots in a plot group to determine the most applicable final image for your model or project. The physics interfaces create suitable default plots grouped in descriptive plot groups. Go to About Plot Groups and Plotting.

#### **Cross-Section Plots**

Use a combination of data sets and plot groups to create cross-section plots. Go to Creating Cross-Section Plots and Combining Plots.

#### DERIVED VALUES AND TABLES

Derived values define the evaluation of values of integrals, variables in points, or global variables. The evaluation results are stored in **Tables** and displayed in the **Results** window. Go to Defining Derived Values and Tables.

#### EXPORTING DATA AND IMAGES

Create a variety of reports using data, images, or animations from plot groups. Go to Exporting Data and Images.

### REPORTS

Create reports as HTML documents that contain settings, selections, comments, plots, and other information about the model. Go to Creating Reports.

#### VIEWS

To display the **Views** node (for 2D or 3D models) under **Results**, click the **Show** button (**)** and select **Advanced Results Options**. Then go to User-Defined Views for information.

# Defining Data Sets

See Table 21-1 in the section About Data Sets for links to all the data sets described in this section.

#### About Data Sets

Data sets contain or refer to the source of data for creating **Plots** and **Reports**. It can be a **Solution**, a **Mesh**, or some transformation or cut plane applied to other data sets—that is, create new data sets from other data sets. Add data sets to the **Data Sets** branch ( ) under **Results**.

All plots refer to data sets; the solutions are always available as the default data set. Characteristics of a data set include:

· Visualization mesh

EÎ

Note

- Mapping to a previous data set (except for solutions and meshes)
- Ability to refer the evaluation to the previous data set.

The base data set maps to a solution and geometry or some other source of data. An example of a transformation data set is **Revolution 2D**, which sweeps a 2D data set into 3D.

Cut Point, Cut Line, Cut Plane, Edge 2D, Edge 3D, and Surface data sets are used in combination with plot groups and Line, Point, and Surface graphs to create cross-sectional plots and plots for data in points, along lines and edges, and on cut planes and surfaces.

#### HOW TO ADD A DATA SET TO THE MODEL BUILDER

Under **Results** (
) in the **Model Builder** (
), right-click **Data Sets** (
) and select an option from the context menu. Continue defining each data set as described. See Table 21-1 for links to all the data set types.

#### ADDING A SELECTION TO A DATA SET

For the data sets that contain data defined in the model, such as **Solution** data sets ( $\bigcirc$ ) and **Mesh** data sets ( $\bigcirc$ ), add a selection so that the results and plots use a subset of the geometry. In the **Selection** subnode ( $\P_{\bullet}$ ), select the geometric entities for which you want to include data in the data set using the **Graphics** window and the settings in

the **Selection** subnode's settings window. Select the **Propagate to lower dimensions** check box to make a selection of domains, for example, also include their adjacent boundaries, edges, and points. This can be convenient when using Surface plots on the boundaries of a 3D geometry, for example.

LINK TO SECTION	ICON	DESCRIPTION AND PLOT USE	
Average Evaluation or Integral Evaluation Data Sets	∩e Jdu	Creates a data set that computes the average of another data set, for example to plot the average.	
Contour 2D Data Sets	1	To analyze on 2D contour lines. Use this data set for 2D arrow plots, 2D line plots, and 1D global plots.	
Cut Line 2D and 3D Data Sets	<ul> <li>≥ 3D</li> <li>≥ 2D</li> </ul>	To create lines through 2D and 3D geometry to visualize along the line. Use this data set to create 2D or 3D cross-sections line plots.	
Cut Plane Data Sets	<b></b>	Plots on cut planes are made on 3D data sets and can be visualized in either 2D or 3D plot groups.	
Cut Point 1D, 2D, and 3D Data Sets	3D 2D 1D	Plot and evaluate a value in a certain point along time or along a parametric solution. Use this data set to create ID, 2D or 3D cross-sections point plots.	
Edge 2D and 3D Data Sets	^{3D} ^{2D}	Plot and evaluate a value along an boundary (edge) in 2D or an edge in 3D. Use this data set to create plots for data on edges.	
Function 1D, 2D, and 3D Data Sets	f(x)	Create a data set that can evaluate functions on a domain.	
Isosurface Data Sets	1	To visualize isosurfaces in 3D. Use this data set to create arrow surface plots, surface plots, and contour plots. In addition, the contour data set can be applied to the isosurface data set.	

TABLE 21-1: DATA SET TYPES

TABLE 21-1: DATA SET TYPES

LINK TO SECTION	ICON	DESCRIPTION AND PLOT USE
Join Data Sets		To join the solution data from two Solution data sets. This makes it possible to evaluate and plot the difference between two solutions, for example.
Maximum Evaluation and Minimum Evaluation Data Sets	A _₩ Max A _₩ Min	Creates a data set that computes the maximum or minimum of another data set.
Mesh Data Sets		To make a mesh available for visualization and results analysis. Use a Mesh feature in a plot group to get the actual plot.
Mirror 2D and Mirror 3D Data Sets	3D 2D	To extend a solution defined on one side of an axis to the other side of the axis. Useful for visualization of a solution to an axisymmetric problem or plane of reflection.
Parameterized Curve 2D and 3D Data Sets	≥ 3D	To visualize data along a general parameterized curve in 2D or 3D. Use this data set to create a line plot in its original dimension and as a line graph plot in 1D.
Parameterized Surface Data Sets	<b>N</b>	To visualize data on a general parameterized surface. Use this data set to with a surface plot in its original dimension and as any plot type in 2D.
Parametric Extrusion 1D and 2D Data Sets	sing 2D Sing 1D	To extend another data set by using a parameter, such as time, as a dimension.
Particle Data Sets	0 0 0 0	To visualize particle traces computed by a Particle Tracing interface.
Revolution 1D and 2D Data Sets	<ul><li> [↓] 2D         [↓] ID         [↓]</li></ul>	Use a revolution data set to visualize a 2D or ID axisymmetric solution in 3D and 2D, respectively.

#### TABLE 21-1: DATA SET TYPES

LINK TO SECTION	ICON	DESCRIPTION AND PLOT USE
Sector 2D and Sector 3D Data Sets	<ul> <li>3D</li> <li>2D</li> </ul>	To exploit symmetries in the model to reduce the model size and then being able to use rotations and reflections to plot the solution for the entire geometry.
Solution Data Sets		To make solutions available for visualization and results analysis. Solvers create Solution data sets automatically.
Surface Data Sets	Ð	Plot and evaluate a value on surfaces (boundaries) in 3D. Use this data set to create plots for data on surfaces.

- Results Evaluation and Visualization
- Defining Data Sets
- About Plot Groups and Plotting
- Creating 1D, 2D, 3D, and Polar Plots
- Expressions and Predefined Quantities
- Creating Cross-Section Plots and Combining Plots
- Data Export

# Average Evaluation or Integral Evaluation Data Sets

Select an **Average Evaluation** ( $A_{\overline{v}}$ ) or **Integral Evaluation** ( $f_{du}$ ) data set, found under the **More Data Sets** submenu, to compute the average or integral of another data set for example, to plot the average or integral.

For an integral evaluation data set example see Flow Past a Cylinder: Model Library path **COMSOL_Multiphysics/Fluid_Dynamics/cylinder_flow**.



2

See Also

For an average evaluation data set example, and if you have the Batteries & Fuel Cells Module, see Edge Effects in a Spirally Wound Li-Ion Battery: Model Library path Batteries_and_Fuel_Cells_Module/Batteries/ li_battery_spiral_2d.

Links to all the other data set types are found in Table 21-1.

- I Select More Data Sets>Average or More Data Sets>Integral from the Data Sets context menu.
- 2 Under Data select a Data set.



To integrate on a **Solution** data set, use a **Selection** to define the geometric entity (point, boundary, edge or domain) to integrate over. Right-click the data set and select **Add Selection**.

#### 3 Under Settings:

- a Select a Method—Auto, Integration, or Summation.
- Auto—the default and computes the integral for fields by numerical integration and for reaction forces by summation. Predefined quantities for reaction forces use summation instead of integration. Also, to specify an expression for the integrand, use the reacf operator, and the automatic setting chooses the summation method.
- Integration—the standard numerical integration method (quadrature).
- **Summation**—a summation method useful for computing reaction forces. The summation method finds all nodes on the boundary, evaluates the expression in the nodes and sum up the values. Reaction force variables are predefined in the structural mechanics interfaces.
- **b** For **Integration order**, the check box is selected by default. COMSOL automatically determines an appropriate integration order for the expression. Clear the check box to make a different entry in the field. COMSOL then performs the integration elementwise using numeric quadrature of the selected order.
- c Select a Geometry level—Data set highest, Volume, Surface, Line, or Point.

### Contour 2D Data Sets

Use a **Contour** (Solution) data set, selected from the **More Data Sets** submenu, for results evaluation on 2D contour lines. Contour lines cannot be parameterized in general, so

only 2D arrow plots, 2D line plots, and 1D global plots can be used to visualize the data set.

冒 Tip

Links to all the other data set types are found in Table 21-1.

- I Select More Data Sets>Contour (Signature) from the Data Sets context menu.
- 2 Under Data select a Data set. Only 2D data sets can be used.
- **3** Under **Expression** select predefined expressions based on the physics of the model or enter an **Expression** in the field. Select a **Unit** and the **Description** check box to enter a description (or edit the default).
- 4 Under Levels, select an Entry method—Number of Levels or Levels for the contours.
  - If **Number of Levels** is selected, enter the total number of levels in the **Total levels** field (the default is 5).
  - If Levels is selected, enter the values for the contour Levels or click the Range button (|____]) to define specific range of levels.
- **5** Click the **Plot** button  $(\swarrow)$  to show the geometry for the data set.

# Cut Line 2D and 3D Data Sets

Use a **Cut Line** data set in 2D ( ) or 3D () to create lines through 2D or 3D geometries to visualize along the line. All plots and results analysis features available in 1D are available for cut line data sets as well as 3D plots and results analysis features for edges. These data sets are used to create cross-section line plots.



For a 3D example, see Thin-Film Resistance: Model Library path COMSOL_Multiphysics/Electromagnetics/thin_film_resistance.

₩ Tip

- I Select Cut Line 2D ( ) or Cut Line 3D ( ) from the Data Sets context menu.
- 2 Under Data select a Data set.
- **3** To specify the cut line, under Line Data, select Two Points or Point and direction from the Line entry method list.
- 4 If Two Points is selected:
  - a Enter coordinates x, y, and z coordinates as required for the space dimension in the Point 1 and Point 2 fields.
  - **b** Select the **Bounded by points** check box to constrain the line between the defined points.
- 5 If Point and direction is selected, enter Point and Direction values for the x, y, and z coordinates as required for the space dimension.

For 2D models, select the **Additional parallel lines** check box to define multiple lines for plotting or evaluation, for example. Enter **Distances** from the original line in the field, or click the **Range** button (

2D

The **Distances** field refers to a direction that is normal to the cut line and which is rotated 90 degrees counterclockwise relative to the cut line's direction. For example, if the cut line is from (0, 0) to (1, 0), then the distances are along the vector (0, 1) from any point on the cut line.

- 6 Select the **Snap to closest boundary** check box to snap the selected points to the closest boundary in the geometry. Use this option when evaluating a variable that is available on boundaries but not in domains.
- 7 If needed, under Advanced, edit the default name for the space variable (dn1x, for example) in the x field. The space variable name appears in the Results window when displaying the data.
- 8 Click the Plot button  $(\swarrow)$  to show the geometry for the data set.

### Cut Plane Data Sets

For plots on cut planes, use **Cut Plane** data sets (<u>)</u>, which are made on 3D data sets and can be visualized in either 2D or 3D plot groups. All plots and results analysis features available in 2D are available for cut plane data sets as well as for surfaces in 3D.

The cut plane corresponds to an orthogonal 2D coordinate system embedded in 3D. This data set is used to create 3D cross-section surface plots.

#### If you have the:

- AC/DC Module, see Magnetic Lens: Model Library path ACDC_Module/Particle_Tracing/magnetic_lens
- Batteries & Fuel Cells Module, see Mass Transport Analysis of a High Temperature PEM Fuel Cell: Model Library path
   Batteries and Fuel Cells Module/PEMFC/ht_pem



- CFD Module, see Airflow Over an Ahmed Body: Model Library path CFD_Module/Single-Phase_Benchmarks/ahmed_body
- Chemical Reaction Engineering Module, see Laminar Static Mixer: Model Library path Chemical_Reaction_Engineering_Module/Mixing/ laminar_static_mixer
- Particle Tracing Module, see Ideal Cloak: Model Library path Particle_Tracing_Module/Ray_Tracing/ideal_cloak



Links to all the other data set types are found in Table 21-1.

- I Select **Cut plane** (**)** from the **Data Sets** context menu.
- 2 Under Data select a Data set.
- 3 Under Plane Data, select Quick or General from the Plane type list.

The **Plane Type** consists of the sets of planes orthogonal to the coordinate axes applicable for the model geometry—for example, **xy-planes**, **yz-planes**, and **zx-planes** in **3**D.

- **4** If **Quick** is selected, select a set of cut planes orthogonal to a coordinate axis and specify the transverse coordinate by entering the location along the transverse coordinate axis:
  - a Select xy-planes, yz-planes, or zx-planes from the Plane list.
  - **b** Enter the **x-**, **y-**, or **z-coordinate** in the field based on the **Plane** selection.

- 5 If General is selected, select a Plane entry method—Three points or Point and normal.
  - If Three points is selected, enter Point 1, Point 2, and Point 3 in the x-, y-, and z-coordinate fields.
  - If **Point and normal** is selected, enter **Point** and **Normal** data in the **x-**, **y-**, and **z-**coordinate fields.
- 6 Select the Additional parallel lines check box to define multiple planes for plotting or evaluation, for example. Enter Distances from the original line in the field, or click the Range button ([___]) to define a range of distances for additional cut planes.
- 7 Click the **Plot** button  $(\swarrow)$  to show the geometry for the data set.
- 8 Under Advanced:
  - a In the Advanced section, under Space variables, you can change then name of the space variables x and y for the cut plane's coordinates from their default values (cpl1x and cpl1y, for example).
  - **b** Select the **Define normal variables** check box to create variable names for the cut plane's normal vector.
  - **c** In the **Normal variables** section, enter or edit the variable names for the components of the normal vector. Enter **nx**, **ny**, and **nz** values.

## Cut Point 1D, 2D, and 3D Data Sets

Use a **Cut Point** data set in 1D (---), 2D ( ), or 3D ()) to plot and evaluate a value in a certain point along time or along a parametric solution and to create 1D, 2D, or 3D cross-sectional point plots. The choice of 1D, 2D, or 3D only controls the type of input the data set accepts. For example, a 1D cut point can only be added to 1D data sets, 2D can only be added to 2D data sets, and so forth. Either of these can be used to make a point graph plot along time and so forth.





- I Select Cut Point ID (→), Cut Point 2D ( ●), or Cut Point 3D ()) from the Data Sets context menu.
  - Select Cut Point ID for one point as cross-section data.
  - Select **Cut Point 2D** or **3D**, for example, to plot the value in a certain point along time or along a parametric solution and use the data set in its original dimension.
- 2 Under Data select a Data set.

- **3** Under **Point Data**, select a method of entering the point coordinates from the **Entry method** list:
  - Select **Coordinates** (the default) to enter **x**, **y**, and **z** coordinates as required for the space dimension.
  - Select From file to enter or browse to a text file with the cut point data.
  - Select **Grid** to enter coordinates for gridded data as **x**, **y**, and **z** coordinates as required for the space dimension.
  - Select **Regular grid** to specify the number of points in each direction for a regular grid in the **Number of x points**, **Number of y points**, and **Number of z points** as required for the space dimension.
- **4** Select the **Snap to closest boundary** check box to snap the selected points to the closest boundary in the geometry. Use this option when evaluating a variable that is available on boundaries but not in domains.
- **5** Click the **Plot** button  $(\swarrow)$  to show the geometry for the data set.

# Edge 2D and 3D Data Sets

Use an **Edge 2D** ( ) data set or an **Edge 3D** () data set to plot and evaluate a value along an edge (boundary) in 2D or an edge in 3D. Create a line graph or any other plot type in a **ID Plot Group** to plot data along an edge using one of these data sets.



Links to all the other data set types are found in Table 21-1.

I Select Edge 2D (□) or Edge 3D (□) from the Data Sets context menu to make it possible to evaluate and plot a value along an edge in visualization and results analysis.

Use an **Edge 2D** data set to plot values on boundaries (edges) in a 2D geometry. Use an **Edge 3D** data set to plot values on edges in a 3D geometry.

- 2 Under Data select a Data set, typically a solution.
- 3 In the Selection section, select the edges to include.

# Function 1D, 2D, and 3D Data Sets

Adding an Function 1D, Function 2D, or Function 3D node (f(x)) from the More Data Sets submenu creates a data set that can evaluate functions on a domain. All functions in the same list as the selected function can be evaluated. The domain is an interval for Function 1D, a rectangle for Function 2D, and a block for Function 3D. The domain does not need to have the same dimension as the number of arguments to the function. To plot the functions, use a line graph in 1D, for example, by pointing to the Function 1D data set in a 1D Plot Group (or similarly for Function 2D and Function 3D).



For an example of a 1D function data set and if you have the AC/DC Module, see Geoelectrics: Model Library path ACDC_Module/ Other_Industrial_Applications/geoelectrics.



- I Select More Data Sets>Function ID, More Data Sets>Function 2D, or More Data Sets>Function 3D from the Data Sets context menu.
- 2 Select a Function from the list.
- **3** Under **Parameter Bounds** enter the following. Available fields are based on the function dimension:
  - **a** Enter a **Name**. The **First, Second**, and **Third Parameter** default names are s, t, and u, respectively.
  - **b** For each parameter, enter a **Minimum** lower bound for the first, second, and third dimension of the domain.
  - **c** For each parameter, enter a **Maximum** upper bound for the first, second, and third dimension of the domain.
- 4 Enter a **Resolution**. This is the number of points into which each dimension is discretized. The defaults are 1000 (1D), 100 (2D), and 30 (3D).
- **5** Click the **Plot** button  $(\swarrow)$  to show the geometry for the data set.

#### Isosurface Data Sets

Use an **Isosurface** ()) data, found under the **More Data Sets** submenu, set to visualize isosurfaces in 3D. Isosurfaces cannot be parameterized in general so use this data set to create arrow surface plots, surface plots, and contour plots. The contour data set can be applied to the isosurface data set.



Links to all the other data set types are found in Table 21-1.

- I Select More Data Sets>Isosurface ()) from the Data Sets context menu.
- 2 Under Data select a Data set.
- **3** Under **Expression** select predefined expressions based on the physics of the model or enter an **Expression** in the field. Select a **Unit** and the **Description** check box to enter a description (or edit the default).
- 4 Under Levels, select an Entry method for the isosurfaces—Number of Levels or Levels.
  - If **Number of Levels** is selected, enter the total number of levels in the **Total levels** field (the default is 5).
  - If **Levels** is selected, enter the value of the isosurface **Levels** or click the **Range** button (|____]) to define a specific range of levels.
- **5** Click the **Plot** button  $(\swarrow)$  to show the geometry for the data set.

# Join Data Sets

Use an **Join** (**Constitution**) data set join the solutions from two **Solution** data sets. The joined data sets makes it possible to compare solutions from two data sets—for example, to evaluate and visualize the difference between two solutions to the same problem using two different meshes in a mesh convergence study. The Join data set has predefined methods to combine the solutions to get the difference, product, quotient, or sum of the two solution data sets. In addition, two predefined "operators," data1 and data2, correspond to the solution data in the first and second Solution data set, respectively, and make it possible to compare, for example, solutions from different but compatible

models or to combine the two solution data sets using another method than the ones that you can select directly.

Links to all the other data set types are found in Table 21-1.

- I Select Join (5.1) from the Data Sets context menu.
- 2 Select a solution data set as data1 and another solution data set as data2 from the Data lists in the Data 1 and Data 2 sections, respectively.
- **3** Select which solutions to use from the **Solutions** lists: The default, **All**, uses all solutions. Select **One** to use one of the available solution in a time-dependent, parametric, or eigenvalue solution from the list of solutions that appear.

The following data set combinations support the option to include all solutions from both data sets:



<mark>т</mark>р

- Both data sets point to the same solution.
- Both data sets point to two different stationary solutions.
- Both data sets point to two different time-dependent solutions.
- 4 Under Combination select a way of combining the solutions from the Method list: Difference (the default), Explicit, General, Product, Quotient, or Sum. The Explicit method makes it possible to use the "operators" data1 and data2 with arguments in a plot expression, for example. The General method provides an Expression field where you can type a general expression using data1 and data2 for the join operation. The default expression, data1-data2, is identical to the Difference method.

# Maximum Evaluation and Minimum Evaluation Data Sets

Select the **Maximum** evaluation  $( \begin{array}{c} & \\ & \\ & \\ \end{array} )$  or **Minimum** evaluation  $( \begin{array}{c} & \\ & \\ \end{array} )$  data set, found under the **More Data Sets** submenu, to create a data set that computes the maximum or minimum of another data set.



Links to all the other data set types are found in Table 21-1.

- I Select More Data Sets>Maximum or More Data Sets>Minimum from the Data Sets context menu.
- 2 Under Data select a Data set.
- **3** Under Settings, select a Geometry level—Data set highest, Volume, Surface, Line, or Point.
- 4 Click the **Plot** button  $(\swarrow)$  to show the geometry for the data set.

### Mesh Data Sets

T

Τīp

Add a **Mesh** ( $\bigotimes$ ) data set to make a mesh available for visualization and results analysis, typically for mesh-related quantities such as the mesh element quality, which are possible to plot using a mesh data set without computing a solution. Use a **Mesh** feature in a plot group to get a plot of the actual mesh.

- I Select Mesh ( 🛐 ) from the Data Sets context menu.
- 2 Select a Mesh from the list.
- 3 Click the **Plot** button  $(\checkmark)$  to plot the geometry where the mesh is active.

2D	Use a <b>Mirror 2D</b> ()) data set, selected from the <b>More Data Sets</b> submenu, to extend a solution defined on one side of an axis to the other side of the axis. This can be useful for visualization of a solution to an axisymmetric problem.
SD	Use a <b>Mirror 3D</b> ( data set, selected from the <b>More Data Sets</b> submenu, to extend a solution defined on one side of a plane to the other side of a plane.
Tip	Links to all the other data set types are found in Table 21-1.
Model	<ul> <li>For a 3D example, and if you have the Chemical Reaction Engineering Module, see Surface Reactions in a Biosensor: Model Library path Chemical_Reaction_Engineering_Module/ Surface_Reactions_and_Deposition_Processes/reacting_pillars</li> <li>For a 2D example, and if you have the Plasma Module, see DC Glow Discharge: Model Library path Plasma_Module/ Direct_Current_Discharges/positive_column_2d</li> </ul>

- I Select More Data Sets>Mirror 2D ()) or More Data Sets>Mirror 3D ()) from the Data Sets context menu.
- 2 Under Data select a Data set.

**3** Define the **Axis Data** (2D models) or **Plane Data** (3D models):

2D	Under Axis Data, for 2D models, select an Axis entry method—Two points or Point and direction.
	• If <b>Two points</b> is selected, enter <b>Point I</b> and <b>Point 2</b> for both the <b>x</b> and <b>y</b> coordinates.
	• If <b>Point and direction</b> is selected, enter values for the <b>Point</b> and <b>Direction</b> for both the <b>x</b> and <b>y</b> coordinates.
	Under Plane Data, for 3D models, select a Plane type—Quick (the default) or General. If Quick is selected, select a Plane—xy-planes, yz-planes, or zx-planes.
	Enter the <b>z-coordinate</b> , <b>x-coordinate</b> , or <b>y-coordinate</b> based on the selection.
<mark>ул</mark> ЗD	• If General is selected, select a Plane entry method—Three points to enter the mirror axis by specifying three points or Point and normal to specify the mirror axis by specifying one point and a normal vector. Then if Three points is selected, enter coordinates in the Point 1, Point 2, and Point 3 fields for x, y, and z coordinates (SI unit: m).
	• If <b>Point and Normal</b> is selected, enter <b>Point</b> and <b>Normal</b> vector coordinates for <b>x</b> , <b>y</b> , and <b>z</b> coordinates (SI unit: m).

**4** Under Advanced, select the Define variable check box to create a Positive side indicator variable.

The default variable, mir1side, is 1 in the original domain and 0 in the mirror. Use the **Positive side indicator** variable in the **Expression** section of a plot settings window to exclude quantities from the mirror side.

**5** Click the **Plot** button ( $\checkmark$ ).

# Parameterized Curve 2D and 3D Data Sets

Use a **Parameterized Curve** data set in 2D ( $\geq$ ) or 3D ( $\geq$ ) to visualize data along a general parameterized curve. Visualize the parameterized curve as a line plot in its

original space dimension (2D or 3D) and as a line graph plot in 1D. Select these options from the **More Data Sets** submenu.



For a 3D example, and if you have the Heat Transfer Module, see Radiative Heat Transfer in Finite Cylindrical Media: Model Library path Heat_Transfer_Module/Tutorial_Models/cylinder_participating_media



Links to all the other data set types are found in Table 21-1.

- I Select More Data Sets>Parameterized Curve 2D ( ≥) or More Data Sets>Parameterized Curve 3D (≥) from the Data Sets context menu.
- 2 Under Data select a Data set.
- **3** Under **Parameter**, enter a **Name** and the **Minimum** and **Maximum** range of the parameter curve.
- 4 Under **Expressions**, enter functions for the **x**, **y**, and **z** coordinates as required for the space dimension.
- **5** In the **Resolution** field, enter the number of subdivisions of the parameter range. The default is 1000.
- 6 Click the **Plot** button (

# Parameterized Surface Data Sets

Use a **Parameterized Surface** ()) data set, selected from the **More Data Sets** submenu, to visualize data on a general parameterized surface. Visualize the parameterized surface as a surface plot in its original dimension and as any plot type in 2D.



- I Select More Data Sets>Parameterized Surface ()) from the Data Sets context menu.
- 2 Under Data select a Data set.

- **3** Under **Parameters**, enter the following for both the **First parameter** and **Second parameter** fields.
  - a Enter a Name.
  - **b** Enter a range of the parameter in the **Minimum** and **Maximum** fields.
- 4 Under Expressions, enter functions for coordinates of the two parameters in the x, y, and z fields.
- **5** In the **Resolution** field, enter the number of subdivisions of the parameter ranges. the default is 200.
- 6 Click the **Plot** button (

# Parametric Extrusion 1D and 2D Data Sets

The **Parametric Extrusion** data set in 1D ( $\stackrel{\text{data}}{=}$ ) and 2D ( $\stackrel{\text{data}}{=}$ ) extends another data set by using a parameter, such as time, as a dimension. Select these options from the **More Data Sets** submenu.

Model

See The KdV Equation and Solitons for an example of a 1D parametric extrusion data set: Model Library path COMSOL_Multiphysics/ Equation-Based_Models/kdv_equation.



- I Select More Data Sets>Parametric Extrusion ID (♣) or More Data Sets>Parametric Extrusion 2D (♣) from the Data Sets context menu.
- 2 Under Data select a Data set.
- 3 Under Settings:
  - a Select the Level scale factor check box to enter a value or edit the field.
  - **b** The Separate levels check box is selected by default. Click to clear the check box.
- 4 Click the **Plot** button (

# Note

Particle data sets require the Particle Tracing Module.

Use a **Particle** ( ****** ) data set, selected from the **More Data Sets** submenu, to visualize particle traces computed by a Particle Tracing Module interface. The Particle data set is automatically created when solving a model containing one of the Particle Tracing Module interfaces, provided that the **Generate default plots** option is selected in the **Study**. Selections may be added to the particle data set which allows, for example, the number or fraction of particles in a given domain or on a given boundary to be computed during results processing. Visualize the particles using a plot of the particle trajectories in the original dimension, as a Poincaré map, and as a 2D phase portrait.



If you have the AC/DC Module and Particle Tracing Module, see Magnetic Lens: Model Library path ACDC_Module/Particle_Tracing/ magnetic_lens.



- I Select More Data Sets>Particle ( 🐏 ) from the Data Sets context menu.
- 2 Under Particle Solution, select a Solution from the list of solution data.
- 3 In the **Particle geometry** field, enter the name of the variable for the particle geometry. This corresponds to the hidden geometry on which the particle degrees of freedom are computed. When the Particle data set is generated from the default plots the correct name for the particle geometry is filled in automatically. The particle geometry takes the name pgeom_<tag> where <tag> is the interface identifier for the specific Particle Tracing interface.
- **4** In the **Position dependent variables** field, enter the names of the dependent variables for the particles' position using commas to separate the variables. Like the particle geometry, the names of the particle degrees of freedom are filled in automatically when the particle data set is generated from the default plots. The names correspond

to the particle position degrees of freedom with the model identifier prepended. For example, for a 3D model, with tag <mod1>, and **Dependent Variables** qx, qy, and qz for the interface, the correct expression to enter is mod1.qx, mod1.qy, and mod1.qz.

5 Click the Plot button ( $\checkmark$ ) to display the geometry for the data in the data set.

# Revolution 1D and 2D Data Sets

ID Axi	Use a <b>Revolution</b> data set to visualize a 1D axisymmetric ( +) solution in 2D. All plot types in 3D or 2D are available for visualization through the revolution data set.	
2D	Use a <b>Revolution</b> data set to visualize a 2D ( $\Rightarrow$ ) solution in 3D. All plot types in 3D or 2D are available for visualization through the revolution data set.	
Model	See Tubular Reactor for a 2D example: Model Library path COMSOL_Multiphysics/Chemical_Engineering/tubular_reactor.	
Tip	Links to all the other data set types are found in Table 21-1.	
<ul> <li>I Select Revolution ID (+) or Revolution 2D (+) from the Data Sets context menu.</li> <li>2 Under Data select a Data set.</li> </ul>		
<ul><li>3 Under Axis Data, enter information based on space dimension.</li></ul>		

For 1D models, enter a value in the **x** field to specify the revolution point.

For 2D models, from the **Axis entry method** list, select **Two points** to enter the revolution axis by specifying two points or **Point and direction** to specify the revolution axis by specifying one point and a direction vector.



- If **Two points** is selected, enter coordinates in the **Point I** and **Point 2** fields for **x** and **y** coordinates.
- If Point and Direction is selected, enter Point and Direction vector for **x** and **y** coordinates.
- **4** Under **Revolution Layers**:
  - **a** By default, the number of layers is set to **Normal**. Also choose **Fine**, **Coarse**, or **Custom** from the **Number of layers** list.
  - **a** If **Custom** is selected, enter the number of subdivisions about the revolution axis in the **Layers** field (default value: 50).
  - **b** Enter the **Start angle** (in degrees) for the revolved model.
  - **c** In the **Revolution angle** field, enter the angle (in degrees) to revolve the model to see into the geometry (default value: 360 degrees; that is, a full revolution). Use negative values to revolve the model in the opposite direction.

An axisymmetric geometry in the *rz*-plane is projected to the *xy*-plane and then rotated about the *y*-axis using the start angle and revolution angle.

- 5 Under Advanced:
  - a Select which plane to map the axisymmetric solution to from the Map plane to list:
  - Select **xy-plane** (the default) to map the *rz*-plane to the *xy*-plane and then rotate it about the *y*-axis.
  - Select **xz-plane** to map the *rz*-plane to the *xz*-plane and then rotate it about the *z*-axis.
  - **b** Select the **Define variables** check box to create variable names in the revolved geometry.
  - **c** In the **Space variables** section, enter or edit the variable names for the revolved coordinate system. For 1D, enter **x** and **y** values. for 2D, enter **x**, **y**, and **z** values.
  - d Under **phi**, enter or edit the variable name for **phi** in its field. Phi is the name of the angle variable in the revolved coordinate system. The default names are rev1x, rev1y, rev1z, and rev1phi.
- 6 Click the **Plot** button ( $\swarrow$ ).

Use the **Sector 2D** ((S)) and **Sector 3D** ((S)) data sets, selected from the **More Data Sets** submenu, to make it possible to plot the solution for the full geometry while reducing computation time and memory requirements for complex geometries by exploiting sector symmetries. The geometry must be of a type that can be transformed through the use of rotation or reflection (mirroring). Rotation and reflection are only available when using an even number of sectors.

For example, suppose that there are N sectors in a geometry. A Sector data set first evaluates the input expressions in the source data set, creates N copies (one for each sector of the geometry), maps and interpolates the data, and transforms the expression components that correspond to vector fields.



- I Select More Data Sets>Sector 2D ((()) or More Data Sets>Sector 3D (()) from the Data Sets context menu.
- 2 Under Data select a Data set.
- 3 Define the Axis Data. For Sector 2D data sets, enter values for both the x and y coordinates (SI unit: m). For Sector 3D data sets, select an Axis entry method—Two points or Point and direction. Then:
  - if Two points is selected, enter x, y, and z coordinates (SI unit: m). for Point 1 and Point 2.
  - if **Point and direction** is selected, enter **x**, **y**, and **z** coordinates for the **Point** (SI unit: m) and **Direction**.
- **4** Under **Symmetry**, enter any integer greater than or equal to 2 into the **Number of sectors** field (the default is 2).
  - When the Number of sectors entered is an even number, select a Transformation— Rotation (the default) or Rotation and reflection. If Rotation and reflection is selected, also enter the x and y coordinates for the Direction of reflection axis for Sector 2D data sets, or enter the x, y, and z coordinates for the Radial direction of

**reflection plane** for **Sector 3D** data sets. For an uneven number of sectors, only rotation is available and it requires no additional user input.

5 Under Advanced, select the **Define variables** check box to create **Space variables**. These variables evaluate to the coordinate after the transformation (as opposed to x, y, and z, which evaluate to the coordinates in the underlying data set).

The default variables (the number of which are based on space dimension) are sec2x for the x coordinate, sec2y for the y coordinate, and sec2z for the z coordinate.

When the **Define variables** check box is selected, the input expression is enabled once for each sector, something that increases evaluation time by roughly a factor of the number of sectors (N). If the input expression being evaluated contains any of the space variables, then this evaluated mode is enabled automatically.

For cyclic symmetry, that is, when the number of sectors is odd or **Rotation** is selected as the **Transformation**, also enter the **Azimuthal mode number**. The default is 0.



Use the azimuthal mode number to control the source data set and evaluate it with different phases for the different sectors. If the mode number is k, then the phase is shifted with  $-2\pi i k/N$  for sector i.

6 Click the **Plot** button ( $\swarrow$ ) to plot the geometry where the data set is defined.

# Solution Data Sets

The Solution () data sets make solutions available for visualization and results analysis. Solvers automatically create Solution data sets. Right-click to add a Deformed Configuration node to the Mesh node.

• Deformed Configuration in the COMSOL Multiphysics Reference Guide

C See Also

• Remeshing a Deformed Mesh



- I Select Solution (i) from the Data Sets context menu.
- 2 Select a Solution to make available for visualization and results analysis.
- **3** If there is more than one model, select a **Model** to define the geometry for the solution data.
- **4** Select the **Frame** to evaluate the coordinates in—**Mesh**, **Material**, or **Spatial**. The default in most cases is the Material frame, and this rarely needs to be changed. This frame selection is used for all results evaluation that uses the solution data set.
- **5** Optionally, enter a value for the **Solution at angle (phase)** for complex-valued solutions.

Use the **Solution at angle (phase)** option to evaluate complex-valued expressions by multiplying the solution in the solution data set by a factor of exp(i*pi*phase/ 180) prior to expression evaluation.

Also, optionally apply a **Scale factor** to scale the entire solution by a real factor.

6 Click the **Plot** button (

### Surface Data Sets

Use a **Surface** () data set to visualize data on surfaces (boundaries) of a 3D geometry. Refer to this data set to plot and evaluate a value on a surface using a 2D plot group and a **Surface** or **Contour** plot, for example.

<mark>е</mark> Тір

- I Select **Surface** () from the **Data Sets** context menu to make it possible to evaluate and plot a value on a surface in visualization and results analysis.
- 2 Under Data select a Data set, typically a solution.

- **3** Under **Parameterization**, choose from one of these options in the **x- and y-axes** list to specify what the local *x*-axis and *y*-axis represent:
  - **Surface parameters**. This is the default setting, which uses the parameters of the 3D surface.
  - **xy-plane**, **yz-plane**, **zx-plane**, **yx-plane**, or **xz-plane**. The local *x* and *y*-axes then represent the global *xy*-plane, global *yz*-plane, global *zx*-plane, global *yy*-plane, global *zy*-plane, global *zy*-plane, or global *xz*-plane, respectively
  - **Expression**. With this setting, enter any expression, including the global space coordinates, for example, in the **x-axis** and **y-axis** fields. The default values are **x** and **y**, respectively.
- **4** Under **Selection**, select the boundaries to include in the data set using the available selection tools or by selecting directly in the **Graphics** window.

# About Plot Groups and Plotting

A plot group contains one or more plots (for example, combining a surface plot and a streamline plot) using the same data set, such as a solution. You can define plot groups for 1D, 2D, and 3D plots and then create one or a series of plots in a plot group. Several plot groups can also be used in a model. Information in the form of data and images can be used to generate a report, or exported.

- 1D plots include line graphs, point graphs, graphs of global data, and table plots, with options to use FFT to plot a time-dependent solution as a frequency spectrum
- 2D plots include surface plots (color plots), contour plots, arrow plots, line plots, and more specialized plots to visualize, for example, streamlines, particle traces, principal stresses, and coordinate systems
- 3D plots include volume and surface plots (color plots), isosurface plots, and specialized plots like in 2D

To add a plot group, right-click the **Results** node and select, for example, **3D Plot Group** () from the context menu.

When you are working with **Functions**, you can also click the **Create Plot** button ( ) to create a customized plot of the function under **Results**, including default plot groups and plots.

The physics interfaces create suitable default plots for visualizing the results for the particular physics or application. The default plots appear in plot groups with descriptive names. You can modify and deleted these plots and plot groups and add additional plots to existing or new plot groups. To disable the default plots for a study, clear the **Create default plots** check box in the **Study Settings** section in the main **Study** settings windows.

T

Τīp

	<ul> <li>For details about individual plots, and adding color expressions, deformations, filters, and height expressions., see Creating 1D, 2D, 3D, and Polar Plots.</li> </ul>
COL See Also	<ul> <li>For details about standard and common settings, such as color and style options, see Common Plot Settings.</li> </ul>
	• For details about study settings, see The Study Nodes in the COMSOL Multiphysics Reference Guide.

ABOUT PLOT GROUPS AND PLOTTING | 1039

# Common Plot Settings

Before you begin creating plot groups and plots, this section provides you with some general plotting information which is common to many (or all) of the plots.

- · Color Coding for Plot Groups and Plot Types
- Adding Plot Windows
- Specifying the Window to Plot In
- Locking Plot Windows
- Selecting a Data Set for Plots
- Selecting Solutions for Parametric Sweeps
- Expressions and Predefined Quantities
- Plot Titles for Plot Groups and Plot Types
- Using Special Formats and Symbols in Titles
- Legends
- Arrow Positioning
- Principal Components and Positioning
- Defining the Number of Levels
- Selecting Color Tables
- Defining the Color and Data Ranges
- Defining the Coloring and Style
- Defining Element Filters
- Defining Shrinking of Elements
- Entering Quality Settings for Plot Settings Windows
- Inheriting Style Options
- Small-Signal Analysis, Prestressed Analysis, and Harmonic Perturbation Plot Settings

# Color Coding for Plot Groups and Plot Types

The plot groups and plot types are color coded based on space dimension. See Figure 21-1 for an example.



Figure 21-1: An example of each plot group and its plot color coding.

# Adding Plot Windows

The COMSOL Desktop always includes the **Graphics** window, which is the default window for all kinds of plots, but you can also add other plot windows for results plots by right-clicking a plot group node and choosing **Plot In>New Window** or by adding a plot window in the **Window Settings** section of the plot group nodes' settings windows.

# Specifying the Window to Plot In

The default for all plot groups is to plot in the **Graphics** window, but you can plot in any other plot window by right-clicking the plot group node and choosing another plot window from the **Plot In** submenu. The **Plot In** submenu also exists on the context menu for each plot type if you want to plot only an individual plot type in a plot group. You can also control where the plots appear and add new plot windows in the **Window Settings** section of the settings windows for the plot group nodes.

To create and update all plots in all plot windows, right-click the **Results** node and select **Plot All**. If more than one plot group use the same plot window, that plot window contains the plots from the last plot group.

### Locking Plot Windows

If you want to prevent a plot in a plot window from being overwritten by other plots, you can lock the plot window. Click the **Lock** button ( ) in the plot window's toolbar to lock that plot window from subsequent plots. An attempt to create a plot in a locked plot window results in a message such as **Window 'Plot I' is locked** in the **Messages** window. Click the **Lock** button ( ) again to clear the lock. It is not possible to lock the **Graphics** window, which COMSOL Multiphysics uses for general visualization.

### Selecting a Data Set for Plots

Almost every plot type has the Data section where you select a **Data set** from the list. **From parent** means that the plot uses the same data set as the plot group it belongs to. Click the **Go to Source** button ( 1) to move to the node that the selection in the list next to the button refers to.

#### FOR SOME ID PLOTS

Under **Data** select a **Data set**. Click the **Go to Source** button (**)** ) to move to the node that the selection in the list next to the button refers to. Select:

- From parent (the default) to use the same data set as the plot group it belongs to.
- a Solution data set to visualize a quantity along a geometric edge.
- a **Cut Line** data set to visualize a quantity along the cut line (a cross section).
- a Parameterized Curve data set to visualize a quantity along the parameterized curve.

• None to not use any of the available data sets.



Selecting Solutions for Parametric Sweeps

About Data Sets

# Selecting Solutions for Parametric Sweeps

This information is useful when defining plots or derived values for **Parametric Solver** and **Parametric Sweep** studies. Under the **Data** section in the **Parameter values** section, you can select the associated parameter values to use.

#### PLOTS

When setting parameters for parametric sweep studies in the **Results** node, the available settings depend on the problem type. A time-dependent problem, for example, allows you to select both time steps and parameter values. Similarly, an eigenvalue problem contains both eigenvalue and parameter settings. In results features, the time and eigenvalue settings are referred to as the *inner solutions*. Parameters that result in a **Parametric** node under **Job Configurations** are referred to as *outer solutions*. In a graph plot for a parametric eigenvalue solution, for example, the **Axis source data** setting for the *x*-axis data controls whether you want the inner (that is to say, eigenvalue) or outer (that is to say, parametric) solutions on the *x*-axis, or any other level in a nested parametric sweep.

#### DERIVED VALUES

For **Parametric Sweep** studies you also select both time steps or eigenvalues and parameter values. For a parametric sweep with more than one level (which is the case for all time-dependent and eigenvalue parametric sweeps) you also select the data to display in the table columns. When available, from the **Table columns** list, select one of the following options, when applicable:

- **Data only** (the default) to list the expression values in columns with the parameter variations as rows.
- The level of the nested parametric sweep, which can be **t** for time or the names of the parameters at the loop level, to list the selected levels parameter variations across the columns and the parameter variations for the other levels as rows.

- Inner solutions to list the inner solution variation in columns with the remaining parameter variations as rows.
- **Outer solutions** to list the outer solution variation in columns with the remaining parameter variations as rows.

Click the **Evaluate** button ( $\equiv$ ) to fill a table with the value of the expression for the parameter variations in columns and rows as specified. If you click the **Evaluate** button again, the data is appended to the current table using that table's data settings. If you change the table data format it may not be possible to append that data to an existing table. In that case you need to create a new table by selecting New Table from the **Evaluate** button ( $\equiv$ ) menu.



- Entering Ranges and Vector-Valued Expressions
- Defining Derived Values and Tables

# Expressions and Predefined Quantities

When plotting and evaluating results, COMSOL Multiphysics provides a large number of predefined quantities that are specific to the physics interfaces in the model as well as general quantities for the geometry, coordinate systems, and mesh.

COMSOL Multiphysics does not limit the results calculations to predefined quantities; you can plot and evaluate any function by entering the corresponding expression. You can combine user-defined variables, physics interface variables, standard variables, and mathematical and logical functions and numbers. The **Expression** field or list is available for most plot types as well as for integration and data display and evaluation. You can enter any expression directly in the field or insert variables from a list of predefined quantities that you open by pressing Ctrl+Space or by clicking the **Insert Expression** (

In the Expression sections in the settings windows for plot nodes you can:

- Click the Insert Expression ( + ) button to insert the corresponding variable at the current position in the Expression field.
- Select a **Unit** from the list. You can select from a predefined number of applicable units for the quantity that the variable represents, but you can also type any

compatible unit for that quantity to use a unit that is not in the list (for example, mi/h for miles per hour as a unit for a velocity quantity).

• Select the **Description** check box to enter a description (or edit the default).

The predefined quantities that you get access to by clicking one of the above buttons are divided into categories based on where in the model they belong:

- Each physics has its own list of predefined quantities. For multiphysics interfaces, there is typically a common list, with quantities that are not linked to any of the participating physics, and separate lists for each participating physics, with quantities that are specific to each physics.
- A Definitions list with variables for coordinate systems and user-defined variables.
- A Geometry and Mesh list with variables for spatial coordinates, mesh size, mesh quality, and domain indexes.

# EVALUATION OF UNDEFINED QUANTITIES

During the evaluation of expressions, by default COMSOL Multiphysics does not report partially undefined quantities, and the program plots a quantity where it is defined. The plot is empty where the plotted data is undefined or "not-a-number" (NaN). If a results quantity is undefined everywhere, an error occurs for all plot types.

# ACCESSING OTHER SOLUTIONS THAN THE SELECTED SOLUTION

When you use the names of the dependent variables in a results expression, COMSOL Multiphysics uses the solution associated with the selected parameter value, eigenvalue, or time for a parametric analysis, eigenvalue analysis, or time-dependent analysis, respectively. To access other solutions in the model, use the with operator.

# PROCESSING SOLUTIONS WITH A STORED LINEARIZATION POINT

If the solution being processed has a stored linearization point, four different options are available for how to evaluate the expression. The **Evaluation method** list in the **Expression** section contains the following options:

- Choosing For linearization point evaluates the expression at the stored linearization point. This is equivalent to evaluating linpoint(expr).
- Choosing **For perturbation** evaluates the expression for the perturbation component of the solution.
- Choosing **For total instantaneous** evaluates the expression at the superposition of the linearization point and the perturbation. The phase and amplitude of the

perturbation can be changed in the corresponding Data set. This is equivalent to evaluating lintotal(expr).

• Choosing Linearized deviation linearizes the expression at the stored linearization point and evaluates the linearized expression. This is equivalent to evaluating lindev(expr).

# Plot Titles for Plot Groups and Plot Types

Every plot group and plot type have a **Title** section where the **Title type** is selected and set. The options are **Automatic** (the default), **Custom**, **Manual**, or **None**. An **Automatic** title is generated based on the type of plot or plots selected. Select **Manual** to enter free text in the field or **None** for no title. Select **Custom** to add existing information combined with custom prefix and suffix text to the title as described below.

## CUSTOM PLOT TITLES

## Solution

Under Solution select the check boxes as required.

- Select Data set to include details about the data set used for the plot.
- Select Phase to include information about the phase (when applicable).
- Select **Solution** to include the details about the solution (the time step or parameter values, for example) for the plot (when applicable).

## Type and Data

Under Type and data select the check boxes as required.

- Select **Type** to include the plot type in the title.
- Select **Description** to include the variable details.
- Select Expression to include the variable expression in the title.
- Select **Unit** to include the variable unit.

#### User

Under User enter text as required.

• Enter text in the **Prefix** field to add free text at the front of any Solution title text string. For example, if all the Data set, Phase, and Solution check boxes are selected, this text is first.

Enter text in the **Suffix** field to add free text at the end of any Solution title text string. For example, if all the Data set, Phase, and Solution check boxes are selected, this text is at the end of this information.

C See Also Using Special Formats and Symbols in Titles

Using Special Formats and Symbols in Titles

# SUPPORT FOR FORMATTING AND SYMBOLS IN TEXTS

For the titles as well as the *x*-axis, *y*-axis, and *z*-axis labels, you can use formatted strings that include HTML tags, Greek letters, and mathematical symbols. The tables in the following sections provide information about supported format and symbols. In addition to ASCII characters, Greek letters, and the mathematical symbols listed in Table 21-4, COMSOL Multiphysics correctly displays any Unicode-based character that you paste into a title or label field.

# HTML TAGS

You can use the following HTML tags in text strings for plot labels and titles:

HTML TAG	DESCRIPTION
<b> </b>	Enclosed text is rendered using a bold font.
<i> </i>	Enclosed text is rendered using an italic font.
	Enclosed text is rendered in subscript with the enclosed text slightly lower than the surrounding text.
	Enclosed text is rendered in superscript with the enclosed text slightly higher than the surrounding text.
<tt> </tt>	Enclosed text is rendered using a monospaced font.
<u> </u>	Enclosed text is underlined.

TABLE 21-2: VALID HTML TAGS

# GREEK CHARACTERS

The texts in labels and titles in all plots support the following Greek character tags:

TABLE 21-3: VALID GREEK SYMBOL TAGS

TAG	SYMBOL	TAG	SYMBOL
\ALPHA	Α	\alpha	α
\BETA	В	\beta	β
\GAMMA	Г	\gamma	γ
\DELTA	Δ	\delta	δ
\EPSILON	Е	\epsilon	3
\ZETA	Z	\zeta	ζ
\ETA	Н	\eta	η
\THETA	Θ	\theta	θ
\IOTA	Ι	\iota	l
\KAPPA	K	\kappa	κ
\LAMBDA	Λ	\lambda	λ
\MU	М	\mu	μ
\NU	Ν	\nu	ν
\XI	Ξ	\xi	ξ
OMICRON	Ο	\omicron	0
\PI	П	\рі	π
\RHO	Р	\rho	ρ
\SIGMA	Σ	\sigma	σ
\TAU	Т	\tau	τ
UPSILON	Y	\upsilon	υ
\PHI	Φ	\phi	φ
\CHI	X	\chi	χ
\PSI	Ψ	\psi	ψ
\OMEGA	Ω	\omega	ω

#### MATHEMATICAL SYMBOLS

For texts in titles and axis labels, you can use the following mathematical symbol tags:

TAG	SYMBOL	TAG	SYMBOL
\approx	≈	\bullet	•
\sim	~	\partial	$\partial$
\prop	œ	\nabla	$\nabla$
\neq	≠	\prod	П
\equiv	=	\sum	Σ
\lequal	$\leq$	\sqrt	$\checkmark$
\gequal	≥	\integral	ſ
\II	>>	\oplus	$\oplus$
\gg	<<	\otimes	$\otimes$
\plusmin	±	\larrow	←
\infinity	$\infty$	\rarrow	$\rightarrow$
\deg	o	\lrarrow	$\leftrightarrow$
\cdot	•	\ldarrow	⇐
\times	×	\rdarrow	$\Rightarrow$

TABLE 21-4: VALID MATHEMATICAL SYMBOL TAGS

# Legends

The **Show legends** check box is selected by default to display the plotted expressions to the right of the plot. In plots where each line represents a certain time value, eigenvalue, or parameter value, these values also display. For 1D point plots, the legend displays the coordinate (or vertex number).

When **Automatic** is selected from the **Legends** list (the default), select or clear the **Expression** and **Description** and check boxes to control what to include in the automatic legends (by default it includes the description only). If **Manual** is selected from the **Legends** list, enter your own legend text into the table.



Arrow positioning is available when the plot dimension is the same as the highest dimension available. Arrow positioning is available for 2D arrow surface plots in 2D plot groups but not for 2D arrow surface plots in 3D plot groups.

Under Arrow Positioning, and based on space dimension, in the x grid points, y grid points, and z grid points fields (r grid points and z grid points in 2D axial symmetry) select an Entry method—Number of points or Coordinates:

- If **Number of points** is selected, enter the number of **Points** in each direction (default: 15).
- If **Coordinates** is selected, enter **Coordinates** or click the **Range** button (

# C See Also

Entering Ranges and Vector-Valued Expressions

# Principal Components and Positioning

These sections are available for the Principal Stress Volume and Principal Stress Surface Plots.

# PRINCIPAL COMPONENTS

Under Principal Components, select a Type—Principal stress or Principal strain.

- Under **Principal values**, enter information in the **First**, **Second**, and **Third Value** fields. The default are the three principal stresses (solid.sp1, solid.sp2, and solid.sp3, for example, for a Solid Mechanics interface; the prefix is the physics interface identifier), plotted using red, green, and blue arrows, respectively.
- Under Principal directions, enter information in the table under First, Second, and Third for the X, Y, and Z coordinate fields. The defaults are the directions (eigenvectors) for the first, second, and third principal stress.

For transient problems, enter a Time.

#### POSITIONING

This section is not available for the 3D Principal Stress Surface plot.

Under Positioning select an Entry method— Number of points or Coordinates for the x grid points, y grid points, and z grid points. If Number of points is selected, enter the number of Points in each direction (the default is 7 for Principal Stress Volume plots and 15 for Principal Stress Surface plots). If Coordinates is selected, enter Coordinates (SI unit: m) or click the Range button (

# Defining the Number of Levels

For Contour plots, Contour data sets, and Isosurface data sets, under **Levels** and from the **Entry method** list, select **Number of Levels** or **Levels**. If **Number of Levels** is selected, enter the total number of levels in the **Total levels** field (the default is 20). Otherwise, enter the values of the contour **Levels** or click the **Range** button (

# Selecting Color Tables

For many plot types you can select the color table to use for coloring the surfaces, boundaries, contours, streamlines, slices, and so on. These color tables use 1024 colors each. The best way to compare the color tables is to open a model and experiment with the options.

#### RAINBOW AND RAINBOW LIGHT

**Rainbow** is the default for plots that support color tables. The color ordering corresponds to the wavelengths of the visible part of the electromagnetic spectrum. It starts at the small-wavelength end with dark blue. The colors range through shades of blue, cyan, green, yellow, and red. The disadvantage of this color table is that people with color vision deficiencies (affecting up to 10% of technical audiences) cannot see distinctions between reds and greens.

RainbowLight is similar but uses lighter colors.

# THERMAL, THERMALEQUIDISTANT, AND THERMALLIGHT

**Thermal** colors range from black through red and yellow to white, corresponding to the colors iron takes as it heats up.

**ThermalEquidistant** is similar but uses equal distances from black to red, yellow, and white, which means that the black and red regions become larger compared to the Thermal color table.

**ThermalLight** is similar but uses equal distances from dark red to orange, yellow, and white, which means that the region with the lowest values is red instead of black as it is in the Thermal color table.

# CYCLIC

The **Cyclic** color table is useful for displaying periodic functions because it has a sharp color gradient —it varies the hue component of the hue-saturation-value (HSV) color model, keeping the saturation and value constant (equal to 1). The colors begin with red, then pass through yellow, green, cyan, blue, magenta, and finally return to red.

#### WAVE AND WAVELIGHT

The **Wave** color table is useful for data that naturally have positive and negative attributes in addition to a magnitude. An example of a double-ended scheme, it ranges linearly from blue to light gray, and then linearly from white to red. When the range of the visualized quantity is symmetric around zero, the color red or blue indicates whether the value is positive or negative, and the saturation indicates the magnitude.

People with color vision deficiencies can interpret the **Wave** color table because it does not use red-green-gray distinctions, making it efficient for 99.98% of the population.

**WaveLight** is similar and ranges linearly from a lighter blue to white (instead of light gray) and then linearly from white to a lighter red.

#### TRAFFIC AND TRAFFICLIGHT

The **Traffic** color table spans from green through yellow to red. **TrafficLight** is similar but uses lighter colors.

# DISCO AND DISCOLIGHT

The **Disco** color table spans from red through magenta and cyan to blue. **DiscoLight** is similar but uses lighter colors.

# GRAYSCALE

The **GrayScale** color table uses the linear gray scale from black to white—the easiest palette to understand and order.

These plots are often easier to use for publication in journal articles. People can also better perceive structural detail in a gray scale than with color. Use this plot to increase the probability that a plot is interpreted correctly by people with color vision deficiencies.

# GRAYPRINT

The **GrayPrint** color table varies linearly from dark gray (RGB: 0.95, 0.95, 0.95) to light gray (RGB: 0.05, 0.05, 0.05). Choose this to overcome two difficulties that the GrayScale color table has when used for printing on paper—it gives the impression of being dominated by dark colors, and white is indistinguishable from the background.

# CUSTOM COLOR TABLES

You can also add your own continuous and discrete color tables as files with RGB data



Color Tables in the COMSOL Multiphysics Reference Guide

# Defining the Color and Data Ranges

Under **Range**, select the **Manual color range** and **Manual data range** check boxes to manually override the color range and data range, respectively, with values in the **Minimum** and **Maximum** field, or use the sliders to control values.

# Defining the Coloring and Style

Depending on the plot type and space dimension, the following options are available and defined under **Coloring and Style**. The items are listed in alphabetical order.

## ARROW BASE

Select **Tail** (the default) to position the arrow's tail at the arrow position, or **Head** to position the arrow's head at the arrow position.

# ARROW LENGTH

Select an Arrow length:

• **Proportional** (the default), so that the length of the arrows is proportional to the magnitude of the quantity they represent.

- Normalized, so that all arrows have the same length.
- **Logarithmic**, so that the length of the arrows is proportional to the logarithm of the magnitude of the quantity they represent. This makes arrows representing small values relatively larger. The value in the **Range quotient** field (default: 100) determines the ratio between the smallest and largest values in the range of values for the logarithmic arrow length.

## ARROW PLACEMENT

Select a Placement of the arrows-Uniform, Elements, or Uniform anisotropic.

- Select Uniform (the default) for arrows positioned uniformly on the surface
- Select **Elements** for arrows positioned in the mesh elements (that is, more densely placed arrows where the mesh density is high).
- Select **Uniform anisotropic** to position the arrows using an anisotropic density (that is, more arrows in some directions than in others). If **Uniform anisotropic** is selected, use the **x weight**, **y weight**, and (in 3D) **z weight** fields to give weights for the arrow density in the different directions (using positive scalar weights). The default weights are 1 in all directions. A higher value increases the arrow density in the corresponding direction.

## Number of Arrows

When **Uniform** or **Uniform anisotropic** is selected as the **Placement**, also specify the **Number of arrows** (default: 200).

# ARROW TYPE

Select an Arrow type—Arrow or Cone.



Figure 21-2: Example of 2D model arrow types: cone (left) and arrow (right).

#### COLOR

For arrows, and unless a **Color Expression** subnode determines the arrow colors, select an arrow **Color** or select **Custom** to define a custom color by clicking the **Color** button and selecting a color from the color palette that opens.

For lines, select a **Color—Custom**, **Cycle**, **Black**, **Blue**, **Cyan**, **Gray**, **Green**, **Magenta**, **Red**, **White**, or **Yellow**. If you select **Cycle**, it cycles through all the colors. If you select **Custom**, click the **Color** button to select a custom color from the palette. Enter a line **Width** or use the slider to select.

# COLOR LEGEND

Color legend is selected by default. Click to clear the check box if required. The legend displays to the right of the plot.



Legends

#### COLOR TABLE

If the default (**Rainbow** in most plots) is not suitable for the plot, try other options. See Color Tables below for details. In some cases, select a **Coloring—Color Table** (default) or **Uniform**. If **Uniform** is selected, select a **Color** or **Custom** to choose a different color.

Reverse Color Table

Select the **Reverse color table** check box to reverse the order of the colors in the color table.

# Symmetrize Color Range

Select the **Symmetrize color range** check box to obtain a color range centered around zero. This setting is useful for visualizing wave-like solutions with zero bias.



Selecting Color Tables

#### CONTOUR TYPE

Select a **Contour type—Lines** or **Filled**. If **Lines** is selected, you can also select the **Level labels** check box to display line labels on the graph.

#### GRID

Select a Grid—None (the default), Fine, Normal, or Coarse. If Fine, Normal, or Coarse are selected, also choose a Color for the grid.

# INTERPOLATION AND NUMBER OF INTERPOLATED TIMES

Particle trajectories can appear jagged because the output times for the simulation are too few to result in a smooth plot. You can improve the particle trajectories by using a uniform interpolation of the data for the particle trajectories. From the **Interpolation** list, select **None** for no interpolation (the default), or select **Uniform** to use a uniform interpolation of the data using additional interpolated times defined in the **Number of interpolated times** field. The default is 100 interpolated times.



Interpolation of lines is only available for Particle Trajectories plots, which are available for use with Particle data sets created with the Particle Tracing Module.

# LINE STYLE

The line styles available depend on the type of plot and the space dimension and include these options.

- Cycle, Solid, Dotted, Dashed, or Dash-dot. If Cycle is selected, it cycles through all the options.
- Line, Tube, or None. If Tube is selected, enter a Tube radius expression for the radius of the tube; click the Replace Expression button ( ≥, ) to select a predefined expression to replace the current expression, or press Ctrl+Space to insert a predefined expression (SI unit: m). The default is 1 m.

#### LINE TYPE

Select a **Line type—Line** or **Tube**. For 3D Streamline plots, **Ribbon** is also available. Ribbons are an alternative to tubes for visualization of, for example, the vorticity of a flow field.

the current expression, or press Ctrl+Space to insert a predefined expression (SI unit: m). The default is 1 m. Select the **Width scale factor** check box to enter a user-defined scaling of the ribbons' width in the associated field. By default, the program scales the width automatically.

#### LINE MARKERS OR MARKER TYPE

Select a Marker type—None, Cycle, Asterisk, Circle, Diamond, Plus sign, Point, Square, Star, or Triangle.

If a marker is selected (excluding **None**), then from the **Positioning** list select **Interpolated** or **In data points**. For **Interpolated**, enter the **Number** of markers to display (the default is 8) or use the slider to select. If **In data points** is selected, the markers appear in the data points for the plot (which for a plot of a 1D solution are the mesh nodes).



The line markers are only available for Histogram plots using a continuous function.

# LINE WIDTH

Enter a line Width or use the slider to select.

#### PLOT ALONG LINES WHEN ANIMATING

If the plan is to create an **Animation** report, select the **Plot along lines when animating** check box. This is useful for Particle Trajectories, Particle Tracing, and Particle Tracing with Mass plots.

#### POINT MOTION

Select a **Point motion** to specify what should happen **When particles leaves domain**— **Stick to Boundary** (to plot the points on the boundary at the exit point) or **Disappear** (to not render these points at all).

For static fields, specify the **End time** in the **Advanced** section. It is possible that all particles have left the domain at the selected time. In that case, all points appear at the outflow boundary if **Stick to boundary** is selected, and no points appear if **Disappear** is selected. To make the points appear, specify an earlier end time.

#### POINT RADIUS

Enter a **Point radius expression**; click the **Replace Expression** button (  $\geq \uparrow \uparrow$ ) to select a predefined expression to replace the current expression, or press Ctrl+Space to insert a predefined expression (SI unit: m). The default is 1 mm.

# POINT STYLE

Under Point style, select a Type—Point, None, or Comet tail. If Point or Comet tail is selected, enter a Point Radius and Radius Scale Factor.

**Comet tail** is available with the Particle Tracing Plots, Particle Tracing with Mass Plots, and the Particle Trajectories Plots and requires a license for the Particle Tracing Module.



Comet tail plots provide a convenient way to indicate the direction of travel of particles at a given point in time. The tail of the comet typically points in the opposite direction to the particle velocity; visually, it is the same as the tail of a comet traveling through space.

These additional settings are available when **Comet tail** is selected—Tail and Tail Components and Tail Scale Factor.

### RADIUS SCALE FACTOR

Select the Radius scale factor check box to enter a scalar number for the scale factor.

#### RANGE QUOTIENT

If **Logarithmic** is selected as the arrow length, enter a **Range quotient**, which is the ratio between the maximum arrow length and the arrow length below which no arrow is drawn. The default is 100.

#### SCALE FACTOR

Enter a **Scale factor** for the arrows using a positive scalar number in the field or by using the associated slider (for scale factors between 0 and 1).

# TAIL AND TAIL COMPONENTS

 based on the physics interfaces used in the model. The default expressions (typically pt.nvx, p.nvy, and pt.nvz) represent the negative of the particle velocity.

# TAIL SCALE FACTOR

Select the **Tail scale factor** check box to enter a scalar number between 0 and 1 or use the slider to select.

# WIREFRAME

To plot only on the visualization mesh, select the **Wireframe** check box. This displays the surface as a triangular grid.

# Defining Element Filters

For Mesh and Volume plots you can specify the elements to display under **Element Filter**. Without filtering, the plots display all elements. Using element filters you can highlight elements based on, for example, their mesh quality, size, or location.

To define an element filter, select the **Enable filter** check box and select a **Criterion**— **Logical expression** (the default), **Random** or **Expression**. For Mesh plots, **Worst quality**, **Best quality**, and **Size** are also available, which filters elements with the worst element, best quality, or size, respectively. When you choose **Size**, the fraction that you specify is the fraction with the smallest elements. For example, a fraction of 0.1 plots the smallest 10% of the elements.

- If Expression or Logical expression is selected, enter an Expression in the field. For example, an expression can be abs(x-y) to plot a fraction of elements closest to the line y = x (that is, the fraction that you specify is the fraction where the expression evaluates to the smallest values). An example of a logical expression is (h>0.1)&&(h<0.4), which shows the elements with an element size between 0.1 and 0.4 (h is the predefined variable for the mesh element size); another example is x>0, which plots elements in the right half-plane only.
- If Random, Expression, Worst quality, Best quality, or Size is selected, specify the Fraction of elements (0–1) to show (the default is 1, which means that all elements are included).

# Defining Shrinking of Elements

For Mesh and Volume plots, under **Shrink Elements**, enter an **Element scale factor** between 0 and 1 to scale elements in the mesh plot. The default value is 1, which means no shrinking. Using a smaller value shrinks the size of the elements in the plot

accordingly. This can be useful for visualizing individual elements and looking at interior elements in a volume plot.

# Entering Quality Settings for Plot Settings Windows

Many plots have a **Quality** section where you can select a plot resolution, enforce continuity, and specify the use of accurate derivative recovery. The steps for this section vary slightly based on the plot but are basically as follows.

I Under Quality, select a plot Resolution—Finer, Fine, Normal, Coarse, No refinement or Custom. A higher resolution means that elements are split into smaller patches during rendering.



**Custom** refinement applies to the base data set. This means that the number of elements in the model can increase radically if the plot uses for example a revolve data set, as the refinement is applied to the solution data set.

- 2 To enforce continuity on discontinuous data, under **Quality**, from the **Smoothing** list, select:
  - None: to plot elements independently.
  - **Internal** (the default): to smooth the quantity inside the geometry but no smoothing takes place across borders between domains with different settings.
  - Everywhere: to apply smoothing to the entire geometry.

The default is to smooth the quantity except across borders between domains, where there is often a sharp transition from one material to another or between different types of physics.

**3** Under **Quality**, the **Recover** default is **Off** because the accurate derivative recovery takes processing time. This recovery is a polynomial-preserving recovery that recovers fields with derivatives such as stresses or fluxes with a higher theoretical convergence than smoothing (see Accurate Derivative Recovery below for more information).

To edit the default and use accurate derivative recovery, from the Recover list select:

- Within domains: to perform recovery inside domains.
- Everywhere: to apply recovery to all domain boundaries.

#### ACCURATE DERIVATIVE RECOVERY

Plotting and evaluating stresses or fluxes boils down to evaluating space derivatives of the dependent variables. By default, computing a derivative like ux or uxx (first and second derivatives of u with respect to x) is done by evaluating the derivative of the shape functions used in the finite element approximation. These values have poorer accuracy than the solution u itself. For example, exitus if u has linear elements. COMSOL Multiphysics then evaluates the derivatives (and u itself) using a polynomial-preserving recovery technique by Z. Zhang (see Ref. 1). The recovery is only applied on variables that are discretized using Lagrange shape functions.

The polynomial-preserving recovery is a variant of the superconvergent patch recovery by Zienkiewicz and Zhu that forms a higher-order approximation of the solution on a patch of mesh elements around each mesh vertex. For regular meshes, the convergence rate of the recovered gradient is  $O(h^{p+1})$ —the same as for the solution itself. Near boundaries the accuracy is not as good, and it might even be worse than without recovery. Results evaluation is about 2–5 times slower when using accurate derivative recovery. For this reason, prefer using recovery of stresses or fluxes for surface plots, contour plots, slice plots, and isosurface plots. Use recovery to a lesser extent for volume plots and line plots that plot values near or on the domain boundaries.

By default, the accurate derivative recovery smoothes the derivatives within each group of domains with equal settings. Thus, there is no smoothing across material discontinuities. You find the setting for accurate derivative recovery in the plot node's settings windows' **Quality** section. Due to performance reason, the default value for **Recover** list is **Off** (that is, no accurate derivative recovery). Select **Within domains** to smooth the derivatives within each group of domains with equal settings. Select **Everywhere** to smooth the derivatives across the entire geometry.

#### Reference

1. A. Naga and Z. Zhang, "The Polynomial-Preserving Recovery for Higher Order Finite Element Methods in 2D and 3D," *Discrete and Continuous Dynamical Systems—Series B*, vol. 5, pp. 769–798, 2005.

# Inheriting Style Options

All 2D and 3D plot types (except Mesh) have the **Inherit Style** section. Use this feature to maintain a consistent style between plots.

After there is more than one plot in a plot group, the **Plot** list makes these plots available to select the attributes you want to maintain between plots. For any plot with

this section, and if the check box is applicable to the plot type, the **Color**, **Color and data range**, and **Deform scale factor** check boxes are selected by default. The attributes vary based on the plot type and include:

- Arrow scale factor
- Color
- Color and data range
- Deform scale factor
- Height scale factor
- Ribbon width scale factor
- Point radius scale factor
- Tail scale factor
- Tube radius scale factor

The default **Plot** selected is **None**, which means that styles are not inherited for any plots. If you want to inherit a style, add and select a plot type from the **Plot** list. All attributes automatically inherit the style from the selected plot. To prevent a plot attribute from being inherited, click to clear the check box or select **None** from the **Plot** list.

Small-Signal Analysis, Prestressed Analysis, and Harmonic Perturbation Plot Settings

C See Also For details about the solvers and studies, including the availability by module, see Harmonic Perturbation, Prestressed Analysis, and Small-Signal Analysis.

For the plots that incorporate harmonic perturbation, small-signal analysis, or prestressed analysis, there are additional settings that display in the a variety of plot windows.

#### EXPRESSION EVALUATED FOR

Select an option from the Expression evaluated for list—Static solution, Harmonic perturbation, Total instantaneous solution, Average for total solution, RMS for total solution, or Peak value for total solution. Each option is described below.



See Special Operators for information about the operators described in this section.

# Static Solution

The expression is evaluated by taking the values of any dependent variables from the linearization point of the solution. This is achieved by wrapping the expression in the linpoint operator.

#### Harmonic Perturbation

If **Harmonic perturbation** is selected, the **Compute differential** check box is also available. If the check box is not selected, the expression is evaluated by taking the values of any dependent variables from the harmonic perturbation part of the solution.

If the **Compute differential** check box is selected (default), the differential of the expression, with respect to the perturbation, is computed and evaluated at the linearization point. This is achieved by wrapping the expression in the lindev operator. For expressions which are linear in the solution, the two options are the same.

# Total Instantaneous Solution

The expression is evaluated by adding the linearization point and the harmonic perturbation and taking the real part of this sum. This is achieved by wrapping the expression in the lintotal operator. The phase and amplitude of the harmonic perturbation part can be set in the corresponding data set.

#### Average for Total Solution

This is the same as evaluating for **Total instantaneous solution** and then averaging over all phases of the harmonic perturbation. This is achieved by wrapping the expression in the lintotalavg operator.

#### RMS for Total Solution

This is the same as evaluating for **Total instantaneous solution** and then taking the RMS over all phases of the harmonic perturbation. This is achieved by wrapping the expression in the lintotalrms operator.

# Peak Value for Total Solution

This is the same as evaluating for **Total instantaneous solution** and then taking the maximum over all phases of the harmonic perturbation. This is achieved by wrapping the expression in the lintotalpeak operator.

# Creating ID, 2D, 3D, and Polar Plots

A plot group contains one or more plots (for example, combining a surface plot and a streamline plot) using the same data set, such as a solution. Define plot groups for 1D, 2D, and 3D plots and then create individual or a series of plots in a plot group. Use the information in the form of data and images to generate a report or export to a file.

Attributes can also be added to a plot to modify the plot's behavior—**Deformation** ( $\implies$ ) attributes deform a plot, **Color Expression** ( $\implies$ ) attributes modify the color of a plot, and filtering to only include parts of the plot is selected using the **Filter** attribute ( $\stackrel{\clubsuit}{>}$ ). Select an appropriate color table for the plots' color expressions based on your audience and what you plan to do with the final analysis.

These main topics are included in this section. Links to individual plots are found in Table 21-5 and Table 21-6.

- Common Plot Settings Cross References
- 1D Plot Groups
- Polar Plot Groups
- 2D Plot Groups and 3D Plot Groups
- Color Expressions
- Deformations
- Filters
- Height Expressions

	Results Evaluation and Visualization
	About Plot Groups and Plotting
0	• Creating 1D, 2D, 3D, and Polar Plots
See Also	Common Plot Settings
	Creating Cross-Section Plots and Combining Plots
	Working with Geometry



Note

It is not possible to create plots in a higher dimension than the data set being visualized. For example, a 2D plot group cannot be used to visualize a solution for a 1D model. 1D plot groups can be used for all models.

At any time during plot creation, click the **Plot** button ( $\checkmark$ ) to visualize a data set or plot.

The time-related settings only display on the interfaces for time-dependent models.

Use a **ID Plot Group** ( $\searrow$ ) to plot the graphs listed in Table 21-5. 1D plot groups are also used to create cross-section plots.

- I Define one or more Data Sets.
- 2 In the Model Builder, right-click Results and add a ID Plot Group ( 📐 ).
- 3 Under Data, select a Data set. Click the Go to Source button (1) to move to the node that the selection in the list next to the button refers to. Also, if applicable, select the times, eigenvalues, or parameters for which you want to plot the solution data.
- 4 Under Title, the Title type is automatically generated by default. Select Custom, Manual, or None as required.
- 5 Under Plot Settings, manually enter axis labels by selecting the x-axis label and y-axis label check boxes.
- 6 Under Axis, edit these settings as required.
  - Select the Manual axis limits check box to edit the x minimum, x maximum, y minimum, and y maximum limits already assigned based on the data set.
  - Select one or all of these check boxes: **Preserve aspect ratio**, **x-axis log scale**, **y-axis log scale**. When **Preserve aspect ratio** check box is selected, the distances on the *x*-axis and *y*-axis are kept equal.

- 7 Under Grid, edit these settings as required:
  - Select the Manual spacing check box to edit the predefined **x** spacing and **y** spacing fields.
  - Enter values as required in the Extra x and Extra y fields. Click the Range button (|____]) to define a range of values.
- 8 Under Legend, select the position for legends in all plots for the plot group from the **Position** list—Upper right (the default), Lower right, Upper left, or Lower left. Legends in all plots in the plot group use this position.
- 9 Under Window Settings, edit these settings as required:
  - Select a **Plot window**. The **Graphics** window is the default but any other plot window can be selected, or select **New window** to plot in a new window.
  - Select the Window title check box to enter a custom title (except for the Graphics window), which is then available in the Plot window list for all models. Click the Add plot window button ( -) to add a plot window to the list of available windows.
- IO Add plots to the group and define it as required. When ready, click the Plot button ( ) or right-click the node and select Plot.

## INTERACTIVE

Use a combination of data sets and plots to create a cross-section point plot and cross-section line plot.

To add plots to a group, right-click the **ID Plot Group** node to select as many as required. Each plot group can have several plots combined to create a meaningful representation of the data.

## ADDING PLOTS TO THE ID PLOT GROUP IN THE MODEL BUILDER

Under Results ( $\boxed{10}$ ) in the Model Builder ( $\boxed{11}$ ), right-click the ID Plot Group ( $\boxed{12}$ ) node and select an option from the context menu such as Line Graph or Point Graph. Continue defining each plot as described (see Table 21-5).

When the plot type is defined, click the **Plot** button ( $\searrow$ ), or right-click the node and select **Plot**. The plot displays in the window selected from the **Plot window** list. To plot

results in another windows, right-click the plot group node or the plot node and select a plot window from the **Plot In** submenu.

TABLE 21-5: ID PLOT TYPES

LINK TO SECTION	ICON	DESCRIPTION	
Far Field Plots	2	Plot the value of a global variable. This plot is available for the RF Module and the Acoustics Module.	
Global Plots	►	Plot a global scalar quantity as a function of time or a parameter.	
Histogram	<u>lı.</u>	Plot a histogram showing the distribution of a quantity.	
Line Graphs	<u>~</u>	Plot a scalar quantity along a geometric line. The line can be an edge in the geometry, a parameterized curve, or a cut line.	
Nyquist Plot	ī	Display a Nyquist plot, which shows the magnitude and phase of a frequency response.	
Point Graphs	₩.	Visualize the value in a point along time or a parameter value. The point can be a point in the geometry or a cut point.	
Table Graph	Ì <b>B</b> ,	Table plots display data from a table with one line per output column.	
*1D, 2D, and 3D Cross-Section Point	nt Plots	A point cross-section plot makes it easy to view an expression at an arbitrary set of spatial coordinates and results in a line plot.	

* Cross-section plots are not selected from this menu. Instead, these are created it in two steps using data sets and plot groups to generate the plot.

- Common Plot Settings Cross References
- Polar Plot Groups
- 2D Plot Groups and 3D Plot Groups
- Solver Studies and Study Types
- COL See Also
- About Plot Groups and Plotting
- Creating 1D, 2D, 3D, and Polar Plots
- Common Plot Settings
- Creating Cross-Section Plots and Combining Plots

# Polar Plot Groups

Important

Note

The **Polar Plot Group** node ( ) creates a graph for *polar plots*: plots of a function in polar coordinates: the radius r and the angle  $\theta$ . This is useful for visualizing, for example, a radar cross section or other similar polar plots for electromagnetic or acoustic wave models. The available plot types and settings for the **Polar Plot Group** node are similar to those for the **1D** Plot Group.

	1D Plot Groups
0	Common Plot Settings Cross References
2 See Also	Common Plot Settings
	Combining Plots

# 2D Plot Groups and 3D Plot Groups

It is not possible to create plots in a higher dimension than the data set being visualized. For example, a 3D plot group cannot visualize a solution for a 2D model. In some cases data sets add dimensions to their parent, for example, Revolve 2D. In this case, the solution is a 2D data set, but the revolved data is a 3D data set, which can be used for 3D plot groups.

Similarly, 2D plot groups can be used for 3D solutions when there are, for example, cut planes or other data sets that remove a dimension.

At any time during plot creation, click the **Plot** button ( $\swarrow$ ) to visualize a data set or plot.

The time-related settings only display on the interfaces for time-dependent models.

Use a **2D Plot Group** () to combine several 2D plots into one to visualize all the plots simultaneously. Use a **3D Plot Group** () to combine several 3D plots into one to visualize all the plots simultaneously. For example, combine a surface plot and a streamline plot using the same data set.

I Define one or more Data Sets.

- 2 In the Model Builder, right-click Results and select 2D Plot Group () or 3D Plot Group ().
- **3** Under **Data** select a **Data** set. Click the **Go to Source** button ( ) to move to the node that the selection in the list next to the button refers to. Also, if applicable, select the time, eigenvalue, or parameter for which you want to plot the solution data.
- **4** Under **Title**, the **Title type** is automatically generated by default. Select **Custom**, **Manual**, or **None** as required.
- 5 Under Plot Settings, edit these settings as required:
  - Select a View. The default is Automatic. Other Views are defined under Definitions.
  - (2D only) The **x-axis label** and **y-axis label** check boxes are cleared by default, indicating that empty axis labels are used by default. Select the check boxes to enter labels for the *x*-axis and the *y*-axis.
  - The **Show hidden objects** check box is cleared by default. Click to select it if you want to include geometric entities that are hidden in the plot's view.
  - The **Plot data set edges** check box is selected by default. Click to clear if required. Otherwise, select a **Color** (**Black** is the default) or select **Custom** to click the **Color** button and choose a different color from a color palette. Select a **Frame**—**Material** (the default), **Mesh**, **Geometry frame**, or **Spatial**.
- **6** Under **Color Legend**, specify how to position the color legends (color scales) for the plots in the plot group. Select **Alternating**, **Bottom**, **Left**, **Left double**, **Right** (the default), or **Right double** from the **Position** list. Selecting **Alternating** puts the first color legend to the right of the plot, the second color legend to the left of the plot, and so on. Selecting **Left double** or **Right double** adds two color legends positioned vertically above each other on the left or right side of the plot.



The default precision for the color legend labels is 5 digits. You can change the precision in the **Preferences** dialog box, using the **Color legend** field under **Precision** on the **Graphics** page.

- 7 Under Window Settings, edit these settings as required:
  - Select a **Plot window**. The **Graphics** window is the default setting, but any other plot window can be selected, or select **New window** to plot in a new window.
  - Select the **Window title** check box to enter a custom title (except for the **Graphics** window), which is then available in the **Plot window** list for all models. Click the

Add plot window button ( 🕂 ) to add a plot window to the list of available windows.

8 Add a plot to the group and define it as required. When ready, click the Plot button (), or right-click the node and select Plot.

#### INTERACTIVE

Use a combination of data sets and plots to create a cross-section point plot, cross-section line plot, or cross-section surface plot.

To add plots to a group, right-click the **3D Plot Group** or the **2D Plot Group** node to select as many as required. Each plot group can have several plots combined to create a meaningful representation of the data.

ADDING PLOTS TO 2D AND 3D PLOT GROUPS IN THE MODEL BUILDER Under Results () in the Model Builder (), right-click a 2D Plot Group () or 3D Plot Group () node and select one or more options from the context menu. Each plot group can have several plots combined to create a meaningful representation of the data. Continue defining each plot as described (see Table 21-6).

Also add attributes to a plot to modify the plot's behavior—**Deformation** (¬) attributes deform a plot, **Color Expression** ( ) attributes modify the color of a plot, and element selection is selected using the **Filter** attribute (+). A **Height Expression** () can also be added to some 2D plots.

When the plot type is defined, click the **Plot** button ( $\searrow$ ), or right-click the node and select **Plot**. The plot displays in the window selected in the **Plot window** list. To plot results in another windows, right-click the plot group node or the plot node and select a plot window from the **Plot In** submenu.

LINK TO SECTION	ICON	DESCRIPTION	PLOT ATTRIBUTES AVAILABLE
Arrow Line Plots	3D	Plot a vector quantity as arrows on lines or edges	Color Expression, Deformation, and
	□ 2D	(3D).	Filter
Arrow Surface Plots	5 3D	Visualize a vector quantity in arrows.	Color Expression, Deformation, and
	⊇ 2D		Filter

TABLE 21-6: 2D AND 3D PLOT TYPES

LINK TO SECTION	ICON	DESCRIPTION	PLOT ATTRIBUTES AVAILABLE
Arrow Volume Plots	Ē	Visualize a vector quantity as arrows in a volume.	Color Expression, Deformation, and Filter
Contour Plots	3D 2D	Visualize a scalar quantity as a contour plot.	Color Expression, Deformation, and Filter
Coordinate System Volume, Surface, and Line Plots	^z y 3D ty,x 2D	Plot coordinate systems for 2D and 3D models. Found on the More Plots submenu.	Deformation (2D surface and 3D volume) Deformation and Filter (2D Line, 3D surface, and 3D line)
Far Field Plots	3D	Plot the value of a global variable. This plot is available for the RF Module and the Acoustics Module.	none
Histogram	<b>B</b>	Plot a histogram showing the distribution of a quantity.	Height Expression
Isosurface Plots		Plot a scalar quantity as an isosurface plot.	Color Expression, Deformation, and Filter
Line Plots	3D 2D	Plot a quantity on lines, boundaries (2D), or edges (3D).	Deformation, Filter, and Height Expression (2D only)

TABLE 21-6: 2D AND 3D PLOT TYPES

LINK TO SECTION	ICON	DESCRIPTION	PLOT ATTRIBUTES AVAILABLE
Max/Min Volume, Max/Min Surface, and Max/Min Line Plots	Max/Min: Volume Surface 2D Surface 3D Line 2D Line 3D	Plot the maximum and minimum of an expression and the points there they are attained within the geometry. Found on the More Plots submenu.	Deformation
Mesh Plots		To display a mesh.	Deformation and Filter
Multislice Plots		Display a scalar quantity on slices in multiple directions inside a 3D domain. Found on the More Plots submenu.	Deformation and Filter
Particle Tracing Plots	3D 2D	Visualize the trajectory of a massless particle subject to a flow field. Found on the More Plots submenu.	Color Expression and Deformation
Particle Tracing with Mass Plots	3D 2D	Make a particle tracing plot considering the particle's mass. Found on the More Plots submenu.	Color Expression and Deformation
Particle Trajectories Plots	3D 2D	Visualize the trajectory of a massless particle subject to a flow field in 2D or 3D. This plot requires the Particle Tracing Module.	Color Expression and Deformation

LINK TO SECTION	ICON	DESCRIPTION	PLOT ATTRIBUTES AVAILABLE
Phase Portrait Plots	÷	Visualize particle traces using a phase portrait in 2D. Found under the More Plots submenu. This plot requires the Particle Tracing Module.	Color Expression
Poincaré Map Plots	3D 2D	Visualize particle traces as a Poincaré map in 2D, 2D axial symmetry, and 3D. Found on the More Plots submenu. This plot requires the Particle Tracing Module.	Color Expression
Principal Stress Volume Plots	<b>B</b>	Plot principal stress and strain in structural mechanics models. Found on the More Plots submenu.	Color Expression, Deformation, and Filter
Principal Stress Surface Plots	3D 3D ∎ 2D	Plot principal stress and strain in structural mechanics models. Found on the More Plots submenu.	Color Expression, Deformation, and Filter
Scatter Surface Scatter Surface and Scatter Volume Plots	2D	Scatter surface plots, found on the More Plots submenu, visualize a scalar quantity as scattered spheres or disks. The radius of the spheres can be proportional to the value of a quantity.	None
Scatter Volume Scatter Surface and Scatter Volume Plots	3D	Scatter volume plots can be used as alternatives to arrow plots for scalar quantities or when to get a feeling for how entities correlate.	None
Slice Plots		Display a scalar quantity on slices inside a 3D domain.	Deformation and Filter
Streamline Plots	🌮 3D	Plot a vector field as a streamline plot.	Color Expression and Deformation
	🌮 2D		

LINK TO SECTION	ICON	DESCRIPTION	PLOT ATTRIBUTES AVAILABLE
Surface Plots	2D	Display a quantity on a 2D domain or a 3D boundary.	Deformation, Filter, and Height Expression (2D plots)
Table Surface Plots	•	Used with 2D plot groups to visualize the data in a table that represents a matrix of values that are functions of two independent parameters.	Height Expression
Volume Plots		To display a quantity inside a 3D domain.	Deformation and Filter
PLOT ATTRIBUTES			ADD TO THESE PLOTS
Color Expressions	2	To add coloring to the shapes defined by a plot.	Arrow (line, surface and volume), contour, isosurface, particle tracing, particle trajectories, principal stress (volume and surface), and streamline
Deformations	-	Deform the plot according to a vector quantity, for example, the displacement field in structural mechanics.	All plots except scatter plots.
Filters	4	Filter the element selection for a plot.	Arrow (line and surface), contour, coordinate system (line and surface), isosurface, line plot, mesh, principal stress, slice, surface, and volume.
Height Expressions		Height attributes introduce a 3D height on a 2D surface plot.	2D line plot, 2D surface plot, 2D table surface plot

LINK TO SECTION	ICON	DESCRIPTION	PLOT ATTRIBUTES AVAILABLE
CROSS SECTION PLOT	s		
*1D, 2D, and 3D Point Plots	Cross-Section	View an expression at coordinates.	t an arbitrary set of spatial
*2D Cross-Section Line Plots and 3D Cross-Section Line Plots		U	2D and 3D geometries to e. Also explains how to use the ion toolbar buttons.
*3D Cross-Section Surface Plot		to visualize on the pla to an orthogonal 2D o	h a 3D model in a 2D geometry ine. The cut plane corresponds coordinate system embedded in v to use the interactive buttons.

* Cross-section plots are not selected from this menu. Instead, these are created in two steps using data sets and plot groups to generate the plot or use interactive cross-section toolbar buttons.

See Also	Common Plot Settings Cross References
	1D Plot Groups
	Polar Plot Groups
	About Plot Groups and Plotting
	• Creating 1D, 2D, 3D, and Polar Plots
	Common Plot Settings
	Creating Cross-Section Plots and Combining Plots
	User-Defined Views
	Solver Studies and Study Types

Under **Results** there are many common sections on each settings window. Table 21-7 provides cross references to the information. Availability depends on the plot type and in some cases, the space dimension. For the **Coloring and Style** section, see Table 21-8.

SECTION ON THE SETTINGS WINDOW	CROSS REFERENCE
Arrow Positioning	Arrow Positioning
Color (3D plot group, Far Field plots)	Expressions and Predefined Quantities
Coloring and Style	See Table 21-8 below and Defining the Coloring and Style
Data	Selecting a Data Set for Plots
Data for Parametric Solver and Parametric Sweep studies	Selecting Solutions for Parametric Sweeps
Element Filter	Defining Element Filters
Expression	Expressions and Predefined Quantities
Inherit Style	Inheriting Style Options
Legends	Legends
Levels	Defining the Number of Levels
Positioning	Principal Components and Positioning
Principal Components	Principal Components and Positioning
Quality	Entering Quality Settings for Plot Settings Windows
Radius	Expressions and Predefined Quantities and Radius Scale Factor
Range	Defining the Color and Data Ranges
r-Axis Data (polar plots)	Expressions and Predefined Quantities
Shrink Elements	Defining Shrinking of Elements
Title	Plot Titles for Plot Groups and Plot Types and Using Special Formats and Symbols in Titles
y-Axis Data (ID plots)	Expressions and Predefined Quantities

TABLE 21-7: DETAILS FOR THE COMMON PLOT SETTINGS SECTIONS

# COLORING AND STYLE

SECTION	CROSS REFERENCE
Arrow base	Arrow Base
Arrow color	Color
Arrow length	Arrow Length
Arrow type	Arrow Type
Color legend	Color Legend
Coloring	Color Table
Color table	Color Table and Selecting Color Tables
Grid	Grid
Line color	Color
Line markers	Line Markers or Marker Type
Line style (Line, Color, and Width)	Line Style
Line type	Line Type
Line width	Line Style
Number of arrows	Arrow Placement
Placement	Arrow Placement
Plot along lines when animating	Plot Along Lines When Animating
Point color	Color
Point motion	Point Motion
Point radius	Point Radius
Point style, Point type	Point Style
Radius scale factor	Radius Scale Factor
Range quotient	Range Quotient
Reverse color table	Color Table
Scale factor	Scale Factor
Symmetrize color range	Color Table
Tail and Tail components	Tail and Tail Components
Tail scale factor	Tail Scale Factor
Wireframe	Wireframe

TABLE 21-8: CROSS REFERENCES FOR THE COMMON COLORING AND STYLE SETTINGS SECTIONS

- About Plot Groups and Plotting
- Creating 1D, 2D, 3D, and Polar Plots
- Defining Data Sets



- Creating Cross-Section Plots and Combining Plots
  - User-Defined Views
  - Solver Studies and Study Types

# Arrow Line Plots

See Also

Use an **Arrow Line** plot to visualize a vector quantity as arrows on lines using a 2D **Arrow Line** (_____) plot, or lines and edges using a 3D **Arrow Line** (_____). Add **Deformation**, **Color Expression**, or **Filter** subnodes as required. For example, add a **Color Expression** node to color the arrows with the magnitude of the vector quantity that the arrows represent.

Right-click a **2D Plot Group** ( ) or **3D Plot Group** () to add these plot types.

Links to all the other plots (including the plot attributes) are found in Table 21-5 (1D and polar) and Table 21-6 (2D and 3D).

Also go to Common Plot Settings Cross References for links to information about these sections: Data, Expression, Title, Coloring and Style, and Inherit Style.



👕 Tip

See Figure 21-3 and Figure 21-4 for examples from the AC/DC Module and CFD Module Model Libraries.



Surface: Magnetic flux density norm (T) Arrow Line: Maxwell surface stress tensor Arrow Line: Maxwell surface stress tensor

Figure 21-3: A 2D arrow line plot combined with a surface plot. From the AC/DC Module Model Library: Electromagnetic Forces on Parallel Current-Carrying Wires.



Figure 21-4: A 3D arrow line plot combined with surface and slice plots. From the CFD Module Model Library: Solar Panel.

Arrow Surface Plots

Use an **Arrow Surface** plot to visualize a vector quantity as arrows on a surface using a 2D **Arrow Surface** () or 3D **Arrow Surface** () plot. Add **Deformation**, **Color Expression**, or **Filter** subnodes as required. For example, add a **Color Expression** node to color the arrows with the magnitude of the vector quantity that the arrows represent.

Right-click a 2D Plot Group ( ) or 3D Plot Group () to add these plot types.

Links to all the other plots (including the plot attributes) are found in Table 21-5 (1D and polar) and Table 21-6 (2D and 3D).

<mark>т</mark>р

Also go to Common Plot Settings Cross References for links to information about these sections: Data, Expression, Title, Arrow Positioning, Coloring and Style, and Inherit Style.

Model

See Figure 21-5, and Figure 21-6 for examples from the Chemical Reaction Engineering Module Model Library and COMSOL Multiphysics Model Library.



Figure 21-5: A 2D arrow surface plot combined with a surface plot. From the Chemical Reaction Engineering Module Model Library: Isoelectric Separation.



Figure 21-6: A 3D arrow surface plot combined with a surface plot. From the COMSOL Multiphysics Model Library: Shell Diffusion.

# Arrow Volume Plots

Use an **Arrow Volume** ()) plot visualize a vector quantity as arrows in a 3D volume. Add **Deformation**, **Color Expression**, or **Filter** subnodes as required. For example, add a **Color Expression** node to color the arrows with the magnitude of the vector quantity that the arrows represent.

Right-click a **3D Plot Group** () to add this plot type.

Links to all the other plots (including the plot attributes) are found in Table 21-5 (1D and polar) and Table 21-6 (2D and 3D).



Also go to Common Plot Settings Cross References for links to information about these sections: Data, Expression, Title, Arrow Positioning, Coloring and Style, and Inherit Style.



See Figure 21-7 for an example from the Subsurface Flow Module Model Library.



Time=1000 Isosurface: Pressure (kPa) Arrow Volume: Darcy's velocity field

Figure 21-7: A 3D combined arrow volume and isosurface plot. From the Subsurface Flow Module Model Library: Discrete Fracture.

# Contour Plots

Use a **Contour** plot to visualize a scalar quantity as a contour in 2D (()) or 3D ()) and display the quantity as a set of colored lines. The selected quantity has a constant value on these contour lines, optionally with a 3D height. Add **Deformation**, **Color Expression**, or **Filter** subnodes as required.

Right-click a **2D Plot Group** (**C**) or **3D Plot Group** (**C**) to add these plot types.

Links to all the other plots (including the plot attributes) are found in Table 21-5 (1D and polar) and Table 21-6 (2D and 3D).



Also go to Common Plot Settings Cross References for links to information about these sections: Data, Expression, Title, Levels, Quality, Inherit Style, and Coloring and Style.

See below for sections specific to this plot: Coloring and Style.



See Figure 21-8 and Figure 21-9 for examples from the COMSOL Multiphysics Model Library and Acoustics Module Model Library.

### COLORING AND STYLE

Select a **Contour type—Lines** or **Filled**. If **Lines** is selected, also select the **Level labels** check box to display line labels on the graph.

If you select to display level labels, specify the precision (number of significant digits) as a positive integer in the **Precision** field (default: 4). Also select a **Label color**: select a predefined color or select **Custom** to define a custom color by clicking the **Color** button and selecting a color from the color palette that opens.



DeltaT(3)=2 Contour: Excess temperature in model domain (K) Arrow Surface: Velocity field Surface: Excess temperature in model domain (K)

Figure 21-8: A 2D contour plot combined with arrow surface and surface plots. From the COMSOL Multiphysics Model Library: Marangoni Convection.



Figure 21-9: A 3D contour plot combined with a surface plot. From the Acoustics Model Library: Doppler Shift.

# Coordinate System Volume, Surface, and Line Plots

Add Coordinate System plots in 3D  $(\underbrace{*}_{\mathbf{L},\mathbf{x}})$  or 2D  $(\underbrace{*}_{\mathbf{J},\mathbf{x}})$ . Use the **Coordinate System Volume** (3D), **Coordinate System Surface** (2D and 3D), and **Coordinate System Line** (3D) plots to plot coordinate systems. You can use these plot to visualize the coordinate systems used in, for example, models of piezoelectric devices, where there can be multiple domains, each using its own set of coordinate systems. Right-click to add a **Deformation** or **Filter** (for 2D and 3D Coordinate System Line and 3D Coordinate System Surface plots), if required. Right-click a **2D** Plot Group () or **3D** Plot Group () to add these plot types from the More Plots submenu.

Links to all the other plots (including the plot attributes) are found in Table 21-5 (1D and polar) and Table 21-6 (2D and 3D).

Also go to Common Plot Settings Cross References for links to information about these sections: Data, Title, Coloring and Style, and Inherit Style.

See below for sections specific to these plots: **Coordinate System** and **Positioning**.



₩ Tip

See Figure 21-10 for an example from the MEMS Module Model Library.

#### COORDINATE SYSTEM

For Coordinate System Surface in 2D and Coordinate System Volume in 3D you can choose, from the Source list, if you want to plot a Coordinate system (the default) or a Matrix variable:

- For **Coordinate system**, choose one of the available coordinate systems from the **Coordinate system** list. The default is **None** (no coordinate system).
- For Matrix variable, click the Replace Expression button () to select an available matrix variables, which include coordinate transforms to and from the added coordinate systems and physical quantities thar are tensors, such as the thermal conductivity. The selected variable (for example, ht.k), then appears next to Matrix variable.

For other coordinate system plots, select a coordinate system to plot from the **Coordinate system** list. The default is **None** (no coordinate system), and the list contains any additional coordinate systems that the model includes.

#### POSITIONING

This section is available for Coordinate System Volume  $({}^{\not{z}}_{\not{a},x})$  or 2D Coordinate System Surface  $({}^{\not{a}}_{\not{a},x})$  plots.

In the x grid points, y grid points, and z grid points (3D only) fields select an Entry method—Number of points or Coordinates.

- If **Number of points** is selected, enter the number of **Points** in each direction (the default is 15 for 2D Coordinate System Surface plots and 7 for 3D Coordinate System Volume plots).
- If **Coordinates** is selected, enter **Coordinates** (SI unit: m) or click the **Range** button (|____]) to select and define specific coordinates.

V0(11)=6000 Coordinate system volume: Rotated system



Figure 21-10: A 3D coordinate system volume plot. From the MEMS Module Model Library: Microgripper.

Far Field Plots

Note

The Far Field plots are available with the Acoustics Module or RF Module. For a **3D Plot Group** and **2D Plot Group**, select these plots from the **More Plots** submenu.

Default **Far Field** plots are automatically added to any model that uses far field calculations.

The Far Field plots are used to plot the value of a global variable.

- For the RF Module, the variables are the far field norm, normEfar and normdBEfar, or components of the far field variable Efar.
- For the Acoustics Module, the variables are the far field pressure ffc1.Lp_pfar and sound pressure level ffc1.Lp_pfar.

The variables are plotted for a selected number of angles on a unit circle (in 2D) or a unit sphere (in 3D). The angle interval and the number of angles can be manually specified. Also the circle origin and radius of the circle (2D) or sphere (3D) can be specified. For 3D **Far Field** plots you also specify an expression for the surface color.

The main advantage with the **Far Field** plot, as compared to making Line Graphs, is that the unit circle/sphere used for defining the plot directions is not part of the geometry for the solution. Thus, the number of plotting directions is decoupled from the discretization of the solution domain.

Add a **Far Field** plot to any plot group (Polar, 1D, 2D, and 3D).

- 1D or Polar plots ( ) for 2D, 2D axisymmetric, or 3D geometry.
- 2D plot ( [ ) for 2D axisymmetric or 3D geometry.
- 3D plot ( )) for 2D axisymmetric or 3D geometry

Links to all the other plots (including the plot attributes) are found in Table 21-5 (1D and polar) and Table 21-6 (2D and 3D).

Also go to Common Plot Settings Cross References for links to information about these sections: Data, Title, Inherit Style, and Coloring and Style. For 1D and Polar plot groups, see the section also for Legends. For 3D plot groups, see the list for Color.

See below for sections specific to this plot: Evaluation.

- I Define one or more Data Sets and add a Polar Plot Group ( ), ID Plot Group ( ),
   2D Plot Group ( ) or 3D Plot Group ( ).
- 2 Right-click the plot node and select **Far Field**. For **3D Plot Groups** and **2D Plot Groups**, the plot is available from the **More Plots** submenu.

<mark>т</mark>р

#### EVALUATION

ID Plot Groups and Polar Plot Groups:

- I Under Angles, enter the  $\phi$  resolution. The default is 50.
- 2 Select a Restriction—None (the default) or Manual. If Manual is selected, enter values (SI unit: deg) for  $\phi$  start (the default is 0 degrees) and  $\phi$  range (the default is 360 degrees).
- **3** Under **Center**, enter a value for **z-coordinate** (SI unit: mm). The default is 0.
- 4 Under Normal, enter values for x, y, and z. The defaults for x and y are 0, and the default for z is 1. Enter a Radius (SI unit: mm). The default is 1 mm.
- 2D Plot Groups and 3D Plot Groups:
- I Under Angles, enter the  $\theta$  resolution. The default is 10. Enter the  $\phi$  resolution. The default is 20.
- 2 Select a **Restriction—None** (the default) or **Manual**. If **None** is selected, you can also select the **Compute directivity** check box. If the **Compute directivity** check box is selected, the direction for the strongest radiation and the directivity value display in the **Results** window table.



Select View>Results to open the Results window.

- 3 If Manual is selected, enter values (SI unit: deg) for:
  - $\theta$  start (the default is 0 degrees)
  - $\phi$  start (the default is 0 degrees)
  - $\theta$  range (the default is 180 degrees)
  - $\phi$  range (the default is 360 degrees)

**4** Under **Sphere** from the list, select **Unit sphere** (the default) or **Manual**. If **Manual** is selected, enter a value for **z-coordinate** (SI unit: mm). The default is 0. Enter a **Radius** (SI unit: mm). The default is 1.

When you have the Acoustics Module:

- For a 3D example, see Bessel Panel: Model Library path Acoustics_Module/Tutorial_Models/bessel_panel.
- For a 2D axisymmetric example, see Cylindrical Subwoofer: Model Library path Acoustics_Module/Tutorial_Models/cylindrical_subwoofer.

When you have the RF Module:



- 2D model example with a Polar Plot Group—Radar Cross Section: Model Library path RF_Module/Tutorial_Models/radar_cross_section
- 2D axisymmetric model example with a Polar Plot Group and a 3D Plot Group—Conical Antenna: Model Library path RF_Module/ RF_and_Microwave_Engineering/conical_antenna
- 3D model example with a Polar Plot Group and 3D Plot Group— Radome with Double-layered Dielectric Lens: Model Library path RF_Module/RF_and_Microwave_Engineering/radome_antenna

# Global Plots

Use a **Global** ( $\searrow$ ) plot to graph a scalar quantity as a function of time or a parameter. Right-click a **ID Plot Group** ( $\swarrow$ ) or **Polar Plot Group** ( $\circledast$ ) to add this plot type.





See Figure 21-11 for an example from the COMSOL Multiphysics Model Library. A contour data set can be used.



Small-Signal Analysis, Prestressed Analysis, and Harmonic Perturbation Plot Settings

## X-AXIS DATA (ID PLOTS) OR $\theta$ angle data (polar plots)

From the **Parameter** list, select an option for what the *x*-axis represents—**Solution number**, **Frequency spectrum**, **Phase**, or **Expression**. For **Parametric Sweep** studies, and when there are multiple inner solutions, **Parameter value** and **Time** are also available. Select:

- Solution number to use the solution numbers as the *x*-axis data (or  $\theta$  angle data for polar plots) for an eigenvalue solution or for a parametric solution with more than one parameter.
- **Frequency spectrum** to have COMSOL Multiphysics compute the number of frequencies and the frequency range based on the FFT (fast Fourier transform) of the time-dependent solution.
  - To specify these values manually, select the **Number of frequencies** check box and enter a value in the associated field (the default is based on the number of time samples), or
  - Select the **Frequency range** check box and then enter the bounds of the frequency range in the **Minimum** and **Maximum** fields (in Hz). The FFT algorithm uses resampling based on linear interpolation. The *x*-axis shows the frequency (in Hz). By default, the *y*-axis shows the unscaled Fourier coefficients.
  - Select the **Scale** check box to scale the values on the *y*-axis so that their magnitude reflects the magnitude of the original signal. The values then have the same unit as the input data for the FFT. The *y*-axis title includes the unit if all expressions represented on the *y*-axis have the same unit. The scaling makes the magnitude at 0 Hz equal to the bias or DC component of the original signal. For a pure sinusoid the scaled value is the peak magnitude divided by the square root of 2  $(u_{\text{max}}/\sqrt{2})$ .

- Phase to specify a range of phase angles for the x-axis data. The default for the Phase is range(0,0.5,2*pi) (0-360 degrees in steps of 0.5 rad). Click the Range button (|___]) to define another set of phase angles. Select a Unit for the phase angle.
- **Parameter value** to use the *x*-axis data (or  $\theta$  angle data for polar plots) stored in the solution for a parametric solution with a single parameter.
- **Time** to use time as the *x*-axis data (or θ angle data for polar plots) for a time-dependent solution.

#### Parametric Sweep Studies

Under x-Axis Data ( $\theta$  Angle Data for polar plots), for Parametric Sweep studies, and when there are multiple levels in the parametric sweep, select an option from the Axis source data list to determine which parameter variations to use for the x-axis in the plot:

- The level of the nested parametric sweep (the default setting, using the innermost level), which can be **t** for time or the names of the parameters at the loop level.
- All solutions to use all solutions for all parameters, varying along the innermost level and up.
- Inner solutions to use the inner solution variation (the time, for example).
- Outer solutions to use the outer solution variation.





Figure 21-11: A 1D global plot. From the COMSOL Multiphysics Model Library: Fluid Valve.

# Histogram

continuous function. Right-click a **ID Plot Group** ( $\searrow$ ) or **2D Plot Group** ( $\blacksquare$ ) to add this plot type.

Links to all the other plots (including the plot attributes) are found in Table 21-5 (1D and polar) and Table 21-6 (2D and 3D).

Also go to Common Plot Settings Cross References for links to information about these sections: Data, Expression, Title, Coloring and Style, Legends, and Quality. For 2D Histogram nodes, there are two Expression sections: x-Expression and y-Expression.

See below for sections specific to this plot: Bins, Output, and Evaluation.



₩ Tip

See Figure 21-12 for an example from the COMSOL Multiphysics Model Library.

#### BINS

Select an **Entry method**—**Number of bins** or **Limits**—to define the bins for the histogram's *x*-axis. Select **Number of bins** (the default) to specify the number of bins (default is 10), or select **Limits** to specify a range of limits (1 2 3 4, for example) for the histogram bins. Click the **Range** button  $(|_{and}|)$  to define a range.

For 2D Histogram nodes, these settings are available for the x-direction and y-direction under **x** bins and **y** bins, respectively.

### OUTPUT

Under **Output** specify some properties for the appearance of the histogram. Specify whether to use a continuous or discrete function for the histogram, the normalization, and whether to use a standard or a cumulative histogram.

From the **Function** list, select **Continuous** (the default) to plot the histogram as a continuous function or **Discrete** to plot it as a discrete function (that is, using a constant level in each bin).

From the Normalization list, select:

• Integral to normalize the histogram so that the integral is equal to 1.

- None (the default) to show the actual element volume without any normalization.
- **Peak** to normalize the histogram so that the peak values is equal to 1.

Select the **Cumulative** check box to make the histogram cumulative (that is, the value in each bin is the sum of the values for all bins up to the current one).

# EVALUATION

Specify the **Space dimension** and the **Geometry level** for the evaluation. By default, the settings are taken from the data set. For a specific model, some space dimensions and geometry levels might not be applicable.

From the **Space dimension** list, select **Take from data set** (the default) or one of the space dimensions **0**, **1**, **2**, or **3**. The default is sufficient except when the data set is, for example, a cut plane, which can be evaluated for space dimensions 2 or 3.

From the **Geometry level** list, select **Take from data set** (the default), **Volume**, **Surface**, **Line**, or **Point**. Using another geometry level than the data set can be useful, for example, for evaluating over the surfaces of a 3D geometry. For solution data sets, **Take from data set** defaults to the highest dimension where there are any mesh elements.



Figure 21-12: A 1D histogram plot. From the COMSOL Multiphysics Model Library: Fluid Valve.

# Isosurface Plots

Plot a scalar quantity as an **Isosurface** () plot in 3D. An isosurface plot displays a quantity as a colored set of isosurfaces on which the result has a constant value. The plot can also color isosurfaces based on an independent quantity. You can move the isosurfaces interactively. Add **Color Expression**, **Deformation**, or **Filter** subnodes as required.

Right-click a **3D Plot Group** () to add this plot type.

Links to all the other plots (including the plot attributes) are found in Table 21-5 (1D and polar) and Table 21-6 (2D and 3D).



Also go to Common Plot Settings Cross References for links to information about these sections: Data, Expression, Title, Coloring and Style, Quality, and Inherit Style.

See below for sections specific to this plot: Levels.



See Figure 21-13 for an example from the Acoustics Module Model Library.

#### LEVELS

Select an Entry method for the isosurfaces—Number of Levels or Levels.

- If **Number of Levels** is selected, enter the total number of levels in the **Total levels** field (the default is 5).
- If Levels is selected, enter the values of the isosurface Levels or click the Range button (



Before plotting, select the **Interactive** check box to move the isosurfaces defined in this **Isosurface** node interactively using the slider or by entering a shift in the **Shift** field. A zero shift represents the original position of the isosurfaces.



Figure 21-13: A 3D isosurface plot. From the Acoustics Module Model Library: Car Interior.

Line Graphs

<mark>т</mark>р

Use a Line Graph ( $\searrow$ ) to plot a scalar quantity along a geometric line. The line can be an edge in the geometry, a parameterized curve, or a cut line. Make a graph plot of a quantity versus another quantity (for example, time).

Right-click a ID Plot Group ( []) or Polar Plot Group ( []) to add this plot type.

Links to all the other plots (including the plot attributes) are found in Table 21-5 (1D and polar) and Table 21-6 (2D and 3D).

Also go to Common Plot Settings Cross References for links to information about these sections: Data, y-Axis (or r-Axis), Title, Coloring and Style, Legends, and Quality.

See below for sections specific to this plot: Selection and x-Axis Data or  $\theta$  Angle Data.



See Figure 21-14 and Figure 21-15 for examples from the COMSOL Multiphysics Model Library and the RF Module Model Library. A parameterized curve data set can be used.

# SELECTION (SOLUTION DATA SETS ONLY)

When **Solution** is selected as a **Data Set**, this section displays. Select **Manual** from the **Selection** list to choose geometry directly from the **Graphics** window. Select **All** to add the applicable geometry or any other predefined grouping.

### X-AXIS DATA OR $\boldsymbol{\theta}$ angle data



Line graphs plot one line for each solution. For example, in a parametric sweep, the plot contains one line for each parameter combination.

Select **Arc length** from the **Parameter** list to visualize along an arc length, or select **Expression** to visualize along, for example, a coordinate expression.

If **Expression** is selected, enter an **Expression**, select a **Unit**, and enter or edit a **Description**. Click the **Replace Expression** (  $\blacktriangleright \rightarrow$  ) or **Insert Expression** (  $\Rightarrow \rightarrow$  ) buttons to select predefined expressions based on the physics of the model. Select the **Description** check box to edit the default description for a predefined expression.



*Figure 21-14: A 1D line graph. From the COMSOL Multiphysics Model Library:* Effective Diffusivity in Porous Materials.



Figure 21-15: A Polar Plot Group line graph. From the RF Module Model Library: Conical Antenna.

# Line Plots

<mark>т</mark>р

Use a **Line** plot to display a quantity on lines—that is, boundaries in 2D ( ) or edges in 3D (). Add **Deformation**, **Filter**, or **Height Expression** (2D only) subnodes as required.

Right-click a **2D** Plot Group ( ) or **3D** Plot Group () to add these plot types.

Links to all the other plots (including the plot attributes) are found in Table 21-5 (1D and polar) and Table 21-6 (2D and 3D).

Also go to Common Plot Settings Cross References for links to information about these sections: Data, Expression, Title, Range, Coloring and Style, Quality, and Inherit Style.



See Figure 21-16, and Figure 21-17 for examples from the Pipe Flow Module and Structural Mechanics Module Model Libraries.



Figure 21-16: A 2D line plot. From the Pipe Flow Module Model Library: Discharging Tank.



Figure 21-17: A 3D line plot. From the Structural Mechanics Module Model Library: In-Plane and Space Truss.

## Max/Min Volume, Max/Min Surface, and Max/Min Line Plots

Use the Max/Min Volume ( $\textcircled{\basis}$ ), Max/Min Surface 2D ( $\textcircled{\basis}$ ), Max/Min Surface 3D ( $\textcircled{\basis}$ ), Max/Min Line 2D ( $\textcircled{\basis}$ ), and Max/Min Line 3D ( $\textcircled{\basis}$ ) plots to plot the maximum and minimum values of an expression and the points there they are attained within the geometry.

When plotting the maximum and minimum value, an associated table appears in a **Results** window (underneath the plot with the default COMSOL Desktop layout). The table contains the maximum and minimum values along with the coordinates for the corresponding locations. The coordinate columns' titles contain the space variable names from the data set, if you use a **Cut Plane** data set, for example. Add a **Deformation** subnode as required.

Right-click a **2D** Plot Group () or **3D** Plot Group () to add these plot types from the More Plots submenu.

Links to all the other plots (including the plot attributes) are found in Table 21-5 (1D and polar) and Table 21-6 (2D and 3D).



Also go to Common Plot Settings Cross References for links to information about these sections: Data, Expression, Title, Coloring and Style, and Inherit Style.

See below for sections specific to this plot: Advanced.



See Figure 21-18 and Figure 21-19 for examples from the Structural Mechanics Module and MEMS Module Model Libraries.

### ADVANCED

Under **Advanced**, define the number of refinements of each mesh element when computing the maximum and minimum by entering a value in the **Element refinement** field (the default is 2). Edit these other settings if required:

- Enter a **Display Precision** for the number of decimals displayed in the labels. The default is 6.
- The **Recover** default is **Off** because recovery takes processing time. To edit the default and use polynomial-preserving recovery and recover fields with derivatives such as stresses or fluxes with a higher theoretical convergence than smoothing, from the **Recover** list, select **Within domains**: to perform recovery inside domains or **Everywhere** to apply recovery to all domain boundaries.
- Select an option from the Display list—Min and max (the default), Min, or Max.



Figure 21-18: A 3D max/min surface plot combined with a surface plot. From the Structural Mechanics Module Model Library: Turbine Stator.

Surface: Temperature (K) Max/Min Volume: Temperature (K)



Figure 21-19: A 3D max/min volume plot combined with a surface plot. From the MEMS Module or Structural Mechanics Module Model Library: Thermal Expansion.

# Mesh Plots

g

Tip

Use a **Mesh** plot ( $\bigotimes$ ) to display a mesh in 2D or 3D. The plot can display the mesh quality or the mesh size. It is possible to plot the mesh without solving a model using a Mesh data set. Add **Deformation** or **Filter** subnodes as required.

Right-click a **2D Plot Group** (**7**) or **3D Plot Group** (**7**) to add this plot type.

You can also create a Mesh plot by right-clicking the **Mesh** node and selecting **Plot** (Signature).

Links to all the other plots (including the plot attributes) are found in Table 21-5 (1D and polar) and Table 21-6 (2D and 3D).



Also go to Common Plot Settings Cross References for links to information about these sections: Data, Title, Element Filter, and Shrink Elements.

See below for sections specific to this plot: Level and Color.

# LEVEL

Select a Level to display the mesh-All, Volume (3D only), Surface, Line, or Point.

If Surface is selected, select the base Element type to visualize—All, Triangle, or Quad.



For 3D models and if **Volume** is selected, select the base **Element type** to visualize—All, **Tetrahedron**, **Prism**, or **Hex**.

### COLOR

Under **Color**, select an **Element color**—any basic color, **Quality** (the default) to get an element quality plot; **Size** to get a plot of the local mesh size; **Custom** to select a different color; or **None** to plot with no color.

- Select a **Color table** for the element quality. If the default (**Rainbow**) is not suitable for the plot, try other options.
- Select a Wireframe color—any basic color, Custom to select a different color, or None to plot with no color.

# Multislice Plots

Use a **Multislice Plot** () to display a scalar quantity on slices in multiple directions inside a 3D domain. Add **Deformation** and **Filter** subnodes as required.

Right-click a **3D Plot Group** () to add this plot type from the **More Plots** submenu.

Links to all the other plots (including the plot attributes) are found in Table 21-5 (1D and polar) and Table 21-6 (2D and 3D).



Also go to Common Plot Settings Cross References for links to information about these sections: Data, Expression, Title, Range, Coloring and Style, Quality, and Inherit Style.

See below for sections specific to this plot: Multiplane Data.



See Figure 21-20 for an example from the AC/DC Module Model Library.

#### MULTIPLANE DATA

Under Multiplane Data, select an Entry method—Number of planes or Coordinates— for the x-planes, y-planes, and z-planes.

For Number of planes, enter the number of planes in the Planes field. For Coordinates, enter a range of coordinates in the Coordinates field or click the Range button  $(| _ { } | )$  to define a range of values.



*Figure 21-20: A 3D multislice plot. From the AC/DC Module Model Library: Geoelectrics.* 

# Nyquist Plot

Тір

Use a **Nyquist Plot** ( $\bigcirc$ ) to plot a Nyquist plot that shows the magnitude and phase of a frequency response. The plot shows the magnitude as the distance from the origin and the phase as the angle using a curve with the frequency as the parameter. Typical data to use for a Nyquist plot include complex-valued impedance data from a frequency domain study.

Right-click a ID Plot Group ( $\swarrow$ ) or Polar Plot Group ( $\circledast$ ) to add this plot type.

Links to all the other plots (including the plot attributes) are found in Table 21-5 (1D and polar) and Table 21-6 (2D and 3D).

Also go to Common Plot Settings Cross References for links to information about these sections: Data, Expression, Title, Coloring and Style, and Legends.

Except where noted below, see Global Plots for all of the settings.

- For Global Plots, the **Expressions** section is called **y-Axis Data** (or **r-Axis Data** for polar plots), but the instructions are the same.
- Under **Coloring and Style**, select the **Show unit circle** check box to include a unit circle in the Nyquist plot.



Nyquist Plot: Lumped port impedance (Ω)

Figure 21-21: A 1D Nyquist plot. Created using the RF Module Model Library model, RF Coil.

# Particle Tracing Plots

É

Note

This plot type is intended for visualizing a small number of particles on simple geometries. The Particle Tracing Module has vastly superior particle tracing capabilities and should be used for all but the simplest of models. Use a **Particle Tracing** plot to visualize the trajectory of a massless particle subject to a flow field in 2D ( ******) or 3D ( ******). Visualize *pathlines* (that is, trajectories of particles released in a flow field), which can be time dependent or static. For time-dependent flows, also use a snapshot in time of the flow field as a static field. The motion of the particles does not affect the flow field. Add a **Color Expression** or **Deformation** subnode as required.

Right-click a **2D** Plot Group () or **3D** Plot Group () to add these plot types from the More Plots submenu.

Links to all the other plots (including the plot attributes) are found in Table 21-5 (1D and polar) and Table 21-6 (2D and 3D).

Also go to Common Plot Settings Cross References for links to information about these sections: Data, Expression, Title, Coloring and Style, Quality (Resolution and Recover only), and Inherit Style.

See below for sections specific to this plot: **Particle Positioning**, **Release**, **Quality** (ODE solver settings), and **Advanced**.

There is an additional setting under Coloring and Style for this plot.



<mark>т</mark>р

The **Type** of **Point Style** available includes **Comet tail**. Comet tail plots provide a convenient way to indicate the direction of travel of particles at a given point in time. The tail of the comet typically points in the opposite direction to the particle velocity—so visually, it is the same as the tail of a comet traveling through space. Go to Common Plot Settings Cross References for the **Comet tail** settings links.

#### PARTICLE POSITIONING



For 3D models, enter the initial position of particles in the **x**, **y**, and **z** fields or click the **Range** button  $(| _ ])$  to define a range.

## For 2D models, enter the Positioning details as described below.

Select a **Positioning—Start point controlled** or **Boundary coordinates**. Boundary coordinates are useful, for example, for flow models with one or more inflow boundaries.

- If **Start point controlled** is selected, enter the initial position of particles in the **x** and **y** fields or click the **Range** button (**L**, **)** to define a range.
- If Boundary coordinates is selected, select an item from the Named selection list and select an Entry method—Number of points or Boundary parameters. Click the Go to Source button (
   ) to move to the node that the selection in the list next to the button refers to.
  - If Number of points is selected, enter the number of grid Points (the default is 10).
  - If **Boundary parameters** is selected, enter the **Relative coordinates** or click the **Range** button (|____]) to define a range using the **Range** window.

#### RELEASE

2D

Under Release, specify when to Release particles—Once (the default), At intervals, or At times. Select:

- **Once** to release particles once at the first available time, typically at time 0 (zero). To delay the release, select the **Start time** check box and enter a time.
- At intervals to release particles at regular intervals starting at the first available time, typically at time 0 (zero). To delay the release, select the **Start time** check box and enter a time. Enter a **Time between releases**. The default is 1.
- At times to release particles at an arbitrary time point; enter multiple Times to release particles or click the **Range** button (

# QUALITY (ODE SOLVER SETTINGS)

Under **Quality**, also define the **ODE solver settings** as required. Go to ODE Solver Settings—Relative Tolerance, ODE Solver Settings—Absolute Tolerance, and ODE Solver Settings—Step Size for details.



The **Advanced** section contains settings that do not normally need to be adjusted.

Under **Advanced**, also define these settings as required. Go to Advanced—Termination and Advanced—Instantaneous Flow Field for details.

In the Termination section, edit the Maximum number of steps and Edge tolerance. In the Instantaneous flow field section, edit the Plot static flow field even when time dependent check box, the Time variable default, and the End time active.

### ODE Solver Settings—Relative Tolerance

Follow these supplementary instructions for the **ODE solver settings** section found under the **Quality** section.

Enter a **Relative tolerance** for the ODE solver. The default is 0.001.

- When solving the 2nd-order ODE  $m\ddot{x} = F(t, x, \dot{x})$  for x, the solver first rewrites it as two coupled 1st-order ODEs: one for position x and one for velocity  $\dot{x}$ , each with two components in 2D and three components in 3D.
- The **Relative tolerance** value is the relative error tolerance that the ODE solver uses. It applies to all components of the particle's position and velocity. The solver controls the step size so that the estimated error *e* in each integration step satisfies

 $\begin{cases} e < \max(\text{atolpos, rtol} \cdot |x_i|) & (\text{for all components } x_i \text{ of } x) \\ e < \max(\text{atolvel, rtol} \cdot |x_i|) & (\text{for all components } \dot{x}_i \text{ of } \dot{x}) \end{cases}$ 

where rtol is the relative tolerance specified, atolpos is the absolute tolerance for the particle's position components, and atolvel equals the absolute tolerance for the particle's velocity components.

### ODE Solver Settings—Absolute Tolerance

Follow these supplementary instructions for the **ODE solver settings** section found under the **Quality** section. Specify the solver's absolute tolerance. The default is **Automatic**. To enter different values, select **Manual** from the **Absolute tolerance** list and enter a **Position**. The **Position** field can contain a single value—it applies to all components of the position and is the absolute tolerance.

#### ODE Solver Settings-Step Size

Follow these supplementary instructions for the **ODE solver settings** section found under the **Quality** section. Specify the solver **Step size**. The default is **Automatic**— COMSOL uses the initial value of the acceleration (force divided by mass) and the relative and absolute tolerances to determine the initial time step.

• The automatic maximum step size is 10% of the total simulation time for time-dependent flows as well as for static flow fields where the end time is manually specified in the Advanced section (in the Plot static flow field even when time dependent>End Time field). For static flow fields where the end time is not set manually, there is no upper limit of the step size. However, in this case, the initial time step is less than or equal to 0.1.

To edit the settings, select Manual from the Step size list and enter values in the Initial time step and Maximum time step fields.

• The **Maximum time step** is the longest time step the solver takes. It has higher priority than the **Initial time step**; that is, if an initial step size is set larger than the maximum step size, the solver lowers the initial step size to the maximum step size.



The initial step size, whether entered manually or computed automatically, is not necessarily the first step the solver takes but is a first try. If this step leads to an error such that the tolerances are not met, COMSOL Multiphysics lowers it.

## Advanced—Termination

Follow these supplementary instructions for the section found under the **Advanced** section. The **Termination** section contains settings that determine when to end the particle tracing simulation.

- To specify an upper limit of the number of time steps, click to select the **Maximum number of steps** check box and edit the default (1000). The particle simulation ends after this number of steps.
- To specify how close to the geometry boundary the path lines are cut when they exit the geometry, edit the **Edge tolerance** default (0.001). This is an absolute tolerance controlling how close to the geometry boundary the pathlines are cut when they exit the geometry. A lower value cuts the line closer to the geometry boundary.

#### Advanced—Instantaneous Flow Field

Follow these supplementary instructions for the section found under the **Advanced** section. To specify if you want to plot an instantaneous even if the solution is time

dependent, select the **Plot static flow field even when time dependent** check box. This freezes the time selected previously— for example, from a **Plot Group** page in the **Data>Time** list—to the value specified and considers this a static flow field.

- Edit the **Time variable** default (partt) if required. Normally it is not necessary to change the default name but the name can be used in expressions as well as for the color when coloring the pathlines according to an expression.
- If required, select the **End time active** check box and enter a value.

# Particle Tracing with Mass Plots



<mark>е</mark> Тір This plot type is intended for visualizing a small number of particles on simple geometries. The Particle Tracing Module has superior particle tracing capabilities and should be used for all but the simplest of models.

Use a **Particle Tracing with Mass** plot in  $2D(\frac{1}{100})$  or  $3D(\frac{1}{100})$  to visualize the trajectory of a particle with mass and subject to a flow field. Add a **Color Expression** or **Deformation** as required.

Right-click a **2D** Plot Group ( ) or **3D** Plot Group ( ) to add these plot types from the More Plots submenu.

Links to all the other plots (including the plot attributes) are found in Table 21-5 (1D and polar) and Table 21-6 (2D and 3D).

Also go to Common Plot Settings Cross References for links to information about these sections: Data, Title, Coloring and Style, Quality (Resolution and Recover only), and Inherit Style.

See below for sections specific to this plot: **Equation of Motion** and **Mass and Velocity**.

See Particle Tracing Plots for Particle Positioning, Release, Quality (ODE solver settings), and Advanced settings.

There is an additional setting under Coloring and Style for this plot.



The **Type** of **Point Style** available includes **Comet tail**. Comet tail plots provide a convenient way to indicate the direction of travel of particles at a given point in time. The tail of the comet typically points in the opposite direction to the particle velocity—so visually, it is the same as the tail of a comet traveling though outer space. Go to Common Plot Settings Cross References for the **Comet tail** settings links.



See Figure 21-22 for an example from the COMSOL Multiphysics Model Library.

### BACKGROUND INFORMATION

Also, see Particle Tracing in Fluid Flow in the The Fluid Flow Branch section for more information about the predefined expressions for drag-driven particle movement that are available for particle tracing in fluid-flow models.

For particles with mass, COMSOL generates the pathlines by solving the fundamental equation of motion:

$$m\ddot{x} = F(t, x, \dot{x})$$

for the pathline x(t). Here, *m* is the particle's mass, *F* equals the force acting upon the particle, and *t* is time. This is a system of ODEs for *x*, which COMSOL Multiphysics solves using a pair of Runge-Kutta methods of orders four and five. The solver advances the algorithm with the solution of order five and uses the difference between the order-five and order-four solutions to obtain the local error estimate.

For massless particles, the equation of motion is:

 $\dot{x} = v(t, x)$ 

The true formulation of Newton's second law of motion is  $\frac{d}{dt}(m\dot{x}) = F(t, x, \dot{x})$ . That is, the time derivative of the mass must be considered.



The particle-tracing algorithm does not solve this equation. Thus, an expression is specified for the particle mass that depends on time, the result are incorrect.

Axisymmetric Models



For 2D axisymmetric models, three components for the force are available for particles with mass.

When specifying all three, the algorithm solves for a line in 3D in cylindrical coordinates, but the plot only shows the projection on the axisymmetry plane. In this case, the centripetal force is considered; that is, the algorithm solves the equation

$$\ddot{r} = \frac{F_r}{m} + r\dot{\varphi}^2 \qquad \ddot{\varphi} = \frac{F_{\varphi}}{rm} - \frac{2\dot{r}\dot{\varphi}}{r} \qquad \ddot{z} = \frac{F_z}{m}$$

where *m* is the particle mass and  $(r, \phi, z)$  are the cylindrical coordinates. The variable corresponding to the velocity component in the  $\phi$  direction (the default name is partv) has the dimension length/time, and equals  $r\dot{\phi}$  as  $\dot{\phi}$  has the dimension radians/time.

## SETTINGS ON THE PARTICLE TRACING WITH MASS PLOT

## EQUATION OF MOTION

### MASS AND VELOCITY

Enter the particle Mass. Enter the Initial velocity—for 2D enter values for the x component and y component; for 3D enter values for x component, y component, and z component.

## QUALITY (ODE SOLVER SETTINGS)

Under **Quality**, also define the **ODE solver settings** as required and described for Particle Tracing Plots. Go to ODE Solver Settings—Relative Tolerance, ODE Solver Settings—Absolute Tolerance, and ODE Solver Settings—Step Size for details.

### A D V A N C E D



The **Advanced** section contains settings that do not normally need to be adjusted.

Under Advanced, define the Particle velocity variables. Edit the default variable component names for each particle's velocity. The default names are partu (x component), partv (y component), and partw (z component).

Under **Advanced**, also define these settings as required and described for Particle Tracing Plots. Go to Advanced—Termination and Advanced—Instantaneous Flow Field for details.



Figure 21-22: A 2D particle tracing with mass plot combined with a surface plot. From the COMSOL Multiphysics Model Library: Flow Past a Cylinder.

Particle Trajectories Plots

É

Note

This **Particle Trajectories** plot is available with the Particle Tracing Module. However, the plot does not compute the particle trajectories during results processing—the trajectories are computed by one of the physics interfaces in the Particle Tracing Module. The plot can thereby render tens of thousands of particles quickly because the trajectories have already been computed.

Use a **Particle Trajectories** ( ) plot to visualize the trajectory of a massless particle subject to a flow field in 2D or 3D. Add a **Color Expression**, **Deformation**, or **Filter** subnodes as required. For the settings in the **Filter** subnode, see Filter Node for Particle Trajectories.

Right-click a **2D Plot Group** (**C**) or **3D Plot Group** (**C**) to add this plot type.

Links to all the other plots (including the plot attributes) are found in Table 21-5 (1D and polar) and Table 21-6 (2D and 3D).

Also go to Common Plot Settings Cross References for links to information about these sections: Data, Title, Coloring and Style, and Inherit Style.

٨	1odel

<mark>т</mark>р

See Figure 21-23 for an example from the Particle Tracing Module Model Library.

There are additional settings under Coloring and Style for this plot.

The **Fraction of particles to render** is a scalar value between 0 (no particle) and 1 (all particles; this is the default setting). You can use it to limit the number of particles used in plots of the particle trajectories for models with many particles.



The **Type** of **Point Style** available includes **Comet tail**. Comet tail plots provide a convenient way to indicate the direction of travel of particles at a given point in time. The tail of the comet typically points in the opposite direction to the particle velocity—so visually, it is the same as the tail of a comet traveling though outer space. Go to Common Plot Settings Cross References for the **Comet tail** settings links.

Particle trajectories Surface: z-coordinate (m)



Figure 21-23: A 3D particle trajectories plot. From the Particle Tracing Module Model Library: Rossler Attractor.

# Filter Node for Particle Trajectories

Right-click a **Particle Trajectories** plot node ( **Solution**) to add a **Filter** subnode ( **Note**), which controls the particle types to include and whether to render all particles or a subset of the particles. The **Filter** node includes the following section:

### PARTICLE SELECTION

From the **Particle type** list, select the particle types to include in the particle trajectories plot:

- All (the default) to include all particle types.
- Primary to include primary particles only.
- Secondary to include secondary particles only.

From the **Particles to render** list, select an option for controlling how many particles to render:

• All (the default) to render all particles in the particle tracing simulation.

- **Fraction** to only render a fraction of the particles. You specify the fraction as a number between 0 and 1 in the **Fraction of particles** field. The default fraction is 1; that is, to render all particles.
- Number to only render a ceratin number of particles, which you specify in the Number of particles field. The default is to render 100 particles.

Phase Portrait Plots

Note

1

2D

Ú.

2D Axi

This plot is available with the Particle Tracing Module.

Use a **Phase Portrait** plot ( $\underbrace{m}_{2}$ ) for 2D and 2D axisymmetric models to visualize large data sets of particle trajectories. The traditional use of a phase portrait is to plot the particle position on the *x*-axis and the particle velocity on the *y*-axis. Each dot in the *xy*-plane represents a particle. By default, the position is taken as the distance from the origin (0, 0, 0) for 3D models. Add a **Color Expression** as required.

Right-click a 2D Plot Group ( ) to add this plot type from the More Plots submenu.

For 2D and 2D axisymmetric plots, the Phase Portrait view is shared with the model geometry. Therefore, it is necessary to clear the **Plot data set edges** check box found on the **2D Plot Group** or **3D Plot Group** page under **Plot Settings**. Then in the **Graphics** window click the **Zoom extents** button (()) to see the phase portrait.

Links to all the other plots (including the plot attributes) are found in Table 21-5 (1D and polar) and Table 21-6 (2D and 3D). Also go to Common Plot Settings Cross References for links to information about these sections: Data, Title, Coloring and Style, and Inherit Style. See below for sections specific to this plot: Expression.



See Figure 21-24 for an example from the Particle Tracing Module Model Library.



Figure 21-24: A 2D phase portrait plot. From the Particle Tracing Module Model Library: Ideal Cloak.

# EXPRESSION

<mark>т</mark>р

Select an option from the **x-axis** list—**Position** or **Manual**. If **Manual** is selected, enter an **Expression** (SI unit: m).

Select an option from the **y-axis** list—**Speed** or **Manual**. If **Manual** is selected, enter an **Expression** (SI unit: m/s).

The plot is best represented if the magnitude of the *x*-axis data and *y*-axis data are equal. Therefore, it can be useful to normalize the data by selecting **Manual** from the **x**-axis and **y**-axis lists under **Expression** and applying a suitable scaling factor.

# J 3D

This plot is available with the Particle Tracing Module and with 3D models only.

Use a **Poincaré Map** plot to visualize particle trajectories using a *Poincaré map* (sometimes called a *first recurrence map*). Add a **Color Expression** as required.

The Poincaré map is constructed by first defining a **Cut Plane** () on the **Particle** data set ( ). Then add a **3D Plot Group** () or a **2D Plot Group** (), depending on the dimension of the particle trajectories, and right-click the plot group node to add these plots from the **More Plots** submenu.

This plot type is useful to visualize the particle trajectories in a plot that represents the position of the particles in a section that is usually transversal to the particle trajectories. The Poincaré map represents the particle trajectories in a space dimension that is one dimension lower than the original particle space.

The Poincaré map parent plot group should point to this cut plane (select a **Cut plane** data set under **Data**). The resulting plot places a dot on the cut plane at the location where a particle crossed the plane. The same particle can cross the cut plane multiple times.

Links to all the other plots (including the plot attributes) are found in Table 21-5 (1D and polar) and Table 21-6 (2D and 3D).

Also go to Common Plot Settings Cross References for links to information about these sections: Data, Title, Inherit Style, and Coloring and Style.



<mark>е</mark> Тір

See Figure 21-25 for an example from the Particle Tracing Module Model Library.



Figure 21-25: Poincaré maps of the particle trajectories at different Poincaré sections. The color is a logical expression indicating which particles had an initial position at x < 0. from the Particle Tracing Module Model Library: Particle Trajectories in a Laminar Static Mixer.

Point Graphs

Use a **Point Graph** ( $\searrow$ ) to visualize the value in a point along time or a parameter value. It can be a point in the geometry or a cut point.

Right-click a ID Plot Group  $(\swarrow)$  or Polar Plot Group  $(\bigstar)$  to add this plot type.

Links to all the other plots (including the plot attributes) are found in Table 21-5 (1D and polar) and Table 21-6 (2D and 3D).



Also go to Common Plot Settings Cross References for links to information about these sections: Data, Title, Legends, y-Axis (or r-Axis) Data, and Coloring and Style.

See below for sections specific to this plot: Selection.



See Figure 21-26 and Figure 21-27 for examples from the COMSOL Multiphysics Model Library and the RF Module Model Library.



See Global Plots for these settings: x-Axis Data or  $\theta$  Angle Data.

# SELECTION (SOLUTION DATA SETS ONLY)

Select **Manual** from the **Selection** list to choose geometry directly from the **Graphics** window. Select **All** to add the applicable geometry or any other predefined grouping.



*Figure 21-26: A 1D point graph. From the COMSOL Multiphysics Model Library:* Effective Diffusivity in Porous Materials.



Figure 21-27: A Polar Plot Group point graph. From the RF Module Model Library: Radar Cross Section.

# Principal Stress Volume Plots

Use the **Principal Stress Volume** (m) to plot the principal stress and principal strain in structural mechanics models. The values of the principal stresses  $\sigma_1$ ,  $\sigma_2$ , and  $\sigma_3$  are the eigenvalues of the stress tensor, ordered such that  $\sigma_1 > \sigma_2 > \sigma_3$ . The same applies for the principal strains  $\varepsilon_1$ ,  $\varepsilon_2$ , and  $\varepsilon_3$ . The plots also show the corresponding eigenvectors using arrows. Add a **Deformation**, **Filter**, or **Color Expression** as required.

Right-click a **3D Plot Group** () to add this plot type from the **More Plots** submenu.

Links to all the other plots (including the plot attributes) are found in Table 21-5 (1D and polar) and Table 21-6 (2D and 3D).

<mark>т</mark>р

Also go to Common Plot Settings Cross References for links to information about these sections: Data, Principal Components, Title, Positioning, Coloring and Style, and Inherit Style.



See Figure 21-28 for an example from the Structural Mechanics Module Model Library.



Figure 21-28: A 3D principal stress volume plot. From the Structural Mechanics Module Model Library: Static and Eigenfrequency Analyses of an Elbow Bracket.

# Principal Stress Surface Plots

Use the **Principal Stress Surface** plots in 2D ( $\blacksquare$ ) and 3D ( $\blacksquare$ ) to plot the principal stress and principal strain in structural mechanics models. The values of the principal stresses  $\sigma_1$ ,  $\sigma_2$ , and  $\sigma_3$  are the eigenvalues of the stress tensor, ordered such that  $\sigma_1 > \sigma_2 > \sigma_3$ . The same applies for the principal strains  $\varepsilon_1$ ,  $\varepsilon_2$ , and  $\varepsilon_3$ . The plots also shows the corresponding eigenvectors using arrows. Add a **Deformation**, **Filter**, or **Color Expression** as required.

Right-click a 2D Plot Group () or 3D Plot Group () to add this plot type from the More Plots submenu.

Links to all the other plots (including the plot attributes) are found in Table 21-5 (1D and polar) and Table 21-6 (2D and 3D).



Also go to Common Plot Settings Cross References for links to information about these sections: Data, Title, Inherit Style, Principal Components, Positioning, and Coloring and Style.

# Scatter Surface and Scatter Volume Plots

Use scatter plots to visualize a scalar quantity as scattered spheres on a **2D Scatter Surface** (**III**) or in a **3D Scatter Volume** (**III**) (as functions of space coordinates or any quantities).

Scatter plots can be used as alternatives to arrow plots for scalar quantities or to represent the correlation between two or more different variables to get a feeling for how quantities correlate. To display a quantity using the color and radius of scattered spheres in the model geometry, use the space coordinates (x, y, and z in 3D) as the expressions for the scatter plot axes.

If you use some other quantities as the variables that determines the scattered spheres' positions on the axes, it is good practice to remove the plotting of the data set's edges (typically the geometry boundaries) by clearing the **Plot data set edges** check box in the main plot group node's settings window. In those cases, the axes in the **Graphics** window no longer represent the space coordinate for the geometry.

The radius and color can both be functions of independent quantities, so a 3D scatter plot can provide information about up to five different quantities as the three axis directions, color, and radius.

Right-click a **2D** Plot Group () or **3D** Plot Group () to add these plot types from the More Plots submenu.

Links to all the other plots (including the plot attributes) are found in Table 21-5 (1D and polar) and Table 21-6 (2D and 3D).



Also go to Common Plot Settings Cross References for links to information about these sections: Data, Expression, Title, Radius, Color, Coloring and Style, and Inherit Style.

See below for sections specific to this plot: Evaluation Points.



See Figure 21-29 for an example from the COMSOL Multiphysics Model Library.

### EVALUATION POINTS

Under Evaluation Points, select an Entry method for the grid points coordinates based on space dimension (x grid points and y grid points for 2D; r grid points and z grid points for 2D axial symmetry; or x grid points, y grid points, and z grid points for 3D).

The evaluation points are located in a block-shaped (3D) or rectangular (2D) grid where the axes represent the expressions defined in the **Expression** section.

- If **Number of points** is selected, enter the number of **Points** in each direction (the default is 15 for 2D Scatter Surface and 7 for 3D Scatter Volume).
- If Coordinates is selected, enter Coordinates (SI unit: m) or click the Range button (|____]) to define a range of values.

Eigenfrequency=74.892378 Scatter Volume: Coordinate



*Figure 21-29: A 3D scatter volume plot. From the COMSOL Multiphysics Model Library:* Eigenmodes of a Room.

Slice Plots

Use a Slice Plot ()) to display a scalar quantity on slices inside a 3D domain. Add **Deformation** and **Filter** subnodes as required.

Right-click a **3D Plot Group** () to add this plot type.

Links to all the other plots (including the plot attributes) are found in Table 21-5 (1D and polar) and Table 21-6 (2D and 3D).



Also go to Common Plot Settings Cross References for links to information about these sections: Data, Expression, Title, Range, Coloring and Style, Quality, and Inherit Style.

See below for sections specific to this plot: Plane Data.



See Figure 21-30 for an example from the COMSOL Multiphysics Model Library.

### PLANE DATA

Under **Plane Data**, select a **Plane Type—Quick** (the default) to allow you to specify planes orthogonal to the coordinate axes; or **General** to specify general planes.

If Quick is selected:

- From the **Plane** list, select **xy-planes**, **yz-planes**, or **zx-planes** as the set of planes orthogonal to the coordinate axes applicable for the model geometry.
- Select an Entry method—Number of planes or Coordinates.
  - If Number of planes is selected, enter Planes.
  - If **Coordinates** is selected, enter the applicable (x, y, or z) grid **Coordinates** or click the **Range** button (| | | ) to define a range of values. Choose a set of cut plane slices to a coordinate axis, specify the transverse coordinate by entering the location along the transverse coordinate axis in the **Coordinates** field.

If General is selected:

- Select an option from the Plane entry method list—Three points or Point and normal.
  - If Three points is selected, enter x, y, or z coordinates in the Point 1, Point 2, and Point 3 fields.
  - If **Point and normal** is selected, enter **x**, **y**, or **z** coordinates in both the **Point** and **Normal** sections.
- If required, select the Additional parallel planes check box and select an Entry method— Number of planes or Distances.
  - If Number of planes is selected, enter the number of grid Planes (the default is 4).
  - If **Distances** is selected, enter the **Distances** (SI unit: m) or click the **Range** button ([...]) to define a range of values.

To move the slices interactively, select the **Interactive** check box before plotting. You can then move the slices using the slider or by typing a shift in the **Shift** field. A zero shift represents the original position of the slices.



Figure 21-30: A 3D slice plot. From the COMSOL Multiphysics Model Library: Micromixer.

Streamline Plots

ę

Tip

Use a **Streamline** plot in 2D (see ) or 3D (see ) to visualize a vector quantity. A streamline is a curve everywhere tangent to an instantaneous vector field. 3D streamline plot is analogous to the 2D streamline plot except that there is no height data setting and the start point selection is different. Add **Deformation** or **Color Expression** subnodes as required.

Right-click a 2D Plot Group ( ) or 3D Plot Group () to add these plot types.

Links to all the other plots (including the plot attributes) are found in Table 21-5 (1D and polar) and Table 21-6 (2D and 3D).

Also go to Common Plot Settings Cross References for links to information about these sections: Data, Expression, Title, Coloring and Style, Quality, and Inherit Style.

See below for sections specific to this plot: **Streamline Positioning**, **Selection**, and **Advanced**.



See Figure 21-31 and Figure 21-32 for examples from the AC/DC Module Model Library and the COMSOL Multiphysics Model Library.

Under Streamline Positioning, select one of these options from the Positioning list—On selected boundaries (the default), Start point controlled, Uniform density, or Magnitude controlled. Then follow one of the methods described in Streamline Positioning Section (Continued):

- Method 1: Specifying the Number of Streamlines and Start Boundaries
- Method 2: Specifying Points by Entering Coordinates
- Method 3: Selecting the Specified Number of Start Points in the Geometry
- Method 4: Creating Streamlines with Uniform Density
- Method 5: Creating Streamlines with Variable Density and Magnitude Controlled

### SELECTION



The Selection section is made available for some data sets when On selected boundaries is selected from the Positioning list under Streamline Positioning.

Select the boundaries from which the streamlines start. By selecting in the **Graphics** window and using the tools in the **Selection** section, select the boundaries for the starting positions for the streamlines.

Define the Advanced Settings for the Streamline Plot as required.

Advanced Settings for the Streamline Plot

Under Advanced set these general settings. See also Advanced Section Setting Effects.

- The **Integration tolerance** field default is 0.01 for 3D and 0.001 for 2D. Edit to specify how accurately streamlines are computed.
- The Maximum number of integration steps field makes sure that the integration does not continue indefinitely. Edit the default (5000) to control when the computation stops.
- The **Maximum integration time** field sets an upper time limit for the integration. The default is infinity (inf).

- The **Stationary point stop tolerance** can be adjusted to make sure the integration stops near a stationary point in the field. The default is 0.01.
- The **Loop tolerance** field default is 0.01. This is a fraction of the mean of the lengths of the bounding box of the geometry. If a streamline gets closer to its start point than this distance, the streamline snaps to its start point and is plotted as a connected loop. See also Method 5: Creating Streamlines with Variable Density and Magnitude Controlled.
- Select the **Allow backward time integration check box** to integrate points from the starting points both in the direction of the vector field and in the opposite direction.
- Select the Normalize vector field check box if required.

### STREAMLINE POSITIONING SECTION (CONTINUED)

Method 1: Specifying the Number of Streamlines and Start Boundaries

I Under Streamline Positioning, from the Positioning list, select On selected boundaries.



The **Selection** section is made available for some data sets when **On selected boundaries** is selected from the **Positioning** list under **Streamline Positioning**.

- **2** Under **Selection**, select the boundaries from which the streamlines start. By selecting in the **Graphics** window and using the tools in the **Selection** section, select the boundaries for the starting positions for the streamlines.
- **3** Enter the **Number** of streamlines (the default is 20).

Method 2: Specifying Points by Entering Coordinates

- I Under Streamline Positioning, from the Positioning list, select Start point controlled.
- 2 Select Coordinates from the Entry method list.
- **3** Enter **x** and **y** (2D), **x**, **y**, and **z** (3D) coordinates (SI unit: m) or click the **Range** button (|____]) to define a range of values. Also use a scalar value to represent a fixed value for some of the coordinates.

Method 3: Selecting the Specified Number of Start Points in the Geometry

- I Under Streamline Positioning, from the Positioning list, select Start point controlled.
- 2 Select Number of points from the Entry method list.
- **3** Enter the number of **Points** (the default is 20).
- 4 From the Along line or plane list, select None.

# Method 4: Creating Streamlines with Uniform Density

The algorithm saturates the entire domain with evenly spaced streamlines.

- I Under Streamline Positioning, from the Positioning list, select Uniform density.
- 2 Enter the Separating distance between the streamlines (the default is 0.05).

The value for the separating distance is a fraction of the mean of the lengths of the bounding box of the geometry. In this case, a streamline stops whenever it gets too close to another streamline or itself (or if any of the general termination criteria specified in the **Advanced** section is fulfilled).

- **3** The Advanced parameters list defaults to Automatic. If required, select Manual to edit these parameters—Boundary element refinement, Fraction of streamline length to ignore, Starting distance factor, Terminating distance factor, or First start point.
  - Edit the **Boundary element refinement** if streamlines do not behave as expected near boundaries on a coarse mesh—try increasing this number. It is a measurement of the density of points on the boundaries used to set up the structure and is used to measure distances between streamlines. Refining the mesh in the problematic area can also resolve the problem.
  - Edit the **Fraction of streamline length to ignore** when a streamline is close to itself, typically for spiraling streamlines. This number controls how big part of the streamline, starting from its start point, that the streamline itself is allowed to get close to.
  - The **Starting distance factor** is a factor multiplied with the distance specified in the **Separating distance** field (as a fraction of the mean of the lengths of the bounding box of the geometry—the default value is 0.05). It sets the minimum distance between streamlines and the start point for the next streamline.

When the domain is close to be saturated with streamlines, new start points tend to be positioned where the streamline has nowhere to go before it gets too close other streamlines, resulting in short streamlines. The higher the value of this factor, the more it disqualifies the start point and thus reduces the number of short streamlines.

- The **Terminating distance factor** is a factor multiplied with the distance specified in the **Separating distance** field. It sets the minimum distance between any pair of streamlines. Thus, this distance is the minimal distance under which the integration of a streamline stops.
- By default the **First start point** list defaults to **Automatic**, and it sets the start point for the first streamline. It is chosen in the element where the highest value of the

velocity of the specified vector field occurs. If required, select **Manual** instead to override the default and enter **x** and **y** coordinates.

Method 5: Creating Streamlines with Variable Density and Magnitude Controlled To create streamlines with a variable density according to the magnitude of the specified vector field.

I Under Streamline Positioning, from the Positioning list, select Magnitude controlled.

The **Magnitude controlled** setting gives proper streamline plots only for incompressible flow fields. In this case, the algorithm places the streamlines so that the flow between each pair of adjacent streamlines is the same throughout the domain, giving streamlines that are more dense where the magnitude of the field is high.

2 This step depends if it is a 2D or 3D model.

Ø.

2D

3D

For 2D models, enter a **Density** (the default is 20). This value is roughly the number of streamlines. Prior to streamline generation, the software computes a rough estimate of the total flow of the flow field in the model, divides this value with the specified **Density** setting, and uses the resulting value as the flow between each pair of adjacent streamlines.

For 3D models, enter the Min (Minimum) distance and Max (Maximum) distance between streamlines (the default Min distance is 0.05 and the default Max distance is 0.15). These distances are specified as fractions of the mean of the lengths of the bounding box of the geometry. The minimum velocity in the model is mapped to the minimum distance and the maximum velocity to the maximum distance. Thus every point on a streamline and on the boundary has a separating distance associated with it. Given a set of streamlines, the start point for the next streamline is selected using these separating distances.

A streamline stops only if it exits the domain or gets too close to its own start point, using the **Loop tolerance** option in the **Advanced** section (or if any of the general termination criteria specified in the **Advanced** section is fulfilled).

**3** If required, from the **Advanced parameters** list, select **Manual** to set advanced parameters as described in Method 4: Creating Streamlines with Uniform Density.

### ADVANCED SECTION SETTING EFFECTS

The Advanced settings have the following effects:

- When calculating streamlines, the software selects a set of starting points (controlled by the streamline start points and the number of start points).
- The algorithm then finds the vectors of the given vector field at these points by interpolation. It normalizes the vector field if that option is selected.
- The algorithm integrates the points along the direction of the vector using the integration tolerance using a second-order Runge-Kutta algorithm.
- At the new positions, the algorithm finds vector values by interpolation and performs another integration.

This process stops if:

g

Tīb

- It reaches a predetermined number of integration steps (controlled by the maximum number of integration steps entry).
- The points end up outside the geometry.
- The points reach a "stationary point" where the vector field is zero. Control the meaning of "zero" with the stationary point stop tolerance.
- It has used a predetermined amount of "time" for integrating (control this parameter with the **Maximum integration time** field).

Finally, the software connects the calculated points for each streamline consecutively with straight lines.

When integrating, the software uses a pseudo-time that has nothing to do with the time in time-dependent problems. Use the massless particle tracing tool to integrate in time-varying fields and to control the real time in stationary fields.

#### 1140 | CHAPTER 21: RESULTS EVALUATION AND VISUALIZATION



Figure 21-31: A 2D streamline plot combined with a surface plot. From the AC/DC Module Model Library: Eddy Currents in a Cylinder.



Figure 21-32: A 3D streamline plot combined with a surface plot. From the COMSOL Multiphysics Model Library: Pacemaker Electrode.

Surface Plots

<mark>т</mark>р

Use a **Surface** plot to display a quantity on a domain in 2D ( ) or on a boundary in 3D (). Add **Deformation**, **Filter**, or **Height Expression** (2D only) subnodes as required.

Right-click a 2D Plot Group ( ) or 3D Plot Group () to add these plot types.

Links to all the other plots (including the plot attributes) are found in Table 21-5 (1D and polar) and Table 21-6 (2D and 3D).

Also go to Common Plot Settings Cross References for links to information about these sections: Data, Expression, Title, Range, Coloring and Style, Quality, and Inherit Style.



See Figure 21-33 and Figure 21-34 for examples from the COMSOL Multiphysics Model Library.



*Figure 21-33: A 2D surface plot. From the COMSOL Multiphysics Model Library:* Effective Diffusivity in Porous Materials.



*Figure 21-34: A 3D surface plot. From the COMSOL Multiphysics Model Library:* Eigenvalue Analysis of a Crankshaft.

Table Graph

Add a **Table Graph** ([]) plot to display data from a table with one line per output column. Right-click a **ID Plot Group** ([]) or **Polar Plot Group** ([]) to add this plot type.

	Links to all the other plots (including the plot attributes) are found in Table 21-5 (1D and polar) and Table 21-6 (2D and 3D).
<mark>т</mark> р	Also go to Common Plot Settings Cross References for links to information about these sections: Legends and Coloring and Style.
	See below for sections specific to this plot: Data.

Eigenfrequency=5778.882555 Surface: Total displacement (mm)

Define a table to plot. See Adding and Evaluating Tables for a Derived Value.

See Figure 21-33 for an example from the Structural Mechanics Module Model Library.



Figure 21-35: A 1D table graph. From the Structural Mechanics Module Model Library: Stress-Optical Effects in Waveguide.

## DATA

Model

Select a **Table** or click the **Go to Source** button ( ) to move to the node that the selection in the list next to the button refers to.

In the x-axis data list (or  $\theta$  angle data for polar plots), select the column to use as x-axis, select **Row index** to use the table's row indexes (row numbers) as x-axis, or leave it at **Automatic** to let the software determine the input from the data in the table.

The Plot columns list controls which columns to plot. All excluding x-axis (or All excluding  $\theta$  angle list for polar plots) indicates all columns not used in x-axis data (or  $\theta$  angle data). Select Manual instead to specify which columns to plot in the Columns list.

Select a **Transformation** of the data from the table—**None** (the default) to use the data directly without any transformation, or select **Frequency domain** to use FFT to transform the data from a time-dependent solution to the frequency domain.

• If Frequency domain is selected, the default number of frequencies and frequency range depend on the data, and usually those values do not need changing. To change the values, select the check boxes and enter values for the Number of frequencies (the default is 1) and the Frequency range in the Maximum and Minimum fields.

By default, table plots only display the real data in a table, just as other plot types only display real data unless you use the imag function in the expression. To display the imaginary part of complex data in a table, when available, select the **Plot imaginary part** check box. This option is only available when a transformation to the frequency domain is not used.

# Table Surface Plots

E

Note

Use a **Table Surface** ( ) plot to visualize the data in a table that represents a matrix of values that are functions of two independent parameters (for example, as a response surface).

Right-click a **2D Plot Group** ( ) to add this plot type from the **More Plots** submenu. This plot is also available by selecting **Surface Plot** ( ) from the **Results** window's toolbar.

> When created from the **Results** window's toolbar, the 2D plot group with the **Table Surface** plot uses **None** in the **Data set** selection. When you add a Table Surface plot to an existing or new 2D plot group, the data set is typically a solution data set, and the plot group includes a plot of the data set edges. This can make the table surface plot hard to see because it uses parameter values on the x- and y-axis and not the 2D geometry's dimension.



Links to all the other plots (including the plot attributes) are found in Table 21-5 (1D and polar) and Table 21-6 (2D and 3D).



Also go to Common Plot Settings Cross References for links to information about these sections: Title, Range, Coloring and Style, and Inherit Style.

See below for sections specific to this plot: Data.

# DATA

Select a Table. Click the Go to Source button ( 1) to move to the node that the selection in the list next to the button refers to. Select an option from the Plot data list—From table (the default) or Manual.

If **Manual** is selected, select options from the **x-axis data** and **y-axis data** lists, which contain the parameters that define the rows and columns for the table's matrix data, and from the **Data** list, which corresponds to the **Data** list in the **Table** node for the matrix data.

Select the **Plot imaginary part** check box if you want to plot the imaginary part of complex-valued data. For real-valued data, that plot shows a zero imaginary part.

Volume Plots

Use a **Volume** () plot to display a quantity inside a domain in 3D. Add **Deformation** or **Filter** subnodes as required.

Right-click a **3D Plot Group** () to add this plot type.





See Figure 21-36 for an example from the COMSOL Multiphysics Model Library.



Figure 21-36: A 3D volume plot. From the COMSOL Multiphysics Model Library: Eigenmodes of a Room.

# Color Expressions

Use a **Color Expression** feature ( *Solution*) to add coloring to the shapes defined by a plot. Add this to these 2D and 3D plots—arrow, contour, isosurface, particle tracing, and streamline.

In the Model Builder, add and define a 2D Plot Group ( ) or 3D Plot Group (). Right-click the plot node (for example, Streamline) and select Color Expression ().

Links to all the other plots are found in Table 21-5 (1D and polar) and Table 21-6 (2D and 3D). Also go to Common Plot Settings Cross References for links to information about these sections: Expression, Title, Range, and Coloring and Style.



See Figure 21-37 and Figure 21-38 for an example from the Subsurface Flow Module Model Library.



Figure 21-37: A 3D streamline plot with no color expression. From the Subsurface Flow Module Model Library: Open-Hole Multilateral Well.

Streamline: Darcy's velocity field (Material)



Figure 21-38: A 3D streamline plot with color expression. From the Subsurface Flow Module Model Library: Open-Hole Multilateral Well.

Deformations

Add a **Deformation** feature ( $\implies$ ) to deform the plot according to a vector quantity, for example, the displacement field in structural mechanics. Add this to most 2D and 3D plots—arrow, contour, isosurface, line, slice, streamline, surface, and volume plots. By default, COMSOL scales the deformation to 10% of the geometry.

In the Model Builder, add and define a 2D Plot Group ( 🔂 ) or 3D Plot Group ( 🛅 ). Right-click the plot node (for example, Arrow Surface) and select Deformation ( 🔫 ).

Links to all the other plots are found in Table 21-5 (1D and polar) and Table 21-6 (2D and 3D).



Also go to Common Plot Settings Cross References for links to information about these sections: **Expression** and **Title**.

See below for sections specific to this plot: Scale.



See Figure 21-39 and Figure 21-40 for an example from the Subsurface Flow Module Model Library.

# SCALE

Select the **Scale factor** check box to edit the default value for the scale factor.



Figure 21-39: A 3D surface plot without deformation. From the Subsurface Flow Module Model Library: Open-Hole Multilateral Well.



Figure 21-40: A 3D surface plot with deformation. From the Subsurface Flow Module Model Library: Open-Hole Multilateral Well.

## Filters

g

Tip

Add a **Filter** ( 1) to the following 2D and 3D plots—arrow, contour, isosurface, line plot, slice, and volume. Filters make it possible to filter (limit) the plot using a logical expression that provides a criterion for which parts of the plot to include.

In the **Model Builder**, add and define a **2D Plot Group** () or **3D Plot Group** () with one or more plot nodes. Right-click the plot node (for example, **2D Surface**) and select **Filter** ().

Links to all the other plots are found in Table 21-5 (1D and polar) and Table 21-6 (2D and 3D).



See Figure 21-41 and Figure 21-42 for an example from the Acoustics Module Model Library.

## ELEMENT SELECTION

Under **Element Selection**, enter a **Logical expression for inclusion**. Enter any logical expression using predefined variables. For example, x>0 filters the plot to only include the part of the geometry where x > 0.

Select the Element nodes to fulfill expression—All (the default), At least one, or At least one but not all.

- Select **All** to include all elements for which all the element nodes (that is, the entire element) fulfill the criterion in the logical expression.
- Select **At least one** to include all elements for which at least one element node fulfills the criterion in the logical expression (that is, elements that fully or partially fulfill the expression).
- Select **At least one but not all** to include all elements for which at least one of the element nodes but not all of them fulfill the criterion in the logical expression. The



last option is useful for making a filter that shows the plot for a zone around a boundary where the logical expression becomes true.

Figure 21-41: A 3D combined plot before a filter is added. From the Acoustics Module Model Library: Baffled Membrane.



Figure 21-42: A 3D combined plot after a filter is added. From the Acoustics Module Model Library: Baffled Membrane.

Height Expressions

<mark>т</mark>р

The **Height Expression** subnode ( $[] _ ]$ ) introduces 3D height on a 2D surface plot or 2D table surface plot. Add it to make the height of the plot represent a scalar quantity. 2D Surface, 2D Line, and 2D Table Surface plots support the height expression attribute.

Links to all the other plots are found in Table 21-5 (1D and polar) and Table 21-6 (2D and 3D).



See Figure 21-43 and Figure 21-44 for an example from the COMSOL Multiphysics Model Library.

In the **Model Builder**, add and define a 2D **Surface** plot ( ) or 2D **Table Surface** ( ). Right-click the plot node and select **Height Expression** ().

#### EXPRESSION

Under Expression, the Height data defaults to From parent to use the same data set as the parent plot it belongs to. If Expression is selected instead, enter an Expression, select a Unit, and enter or edit a Description. Click the Replace Expression (  $rac{1}{2}$  arrow ) or Insert Expression (  $rac{1}{2}$  arrow ) buttons to select predefined expressions based on the physics of the model. Select the Description check box to edit the default description for a predefined expression.



As a subnode to 2D **Histogram** () plots, the **Height** () node's settings window does not contain an **Expression** section.

#### TITLE

Select a Title type—Automatic (the default), Custom, Manual, or None. As a subnode to a 2D Histogram () plot, only Automatic, Manual, and None are available.

#### SCALE

For a manual scaling of the height data, select the check box and enter a **Scale factor** to control the height of the added 3D plot. Enter an **Offset** (default value: 0) or use the associated slider to control the base location (relative to the 2D surface's level).

#### VIEW

The **Height Expression** subnode makes the plot a 3D plot, which needs a 3D view for the grid, camera, lighting, and other 3D view settings. Select the 3D view to use from the **View** list. The default is **Automatic**, which creates a 3D view if needed. Alternatively, select one of the existing **View 3D** nodes in the model.



Figure 21-43: A 2D surface plot before a height expression is added. From the COMSOL Multiphysics Model Library: The KdV Equation and Solitons.



Figure 21-44: A 2D surface plot with height expression. From the COMSOL Multiphysics Model Library: The KdV Equation and Solitons.

# Creating Cross-Section Plots and Combining Plots

Cross-section plots are created using a combination of data sets and plot groups. Cross-section plots show the values over time, along a parametric solution, or for several eigenvalues. Cross-section plots visualize a quantity as a family of plots on:

• An arbitrary set of points (in 1D, 2D, or 3D)

**F** 

Note

A point cross-section plot makes it easy to view an expression at an arbitrary set of spatial coordinates and results in a line plot. See 1D, 2D, and 3D Cross-Section Point Plots.

Expressions and variables that include derivatives of the dependent variables (for example, stresses in a structural analysis) are not available at isolated geometry vertices (points)

• An arbitrary line (in 2D or 3D). See 2D Cross-Section Line Plots and 3D Cross-Section Line Plots.

Use Cut Line data sets to create lines through 2D or 3D geometries to visualize along the line. All plots and results analysis features available in 1D are available for Cut Line data sets as well as 3D plots and results analysis features for edges.

• Arbitrary planes (in 3D) using a surface plot and cut plane data set. See 3D Cross-Section Surface Plot.

Use Cut Plane data sets to create planes through a 3D in a 2D geometry to visualize on the plane. All plots and results analysis features available in 2D are available for Cut Plane data sets as well as for surfaces in 3D. The cut plane corresponds to an orthogonal (Cartesian) 2D coordinate system embedded in 3D.

A typical cross-section plot uses a Cut Line 2D data set (which you add in the **Data Sets** branch), which defines a straight line (or set of parallel lines) in a 2D geometry, and a Line Graph in a 1D Plot Group, which uses the Cut Line 2D data set as its data input. You can use the same Cut Line data set for multiple cross-section plots of various quantities along the line that the data set defines, and you can create several Cut Line data sets to plot quantities along different lines of interest.

#### INTERACTIVE CROSS-SECTION LINE AND SURFACE PLOTS

You can also interactively create cross-section line and surface plots using a combination of cross-section toolbar buttons and clicking the geometry. When you use the cross-section toolbar, plot groups and data sets are automatically added and updated in the Model Builder whenever any line or plane is changed. As soon as a line or plane is completed, a rendering mesh snaps the entry and exit points to the faces of the domain containing the data and to computes the line. See Creating Interactive 2D Cross-Section Line Plots, Creating Interactive 3D Cross-Section Line Plots, and Creating Interactive 3D Cross-Section Surface Plots.

In this section:

- Plotting and Cross-Section Interactive Toolbar
- 1D, 2D, and 3D Cross-Section Point Plots
- 2D Cross-Section Line Plots
- 3D Cross-Section Line Plots
- 3D Cross-Section Surface Plot
- Combining Plots

## Plotting and Cross-Section Interactive Toolbar

On the main toolbar for 2D and 3D plots, interactive buttons are available based on the plot type. Use these buttons during the creation of cross-section plots or just in general while creating plots.

BUTTON	NAME	USE AND RESULT		
4	Select First Point for Cut Line	Available for 2D and 3D plot groups to create a cross-section line plot. Adds a <b>Cut Line</b> data set and a <b>ID</b>		
1	Select Second Point for Cut Line	<b>Plot Group</b> with a <b>Line Graph</b> that uses this data set. Click these buttons to plot a cross-section of data between two points.		
-1	Select Cut Line Direction	Available with 3D plot groups to create a cross-section line plot. Adds a <b>Cut Line</b> data set and a <b>ID Plot Group</b> with a <b>Line Graph</b> that uses this data set.		
		Click this button to plot a line perpendicular to a point selected in the Graphics window.		

TABLE 21-9: PLOTTING AND CROSS-SECTION TOOLBAR

BUTTON	NAME	USE AND RESULT				
\$	Select Cut Line Surface Normal	Available with 3D plot groups to create a cross-section line plot. Adds a <b>Cut Line</b> data set and a <b>ID Plot Group</b> with a <b>Line Graph</b> that uses this data set.				
		Click this button to plot a line in the same way as a domain point probe, with point and direction.				
۲,	Select First Point for Cut Plane Normal	Available with 3D plot groups to create a cross-section surface plot. Adds a <b>Cut Plane 3D</b> data set and a <b>2D Plot</b> Group with a Surface plot that user this data set				
Þ	Select Second Point for Cut Plane Normal	<b>Group</b> with a <b>Surface</b> plot that uses this data set. Click these buttons to plot a cross-section of data between the two points along the plane.				
Ð9	Select Cut Plane Normal	Available with 3D plot groups to create a cross-section surface plot. Adds a <b>Cut Plane 3D</b> data set and a <b>2D Plot</b> <b>Group</b> with a <b>Surface</b> plot that uses this data set.				
		Click this button to plot a plane perpendicular to a point selected in the Graphics window.				
1	Select Cut Plane Normal from Surface	Available with 3D plot groups to create a cross-section surface plot. Adds a <b>Cut Plane 3D</b> data set and a <b>2D Plot</b> <b>Group</b> with a <b>Surface</b> plot that uses this data set.				
		Click this button to plot a plane.				
	Surface	Click this button to add a Surface plot to a 2D or 3D Plot Group.				
<u> </u>	Surface with Height	Click this button to add a surface plot with a height attribute to a 2D Plot Group.				
	Arrow Surface	Click this button to add an Arrow Surface plot to a 2D Plot Group.				
Ş	Streamline	Click this button to add a Streamline plot to a 2D or 3D Plot Group.				
	Line	Click this button to add a Line plot to a 2D or 3D Plot Group.				
	Slice	Click this button to add a Slice plot to a 3D Plot Group.				
	Isosurface	Click this button to add an Isosurface plot to a 3D Plot Group.				

## TABLE 21-9: PLOTTING AND CROSS-SECTION TOOLBAR

BUTTON	NAME	USE AND RESULT
	Volume	Click this button to add a Volume plot to a 3D Plot Group.
ŧ	Arrow Volume	Click this button to add an Arrow Volume plot to a 3D Plot Group.

#### TABLE 21-9: PLOTTING AND CROSS-SECTION TOOLBAR

## NOTES ABOUT USING THE CROSS-SECTION INTERACTIVE TOOLBAR

The first time any of the buttons are clicked on the cross-section toolbar, a data set and a plot group containing either a line graph or surface plot are added to the **Model Builder**. No new data set or plot group is created unless the generated data set or plot groups are deleted or disabled. See below for exceptions. COMSOL chooses the default coordinates for the cross section as a vertical line intersecting the data in the middle.



It is important to ensure the areas of the geometry selected contain data when defining the line or plane. When lines or planes are changed, the coordinates and calculations are automatically updated in the data set and in the final plot.

## Deleting and Disabling Data Sets and Plot Groups

The following exceptions apply to the data sets and plot groups that are automatically added using the cross-section toolbar.

- If a plot group is *disabled*, no new data set or plot group is created even if you click one of the interactive buttons. You need to enable the plot group to regenerate the cross-section plot.
- If a plot group is *deleted*, click one of the interactive buttons to regenerate the plot group using the cut plane or cut line data set.
- If a data set is *deleted*, and it is used with a plot group, the plot group is also deleted at the same time. However, if the plot group is using another data set it is not deleted.
- If a data set is *disabled*, the associated plot group is not disabled. However, if you want to plot another cross section, click one of the interactive buttons to create a new data set to use with the plot group.

## CREATING A ID CROSS-SECTION PLOT USING A CUT POINT DATA SET

A 1D cross-section point plot visualizes a quantity in one or several points in time, along a parameter range, or for several different eigenvalues.

I Create a Cut Point ID data set.

Under **Point Data** enter the **x**-coordinates for the plot. Enter one or several space-separated values or a vector of coordinates, for example, range(0,10,100).

- 2 Click the **Plot** button ( ).
- 3 Add a ID Plot Group ( ). Select Cut Point ID as the Data set. If required, right-click and Rename the plot group, for example, Cross-Section-ID Point.
- 4 Add a Point Graph to this 1D plot group and select Cut Point 1D as the Data set orFrom parent to use the same data set as the plot group it belongs to.
- 5 Continue to define the **Point Graph** as required.
- 6 Click the **Plot** button (*M*), right-click the node and select **Plot**, or press F8.

The plot displays in the window selected in the **Plot window** list. To plot results in another windows, right-click the plot group node or the plot node and select a plot window from the **Plot In** submenu.

## CREATING A 2D CROSS-SECTION PLOT USING A CUT POINT DATA SET

The 2D point cross-section plot visualizes a quantity in one or several points in time, along a parameter range, or for several eigenvalues. This example uses the Stresses in a Pulley model from the COMSOL Multiphysics Model Library.

- I Create a Cut Point 2D data set.
  - Under **Point Data** enter the *x* and *y*-coordinate values for the plot. Enter the same number of space-separated values in the **x** and **y** fields. Alternatively, enter a vector of coordinates, for example, range(0,10,100).
- **2** Click the **Plot** button ( $\checkmark$ ).
- **3** Add a **ID Plot Group** ( $\frown$ ). Select **Cut Point 2D** as the **Data set**. If required, right-click and **Rename** the plot group, for example, **Cross-Section-2D Point**.

- **4** Add a **Point Graph** and select **Cut Point 2D** as the **Data set** or **From parent** to use the same data set as the plot group it belongs to.
  - The x-axis corresponds to time, parameter values, or the eigenvalue number.
  - The settings in the **y-axis data** area determine the quantity on the *y*-axis. Select from predefined quantities or enter an expression that contains variables.
- 5 Continue to define the **Point Graph** as required.
- 6 Click the **Plot** button  $(\swarrow)$  right-click the node and select **Plot**, or press F8.



#### CREATING A 3D CROSS-SECTION PLOT USING A CUT POINT DATA SET

A 3D point cross-section plot visualizes a quantity in one or several points in time, along a parameter range, or for several eigenvalues. This example uses the Star-Shaped Microchannel Chip model from the Microfluidics Module Model Library.

- I Create a Cut Point 3D data set.
  - Under **Point Data** enter the *x*-, *y*-, and *z*-coordinate values for the plot. Enter the same number of space-separated values in the **x**, **y**, and **z** fields. Alternatively, enter a vector of coordinates, for example, range(0,10,100).
- **2** Click the **Plot** button ( $\checkmark$ ).

- 3 Add a **ID Plot Group** ( $\searrow$ ). Select **Cut Point 3D** as the **Data set**. If required, right-click and **Rename** the plot group, for example, **Cross-Section-3D Point**. Click the **Go to Source** button ()) to move to the node that the selection in the list next to the button refers to.
- 4 Add a **Point Graph** and select **Cut Point 3D** as the **Data set** or **From parent** to use the same data set as the plot group it belongs to. Click the **Go to Source** button ( ) to move to the node that the selection in the list next to the button refers to.
  - The *x*-axis corresponds to time, parameter values, or the eigenvalue number.
  - The settings in the **y-axis data** area determine the quantity on the *y*-axis. Select from predefined quantities or enter an expression that contains variables.
- 5 Continue to define the **Point Graph** as required.
- 6 Click the **Plot** button (), right-click the node and select **Plot**, or press F8.



2D Cross-Section Line Plots

#### CREATING A 2D CROSS-SECTION PLOT USING A CUT LINE DATA SET

The 2D line cross-section plot visualizes a quantity in one or several lines in time, along a parameter range, or for several eigenvalues.

- I Create a Cut Line 2D data set.
  - Enter the 2D coordinates for the plot. Set the start and end point of the line under **x** and **y**, for Point 1 and Point 2.
  - Select the **Additional parallel lines** check box to visualize on a set of parallel lines. Enter the **Distances** from the line as space-separated values.
- 2 Click the **Plot** button ().
- 3 Add a 1D Plot Group (2). Right-click the plot node and select Cut Line 2D as the Data set. If required, right-click and Rename the plot group, for example, Cross-Section-2D Line.
- 4 Add a Line Graph and select Cut Line 2D as the Data set or From parent to use the same data set as the plot group it belongs to. Click the Go to Source button ( 1) to move to the node that the selection in the list next to the button refers to.
  - Settings under **y-Axis Data** determine the quantity to display on that axis. Either select from predefined **Expressions** or enter an **Expression** containing variables.
  - Settings under x-Axis Data determine the quantity on that axis. Select Arc length or Expression as required. Enter or select an Expression, Unit, and Description.
- 5 Continue to define the Line Graph as required.
- 6 Click the **Plot** button (), right-click the node and select **Plot**, or press F8.

## CREATING INTERACTIVE 2D CROSS-SECTION LINE PLOTS

- I In the **Model Builder**, click a **2D Plot Group** node to display the buttons available on the main toolbar.
- 2 On the main toolbar, click the Select First Point for Cut Line button ( ✓ ). Click a start point on the geometry. COMSOL chooses default coordinates as a vertical line intersecting the data in the middle.
- 3 Click the Select Second Point for Cut Line button ( ). Click an end point on the geometry.

A line connecting the two points is displayed in the **Graphics** window. The first time the cross-section toolbar buttons are clicked, a **Cut Line 2D** data set and a **ID Plot Group** with a **Line Graph** are added to the **Model Builder**.

**4** Adjust the cut line as required by clicking the buttons, then clicking the geometry to change where the first and second point start and end (respectively). The

coordinates are updated automatically in the data set and plot group. Click the **ID Plot Group** node to view the updates to the line graph.

**5** Continue adjusting the cut line until the line graph representing the points plots the data as required.

# 3D Cross-Section Line Plots

#### CREATING A 3D CROSS-SECTION PLOT USING A CUT LINE DATA SET

A 3D line/extrusion cross-section plot visualizes a quantity in one or several lines in time, along a parameter range, or for several eigenvalues. This example uses the Prestressed Micromirror model from the MEMS Module Model Library.

- I Create a Cut Line 3D data set.
  - Enter the 3D coordinates for the plot. Set the start and end point of the line under x, y, and z for Point 1 and Point 2.
- 2 Click the **Plot** button (



3 Add a 1D Plot Group (2). Right-click the plot node and select Cut Line 3D as the Data set. If required, right-click and Rename the plot group, for example, Cross-Section-3D Line.

- 4 Add a Line Graph and select Cut Line 3D as the Data set or From parent to use the same data set as the plot group it belongs to. Click the Go to Source button ( ) to move to the node that the selection in the list next to the button refers to.
  - Settings under **y-Axis Data** determine the quantity to display on the vertical axis. Either select from predefined **Expressions** or enter an **Expression** containing variables.
  - Settings under **x-Axis Data** determine the quantity on the horizontal axis of the cross-section plot. Select **Arc length** or **Expression** as required. Enter or select an **Expression**, **Unit**, and **Description**.
- 5 Continue to define the Line Graph as required. See Line Graphs.
- 6 Click the **Plot** button () right-click the node and select **Plot**, or press F8.



#### CREATING INTERACTIVE 3D CROSS-SECTION LINE PLOTS

 In the Model Builder, click a 3D Plot Group node to display the buttons available on the main toolbar. On the main toolbar, click the cross-section buttons as required. The first time the cross-section toolbar buttons are clicked, a Cut Line 3D data set and a 1D Plot Group with a Line Graph are added to the Model Builder.

## Defining a Cut Line:

- **a** On the main toolbar, click the **Select First Point for Cut Line** button ( ). Click a start point on the geometry. COMSOL chooses default coordinates as a vertical line intersecting the data in the middle.
- **b** Click the **Select Second Point for Cut Line** button ( ). Click an end point on the geometry. A line connecting the two points is created in the **Graphics** window.
- **c** Click either of the buttons and then on the geometry to change the start and end points respectively.
- d Click the ID Plot Group to view the Line Graph based on the selected points.

Defining a Cut Line—Direction:

- **a** On the main toolbar, click the **Select Cut Line Direction** button (-1).
- b Click on the geometry to add a line perpendicular to where you clicked.
   COMSOL chooses default coordinates as a vertical line intersecting the data in the middle.
- c Click the ID Plot Group node to view the Line Graph based on the selected points.

## Defining a Cut Line—Surface Normal:

- a On the main toolbar, click the Select Cut Line Surface Normal button ().
- **b** Click on the geometry to add a line with a point and direction. COMSOL chooses default coordinates as a vertical line intersecting the data in the middle.
- c Click the ID Plot Group node to view the Line Graph based on the selected points.
- **2** Adjust the cut line as required by clicking the buttons, then clicking the geometry to change its coordinates. The data set and plot group are updated automatically with the cut line data. Click the **ID Plot Group** node to view the updates to the line graph.
- **3** Continue adjusting the cut line until the line graph representing the points plots the data as required.

## 3D CROSS-SECTION SURFACE PLOT USING A CUT PLANE DATA SET

A 3D surface cross-section plot visualizes a quantity in one or several planes in time, along a parameter range, or for several eigenvalues. This example uses the *Airflow Over an Ahmed Body* model from the CFD Module Model Library.

- I Create a Cut Plane 3D data set.
- 2 Click the Plot button ( $\checkmark$ ), or right-click the node and select Plot.
- 3 Add a 2D Plot Group (). Right-click the plot node and select Cut Plane 3D as the Data set. If required, right-click and Rename the plot group, for example, Cross-Section-3D Surface.
- 4 Add a **Surface** plot and select **Cut Plane 3D** as the **Data set** or **From parent** to use the same data set as the plot group it belongs to. Click the **Go to Source** button ( ) to move to the node that the selection in the list next to the button refers to.
- 5 Continue to define the Surface plot as required.
- 6 Click the Plot button  $(\swarrow)$ , or right-click the node and select Plot.

The plot displays in the window selected in the **Plot window** list. To plot results in another windows, right-click the plot group node or the plot node and select a plot window from the **Plot In** submenu.



## CREATING INTERACTIVE 3D CROSS-SECTION SURFACE PLOTS

I In the **Model Builder**, click a **3D Plot Group** node to display the buttons available on the main toolbar. On the main toolbar, click the cross-section buttons as required.

The first time the cross-section toolbar buttons are clicked, a **Cut Plane 3D** data set and a **2D Plot Group** with a **Surface** plot are added to the **Model Builder**.

To Define a Cut Plane:

a Click the Select First Point for Cut Plane Normal button (). Click a start point on the geometry. COMSOL chooses default coordinates as a vertical line

intersecting the data in the middle. The green highlighted areas show you what the cut plane looks like if this first click point is chosen for the surface plot.

- b Click the Select Second Point for Cut Plane Normal button ( ). Click an end point on the geometry. The green highlighted areas show you what the cut plane looks like if this second click point is chosen for the surface plot.
- **c** Click either of the buttons and then on the geometry to change the start and end points respectively.
- d Click the 2D Plot Group to view the Surface plot based on the selected points.

To define a normal Cut Plane:

- a Click the Select Cut Plane Normal button ( 🚻 ).
- b Click on the geometry to add a plane perpendicular to the click location.
   COMSOL chooses default coordinates as a vertical line intersecting the data in the middle. The green highlighted areas show you what the plot looks like if this normal cut plane is chosen for the surface plot.
- c Click the 2D Plot Group to view the Surface plot based on the selected points.

To define a normal Cut Plane from Surface:

- a Click the Select Cut Plane Normal from Surface button ( 🖄 ).
- **b** Click on the geometry to add a line with a point and direction starting at the click location. COMSOL chooses default coordinates as a vertical line intersecting the data in the middle. The green highlighted areas show you what the plot looks like if this normal from surface cut plane is chosen for the surface plot.
- c Click the 2D Plot Group to view the Surface plot based on the selected points.
- **2** Adjust the cut plane as required by clicking the buttons, then clicking the geometry to change the coordinates. The data set and plot group are updated automatically with the cut plane data. Click the **2D Plot Group** node to view the updates to the surface plot.
- **3** Continue adjusting the cut plane until the surface plot representing the points plots the data as required.

Combining Plots



Links to all the other plots are found in Table 21-5 (1D and polar) and Table 21-6 (2D and 3D).

- I Define one or more **Data Sets**.
- 2 In the Model Builder, add one or more ID (1/2), 2D (1/2), or 3D Plot Groups (1/2).
- 3 Add individual plots to the plot group. Experiment with how different combinations of plots look by adding a plot, then right-clicking and selecting **Disable**.

The revised plot displays in the window selected in the **Plot window** list. Right-click the plot node again to **Enable** the plot in the plot group. Or select **Delete** to remove it.

4 Click the **Plot** button (), or right-click individual plot nodes and select **Plot**.

The plot displays in the window selected in the **Plot window** list. To plot results in another windows, right-click the plot group node or the plot node and select a plot window from the **Plot In** submenu.



Many of the Model Library plots described are examples of combined plots.

# Defining Derived Values and Tables

In this section:

- Derived Values
- Adding A Derived Value Node
- Derived Values Common Settings
- Volume Average, Surface Average, and Line Average Derived Values
- Volume Integration, Surface Integration, and Line Integration Derived Values
- Volume, Surface, and Line Maximums and Minimums for Derived Values
- Point Evaluation Derived Values
- Global Evaluation Derived Values
- Global Matrix Evaluation
- Particle Evaluation
- Adding and Evaluating Tables for a Derived Value
- Editing and Organizing Results Tables
- Getting Numerical Results Directly

## Derived Values

Integrate or compute the average, maximum, or minimum of any quantity to compute derived quantities such as total flux, charges, inductances, reaction forces, and average, maximum, and minimum values.

For all derived values also apply an operator on a data series (from a parametric or time-dependent study) to compute, for example, the temporal average of a quantity in a point of the domain for which a time-dependent solution is computed. In addition to the average, also compute the integral, maximum, minimum, RMS (root mean square), standard deviation, or variance of the data series. The derived values nodes use data sets (typically solution data sets) that provides the data from which the derived

values are computed. If needed, specify the frame and geometry to use in the data set's settings window.

TABLE 21-10:	DERIVED VALUE TYPES
--------------	---------------------

DERIVED VALUE	ICON	DESCRIPTION	LINK TO SECTION		
Point Evaluation	8.85 e-12	To evaluate expressions or variables defined in a point.	Point Evaluation Derived Values		
Global Evaluation	8.85 e-12	To evaluate the numerical value of a global variable.	Global Evaluation Derived Values		
Global Matrix Evaluation	8.85 e-12	To define the evaluation of the numerical values for a global matrix variable such as S-parameters in a model with several ports activated as a parametric sweep and a frequency-domain study.	Global Matrix Evaluation		
Particle Evaluation	8.85 e-12	To evaluate an expression for all, or a subset of, the particles in a particle tracing model.	Particle Evaluation		
AVERAGE SUBMENU					
Volume Average	Δ.	To evaluate an average over a set of domains in 3D models.	Volume Average, Surface Average, and Line		
Surface Average 🗛		To evaluate an average over a set of domains in 2D, 2D axisymmetric, or boundaries in 3D.	Average Derived Values		
LINE AVERAGE	Δ.	To evaluate an average over a set of domains in 1D, boundaries in 2D, or edges in 3D.			
INTEGRATION SUBMI	ENU				
Volume Integration	<i>,,,,</i>	To evaluate an integral over a set of domains in 3D models.	Volume Integration, Surface Integration, and		
Surface Integration	<u> </u>	To evaluate an integral over a set of domains in 2D, 2D axisymmetric, or boundaries in 3D.	Line Integration Derived Values		
Line Integration	ſ	To evaluate an integral over a set of domains in 1D, boundaries in 2D, or edges in 3D.			

TABLE 21-10: DERIVED VALUE TYPES

DERIVED VALUE	ICON	DESCRIPTION	LINK TO SECTION	
MAXIMUM SUBMENU				
Volume Maximum	∆,,	To evaluate the maximum over a set of domains in 3D models.	Volume, Surface, and Line Maximums and	
Surface Maximum	Δ.,	To evaluate the maximum over a set of domains in 2D, 2D axisymmetric, or boundaries in 3D.	Minimums for Derived Values	
Line Maximum		To evaluate the maximum over a set of domains in 1D, boundaries in 2D, or edges in 3D.		
MINIMUM SUBMENU				
Volume Minimum	۵v	To evaluate the minimum over a set of domains in 3D models.	Volume, Surface, and Line Maximums and	
Surface Minimum 🗛		To evaluate the minimum over a set of domains in 2D, 2D axisymmetric, or boundaries in 3D.	Values	
Line Minimum	۵v	To evaluate the minimum over a set of domains in ID, boundaries in 2D, or edges in 3D.		

- Adding and Evaluating Tables for a Derived Value
- Adding A Derived Value Node
- Results Evaluation and Visualization
- Defining Derived Values and Tables



- Derived Values Common SettingsEditing and Organizing Results Tables
- Getting Numerical Results Directly
- Entering Ranges and Vector-Valued Expressions
- Solver Studies and Study Types
- Working with Geometry

- I In the Model Builder, under Results, right-click Derived Values  $\binom{8.85}{6.12}$ .
- **2** Select an option from the list and continue defining each derived value (see Table 21-10).
- **4 Evaluate All** calculates and displays the results in the derived values table for all nodes in the Model Builder sequence and keeps the previous data. **Clear and Evaluate All** resets and clears all the data and calculates from the beginning.

The **Results** window opens to view a **Table** of the **Derived values**. By default four digits are displayed; click the **Full precision** button  $\begin{pmatrix} 8.85\\ e-12 \end{pmatrix}$  to display as many significant digits as possible. The **Table display precision** level can be changed from the **Options>Preferences>General** menu.

	Adding and Evaluating Tables for a Derived Value
2	Derived Values Common Settings
See Also	Editing and Organizing Results Tables

Under **Results**, there are common sections on each settings window. Table 21-7 provides cross references to the information.

SECTION ON THE SETTINGS WINDOW	CROSS REFERENCE		
Data	Data and Selecting Solutions for Parametric Sweeps		
Data Series Operation	Data Series Operation		
Expression	Expressions and Predefined Quantities		
Integration Settings	Integration Settings		
Parametric Solver and Parametric Sweep studies	Selecting Solutions for Parametric Sweeps		
Selection (Solution Data sets)	Selection (Solution Data Sets Only)		

TABLE 21-11: DETAILS FOR THE COMMON DERIVED VALUES SETTINGS SECTIONS

# <mark>т</mark>р

Links to all the derived value types are found in Table 21-10.

## DATA

Select a **Data set**. The result is computed by averaging or integrating over the data set selected. Only data sets with data for an applicable space dimension are available.

Integrate over any data set of the right dimension. For example, make a volume integration of a 2D revolved data set, or a surface integration of a cut plane.

For time-dependent and eigenvalue solutions you also select the times or eigenvalues for the solution data to evaluate. For parametric sweeps there are additional settings for selecting solutions; see Selecting Solutions for Parametric Sweeps.

## SELECTION (SOLUTION DATA SETS ONLY)

Select **Manual** from the **Selection** list to choose geometry directly from the **Graphics** window. Select **All** to add the applicable geometry or any other predefined grouping.

#### INTEGRATION SETTINGS

Select a Method—Auto (the default), Integration, or Summation.

- Auto—the default and computes the integral for fields by numerical integration and for reaction forces by summation. Predefined quantities for reaction forces use summation instead of integration. Also, if an expression is specified for the integrand using the reacf operator, the automatic setting chooses the summation method.
- Integration—the standard numerical integration method (quadrature).
- **Summation**—a summation method useful for calculating reaction forces. The summation method finds all nodes on the boundary, evaluates the expression in the nodes and sum up the values. Reaction force variables are predefined in the structural mechanics interfaces.

COMSOL automatically determines an appropriate **Integration order** for the expression. To change this, click to clear the check box and enter a number. COMSOL performs the integration elementwise using numeric quadrature of the selected order.

2D Axisymmetric Models



For 2D axisymmetric models, **Volume** and **Surface Integration** is available. COMSOL multiplies the expression (integrand) with 2*pi*r prior to integration to compute the corresponding volume or surface integral. Complete the next step.

- For Surface Integration, select the Compute volume integral (axial symmetry) check box.
- For Line Integration, select the Compute surface integral (axial symmetry) check box.

## DATA SERIES OPERATION

These settings are available for all **Derived Value** types. In addition to performing the averaging on each solution in a data series (from a parametric or time-dependent study) an operation can be applied such as the integral or maximum of the averaged quantity for the data series so that the result is, for example, the integral or maximum of the averaged quantity for each step in the data series. The following operators are available from the **Operation** list. Select:

- None (the default) to evaluate the average of the data series
- Average to evaluate the average of the average of the data series

- Maximum to evaluate the maximum of the average of the data series. If Maximum is selected, select an option from the Find maximum of list—Real part or Absolute value.
- Minimum to evaluate the minimum of the average of the data series. If Minimum is selected, select an option from the Find minimum of list—Real part or Absolute value.
- Integral to evaluate the integral of the average of the data series
- **RMS** (the root mean square or quadratic mean)
- Standard deviation
- Variance

2

See Also

Derived Values

Solver Studies and Study Types

• Entering Ranges and Vector-Valued Expressions

## Volume Average, Surface Average, and Line Average Derived Values

The derived average values are useful for calculating averaged quantities for each solution in a data set (a time-dependent solution, for example). Also apply an integral, maximum, or other operation to compute the maximum of an averaged quantity, for example. Under **Results** right click **Derived Values**  $(\underbrace{\texttt{Best}}_{\texttt{e-12}})$  and select:

- Volume Average (A) to evaluate an average over a set of domains in 3D models.
   The result of the evaluation is stored in a Table and displayed in the Results window.
- Surface Average (A) to evaluate an average over a set of domains in 2D, 2D axisymmetric, or boundaries in 3D.
- Line Average (A) to evaluate an average over a set of domains in 1D, boundaries in 2D, or edges in 3D.



For a line average example, see Tubular Reactor: Model Library path **COMSOL_Multiphysics/Chemical_Engineering/tubular_reactor**.

Links to all the other derived value types are found in Table 21-10.

# <mark>т</mark>ір

P

Tib

Also go to Derived Values Common Settings for links to information about these sections: Data, Selection, Expression, Integration Settings, and Data Series Operations.

# Volume Integration, Surface Integration, and Line Integration Derived Values

The derived integration values are useful for calculating integrated quantities for each solution in a data set (a time-dependent solution, for example). Also apply an average, maximum, or other operation to compute the average of an integrated quantity, for example. Under **Results** right click **Derived Values** (5.55) and select:

- Volume Integration ( *fff* ) to evaluate an integral over a set of domains in 3D models. The result of the evaluation is stored in a **Table** and displayed in the **Results** window.
- Surface Integration ( *ff* ) to evaluate an integral over a set of domains in 2D, 2D axisymmetric, or boundaries in 3D.
- Line Integration ( f) to evaluate an integral over a set of domains in 1D, boundaries in 2D, or edges in 3D. Integrate over any data set of the right dimension. For example, make a volume integration of a 2D revolved data set or a surface integration of a cut plane.

Links to all the other derived value types are found in Table 21-10.

Also go to Derived Values Common Settings for links to information about these sections: Data, Selection, Expression, Integration Settings, and Data Series Operation. • For a surface integration example see Effective Diffusivity in Porous Materials: Model Library path COMSOL_Multiphysics/Diffusion/ effective_diffusivity.

For a line integration example:

- If you have the AC/DC Module, see An RFID System: Model Library path ACDC_Module/Inductive_Devices_and_Coils/rfid
- If you have the CFD Module, see Filling of a Capillary Channel— Level Set: Model Library path CFD_Module/Multiphase_Tutorials/ capillary_filling_ls



- If you have the Microfluidics Module, see Filling of a Capillary Channel—Level Set: Model Library path Microfluidics_Module/ Two-Phase_Flow/capillary_filling_ls
- If you have the Heat Transfer Module, see Cavity Radiation: Model Library path Heat_Transfer_Module/Verification_Models/cavity_radiation

For a volume integration example:

- If you have the AC/DC Module, for a volume and surface integration example, see Eddy Currents: Model Library path ACDC_Module/ Inductive_Devices_and_Coils/eddy_currents
- If you have the RF Module, see Microwave Oven: Model Library path RF_Module/RF_and_Microwave_Engineering/microwave_oven

# Volume, Surface, and Line Maximums and Minimums for Derived Values

The derived maximum and minimum values are useful for calculating maximum or minimum quantities for each solution in a data set (a time-dependent solution, for example). Also apply an average, maximum (or minimum), or other operation to compute the maximum or minimum over the entire data set for a quantity, for example. Under **Results** right click **Derived Values** (1855) and:

Use Volume Maximum ( ) or Volume Minimum ( ) to evaluate a maximum or minimum value over a set of domains in 3D models. The result of the evaluation is stored in a Table and displayed in the Results window.

- Use Surface Maximum (A) or Surface Minimum (A) to evaluate a maximum or minimum value over a set of domains in 2D, 2D axisymmetric, or boundaries in 3D.
- Use Line Maximum (△) or Line Minimum (△) to evaluate a maximum or minimum value over a set of domains in 1D, boundaries in 2D, or edges in 3D.



For a volume maximum example, and if you have the Nonlinear Structural Materials Module, see Polynomial Hyperelastic Model: Model Library path Nonlinear_Structural_Materials_Module/Hyperelasticity/ polynomial_hyperelastic

Links to all the other derived value types are found in Table 21-10.



Also go to Derived Values Common Settings for links to information about these sections: Data, Selection, Expression, and Data Series Operation.

See below for sections specific to this derived value: Advanced.

## A D V A N C E D

Choose to find the maximum or minimum of the real part or the absolute value, which are different for complex-valued data. Choose **Real part** (the default) or **Absolute value** from the **Find maximum of** or **Find minimum of** list.

# Point Evaluation Derived Values

Use **Point Evaluation**  $\begin{pmatrix} 8.85\\ e-12 \end{pmatrix}$  to define the evaluation of a variable or an expression in a point. The result is stored in a **Table** and displayed in the **Results** window.



g

Tip

Tapered Cantilever with Two Load Cases: Model Library path COMSOL_Multiphysics/Structural_Mechanics/tapered_cantilever

Links to all the other derived value types are found in Table 21-10.

Also go to Derived Values Common Settings for links to information about these sections: Data, Selection, Expression, and Data Series Operation.

## Global Evaluation Derived Values

Use a **Global Evaluation**  $\binom{8.85}{e-12}$  to define the evaluation of the numerical value of a global variable.

Links to all the other derived value types are found in Table 21-10.

Also go to Derived Values Common Settings for links to information about these sections: **Data**, **Expression**, and **Data Series Operation**.

# Global Matrix Evaluation

Use a **Global Matrix Evaluation**  $(\frac{8.85}{e-12})$  to define the evaluation of the numerical values for a global matrix variable such as S-parameters in a model with several ports activated as a parametric sweep and a frequency-domain study. The **Results** window then displays all values for all frequencies in a parametric sweep.

Links to all the other derived value types are found in Table 21-10.



P

Tiþ

Also go to Derived Values Common Settings for links to information about these sections: **Data** and **Expression**.

See below for sections specific to this derived value: Data Series Operation.

## DATA SERIES OPERATION

Select from the following options for operations on the data series for the inner solutions—typcially a frequency sweep or time series from a study—and the outer solutions—the parametric sweep (for ports in electromagnetics, for example)—from the **Inner solutions** and **Outer solutions** lists:

- Select **None** to use the computed value as it is (the default).
- Select **Average** to use the average of the computed values for the inner solutions or the outer solutions.
- Select **Sum** to use the sum of the computed values for the inner solutions or the outer solutions.

The **Ignore NaN** check box is selected by default so that the results tables do not include NaNs (Not-A-Number values). If you want to see values that a NaNs, clear this check box.

#### TRANSFORMATION

You can apply a transformation operation to compute the inverse of the matrix variable or to convert between the impedance matrix,  $\mathbf{Z}$ , the admittance matrix,  $\mathbf{Y}$ , and the S-parameter matrix S (for more information about these lumped parameters, see the *AC/DC Module User' Guide*). From the **Transformation** list, choose one of the following transformations:

- None (the default).
- Inverse.
- From S to Y. For this transformation, also specify the Characteristic admittance (SI unit: S). The default value is 1 S. Click the Range button (
- From S to Z. For this transformation, also specify the Characteristic impedance (SI unit: Ω). The default value is 1 Ω. Click the Range button () to specify a range of impedance values.
- From Y to S. For this transformation, also specify the Characteristic admittance (SI unit: S). The default value is 1 S. Click the Range button ([___]) to specify a range of admittance values.
- From Y to Z.
- From Z to S. For this transformation, also specify the Characteristic impedance (SI unit: Ω). The default value is 1 Ω. Click the Range button ( ) to specify a range of impedance values.
- From Z to Y.



The transformation operations are only applicable for square matrices.

## Particle Evaluation



**Particle Evaluation** derived value feature requires the Particle Tracing Module.

Use a **Particle Evaluation** ( ) derived values feature to define the evaluation of the numerical value of quantities computed by one of the particle tracing interfaces.



Links to all the other derived value types are found in Table 21-10. Also see Derived Values Common Settings for links to more information about the **Expression** and **Data** sections.

#### DATA

Select a **Data set**. Only the **Particle** data sets ( 🔹 ) are available for selection. If no particle data set is available then the only option is **None**.

The **Select via** option is used to select the times at which the particle evaluation will occur. When **Stored output times** is selected, the **Time** list is populated with the output times from the solver, which is linked to the particle data set. When **Interpolation times** is selected, then enter an array of times for which the particle evaluation should be performed at. Click the **Range** button ([___]) to specify a range of times.

## EXPRESSION

Select predefined expressions based on the physics of the model or enter an **Expression** in the field. Enter a **Unit** and if required, select the **Description** check box to enter a description (or edit the default). The value of the expression is computed for each particle at the selected times based on the particle location at that time.

## EVALUATION

To specify the particles to evaluate the expression for, the **Particles to evaluate** list contains the following options:

- Select All (the default) to evaluate the expression for all particles in the simulation.
- Select **Fraction** to evaluate for a fraction of all particles. Enter a scalar value between 0 and 1 in the **Fraction of particles** field. The default value is 1, which means that the evaluation includes all particles.
- Select **Number** to specify a number of particles to evaluate for in the **Number of particles** field. The default value is 100 particles. If the particle simulation contains fewer particles than the specified number, all particles are included.

## The Results Table

Click the **Evaluate** button ( $\equiv$ ) or right-click the **Derived Values** node and select **Evaluate All** ( $\equiv$ ) or **Clear and Evaluate All** ( $\downarrow \equiv$ ). Select **View>Results** to open the **Results** window and view a table of the particle evaluation values.

■ Results 🕸 ■ La □= □							
0	0.0013	0.0013	6.478e-4	0.0026	0.0032	0.0026	0.0026
0.2	0.0013	0.0013	6.4706e	0.0026	0.0032	0.0025	0.0026
0.4	0.0013	0.0013	6.5043e	0.0026	0.0032	0.0025	0.0025
0.6	0.0013	0.0013	6.4931e	0.0026	0.0032	0.0026	0.0026
0.8	0.0013	0.0013	6.4367e	0.0026	0.0032	0.0025	0.0026
1	0.0013	0.0013	6.3708e	0.0026	0.0033	0.0025	0.0026
1.2	0.0012	0.0013	6.3302e	0.0026	0.0035	0.0026	0.0027
1.4	0.0013	0.0012	6.1183e	0.0028	0.0037	0.0027	0.0028

The first column in the table is a list of the **Time** values selected from the **Data** section. There are N additional columns, where N is the number of particles chosen in the **Evaluation** section.

The values in each column correspond to the supplied **Expression** for all the selected **Time** values. Each column contains M rows, where M is the number of **Time** values selected in the **Data** section. By default four digits are displayed; click the **Full precision** button ( $\substack{\textbf{B.85}\\ \textbf{e}-12}$ ) to display as many significant digits as possible. If required, the precision level can be changed from the **Options>Preferences>General** menu.

# Adding and Evaluating Tables for a Derived Value

**Tables** (I) can store the result of **Derived Values** and results from probes, for example. The result are displayed in the **Results** window, which by default is located below the **Graphics** window. There are two ways to add a **Table**:

A **Table** node is added under **Tables**. Click the node to display a table with the selected integration feature's description and values in the **Results** window.

There are three ways to evaluate a Derived Values node and put the result in a Table:

- In the Model Builder, right-click the specific Derived Values node (for example, Volume, Surface, or Line Integration) and select Evaluate.
- In the Model Builder, right-click the Derived Values node, and select Evaluate All ( > ) to evaluate all the Derived Values nodes. This appends the results to any existing tables. Select Clear and Evaluate All ( > ) to first clear the affected tables and then evaluate all the Derived Values nodes.

In addition, you can specify the output table for data from a probe in the **Table and Windows Settings** section of the probe's settings window. Also, for nested parametric sweeps you can add an accumulated probe table, which provides a matrix of values where the rows and columns represent two independent parameters.

To delete all tables, right-click the main **Tables**  $\blacksquare$  node and select **Delete All** ( $\ge$ ). To clear the contents of all tables, right-click the main **Tables**  $\blacksquare$  node and select **Clear All** ( $\blacktriangle$ ).

- I To add a **Table** node, if not already created, right-click the **Tables** ( ) and select **Table** ( ).
- **2** In the **Data** section, if applicable (for accumulated probe tables, for example) select a format from the **Format** list:
  - Select **All** (the default) to display all data in the table. For many tables this is the only available format.
  - Select Filled to create a matrix of data from, for example, a nested parametric sweep with independent parameters. Select the parameters to use for the rows and the columns from the Rows and Columns lists, and select the data (probed quantity, for example) to use in the table from the Data list. Under Column headers, select a Column description (in addition to the parameter values): None, From data (the default), or Manual. If you select Manual, type the description in the Description field.
- **3** Click the **Import** button if you want to use the table for imported data from, for example, a spreadsheet. Select a data file in the **Import** dialog box that opens.

- 4 In the Storage section, select a way to store the table data from the Store table list:
  - Select In model (the default) to store the table data in the model.
  - Select **On file** to store the table data in the model to a file that you select by first clicking **Browse** or enter into the **Filename** field.
  - Select **In model and on file** to store the table data both in the model and on file. For the storage in the model, you can specify the buffer size in the **Buffer size** (rows) field, The default is 10,000 rows.

## Editing and Organizing Results Tables

When a **Table** (**III**) is generated and displays in the **Results** window, a variety of editing options are available as listed in Table 21-12 and in Figure 21-45.

BUTTON AND FUNCTION	DESCRIPTION		
Full precision $\binom{8.85}{e-12}$	Click to display as many significant digits as possible.		
Clear Table ( 📩 )	Click to clear the data from the table, but keep the table itself. Click the Evaluate button ( $\equiv$ ) to regenerate the table data.		
Delete Table ( 🗙 )	Click to delete the table. There is no undo. If required, click the Evaluate button ( $\equiv$ ) to regenerate the table.		
Plot (🥠)	Click to plot the table in the <b>Graphics</b> window.		
Copy Table to Clipboard (	Click the button or right-click anywhere in the table and select this option from the context menu. Paste the data in a spreadsheet, for example.		
Export (📑)	Click to export the table to a text file in a spreadsheet format.		
Delete column	Right-click a column header or anywhere in the table, and select Delete column. There is no undo. If required, click the Evaluate button ( =) to regenerate the table.		
Copy selection to clipboard	Select the rows to copy, then right-click anywhere in the table and select this option from the context menu or press Ctrl+C.		

TABLE 21-12: RESULTS TABLE EDITING BUTTONS

Messages Progress 🖽 Log 📳 Results 🕺 📑					
2*mf.intWm/mf.ICoil_1^2 (H) 2*mf.intWm/mf.ICoil_1^2 (H)					
1.1482e-4	1.1469e-4				
💌 Delet	e Column				
	r Selection to Clipboard Ctrl+C r Table to Clipboard				

Figure 21-45: Context menu and button options for editing results tables.

Getting Numerical Results Directly

1

2D

V

3D

For 2D and 3D models, the numerical value of the current plot can be displayed by clicking anywhere in the model geometry.

For a 3D model, the value is for the point where the a ray projected from the point clicked hits the geometry.

COMSOL Multiphysics displays the value at that point along with the point's coordinates in a row in an **Evaluation 2D** or **Evaluation 3D** table that is found in the **Results** window. Each click adds a row to the table. From the **Results** window, plot or copy the table data to a clipboard like any other table.

## Exporting Data and Images

In this section:

- Export Feature Types
- Animation Export
- Data Export
- Mesh Export
- Table Export
- Plot 1D, 2D, or 3D Image Export
- Plot Export
- Player Export

## Export Feature Types

After a model is completed, you can add various components to the **Export** branch in and then generate outputs (animations, data, images, player, or export), or export the information to your computer for use in external documents or for other purposes.

In the **Model Builder**, under the **Export** node, right-click and select an option as listed in Table 21-13.

EXPORT TYPE	ICON	DESCRIPTION	
Animation Export		To define and export a movie or series of images based on a plot group. Play the animation in a web browser or use it in presentations or on a web site.	
Data Export		Exports numerical data to file. Data export operates directly on data sets. It is also possible to export mesh data.	
Mesh Export	22	To export a mesh defined by a data set to file.	
Table Export		To export the contents of a table to file.	
Plot 1D, 2D, or 3D Image Export	1	To export plot images from a ID Plot Group, 2D Plot Group, and 3D Plot Group.	
Player Export		To create interactive animations.	
Plot Export	<b>•</b>	To export a plot from a ID Plot Group, 2D Plot Group, or 3D Plot Group.	

TABLE 21-13: EXPORT TYPES

Q See Also

Creating Reports

## Animation Export

Use **Animation** (**mathefactorian**) to define and export a movie or series of images based on a plot group. Play the animation in a web browser or use it in presentations or on a website.

Important

Use Windows Media Player to play AVI files.



Use this feature, for example, to export multiple images for different time steps or eigenvalues.

- I In the Model Builder, right-click Export () and select Animation ().
- **2** Under **Scene**, select a **Subject**. The **Subject** list contains the 1D, 2D, or 3D plot groups previously defined.
- 3 Under Output, select an Output type—Image sequence generates multiple image files; Movie generates a single file containing all the images. If Movie is selected, go to the next numbered step.

If Image sequence is selected:

- Enter a **Filename** including a path to save it to your computer. - OR -
- Click Browse and navigate to where you want to Save the output. For example, navigate to the computer desktop and enter a Filename in the Export Image
   Sequence dialog box then select a image file type from the Save as type list—.png, .bmp, or .jpg.

The text entered in the **Filename** field is used for all the images generated. For example, if you enter image, select .png as the file type, and there are 11 frames in the movie, 11 files are created: image01.png, image02.png, ..., image11.png.

- 4 If Movie is selected as the Output type, select a Format for the movie: GIF, Flash, or AVI.
  - **a** For all movie formats, enter a path and include a **Filename**. Or click **Browse** and navigate to where you want to **Save** the output. For example, navigate to the computer desktop and enter a **File name** in the **Export Animation** dialog box.
  - **b** For all movie formats, enter a number of **Frames per second**.

Enter information into the following fields based on the Format:

- If **Flash** is selected, the **Interpolate between frames** check box is selected by default. Click to clear the check box if you do not want interpolation between the frames.
- If **AVI** is selected, enter a **Quality**. This is a scalar value between 0 and 1. The default value is 0.75.

AVI is a file format that can contain video encoded in different ways.

- For **Flash** and **GIF**, select the **Open in browser** check box to launch the default web browser to view the output Flash or GIF file.
- 5 Under Frame Settings:
  - From the Size list, select Manual (the default) or Current, which uses the current size of the Graphics window. If you select Current, the Record in reverse order check box is the only additional setting.
  - Select the **Lock aspect ratio** check box to keep the original animation width and height.
  - In the **Width** and **Height** fields, enter the number of pixels (px) for the generated image size. The default value is 640-by-480 pixels.
  - If required, select the **Record in reverse order** check box.
- 6 Under Parameter Sweep, select a Sweep Type—Result parameter, Dynamic data extension, or Stored solutions (the default). Each time selected creates a frame in the movie or an individual image file. Go to Stored Solutions, Result Parameter, or Dynamic Data Extension for next steps.

#### Stored Solutions

Selecting **Stored solutions** (the default) is useful for animating time-dependent solutions or an animation across the eigenmodes for an eigenvalue/eigenfrequency solution or across the parametric solutions for a solution from a parametric sweep.

### If **Stored solutions** is selected:

- a Select Stored output times from the Select via list, and enter any vector of times in the Times field. For example, enter range(0,0.01,1) or 0 10^(range(-3,3)).
- **b** For time-dependent problems, select **Interpolated times** from the **Select via** list. Enter **Times** or click the **Range** button (
- **c** For parametric sweep studies where the are multiple inner solutions (for example, a parameter sweep around a time-dependent solution), select an option from the **Solutions** list—**Inner solutions** or **Outer solutions**.

If **Outer solutions** is selected (that is, the parameters from the parametric sweep), the **Parameter values** list contains all options. Select as required, then select an option from the **Inner type** list—**First**, **Last** (the default), or **All**.

If **Inner solutions** is selected, select the **Parameter value** to animate, then the time steps. See Volume Integration, Surface Integration, and Line Integration Derived Values and Global Plots for more information about the inner and outer solutions.

### Result Parameter

Selecting **Result parameter** is useful for animating the changes resulting from a sweep of the values for a defined global parameter (in **Global Definitions>Parameters**). Using a parameter you can, for example, animate a sweep of the position of a slice across the geometry in a slice plot.

#### If **Result parameter** is selected:

- a Select the parameter from the **Parameter** list (or select **None**), which contains all global parameters, and define an interval for the parameter values using the **Start** and **Stop** edit fields.
- **b** Enter the **Number of frames**. The number of frames divided by the number of frames per second gives the total playing time for a movie of a static or eigenvalue solution.

#### Dynamic Data Extension

Selecting **Dynamic data extension** is useful for animating the dynamics of an eigenmode in an eigenfrequency or eigenvalue solution. In such a dynamic data extension, the full harmonic cycle, which is the default, is the normal choice. You can also use it to animate a stationary solution even if there is no obvious interpretation of the animation. If Dynamic data extension is selected:

- **a** When animating static and eigenfrequency/eigenvalue solutions, select a **Cycle type**:
- Full harmonic—a full sine wave (the solution phase grows linearly from 0 to 360°)
- Half harmonic—half a sine wave (the solution phase grows linearly from 0 to 180°)
- Linear—a linear ramp ( $\operatorname{Re}(e^{i\alpha})$ , where  $\alpha$  is the phase, grows linearly from 0 to 1) The cycle starts from the angle specified in the Solution at angle (phase) edit field when defining a Solution Data Set.
- **b** To visualize the time evolution enter the **Number of frames** to include in the animation.

For the **Model parameter** and **Dynamic data extension** sweep types you can specify the **Number of frames** to include in the animation.

# <mark>т</mark>р

The number of frames divided by the number of frames per second gives the total playing time for a movie of a static or eigenvalue solution.

### 7 Under Layout:

- a By default, the Title, Legend, Axes, and Logotype (1D and 2D plots) or Title,
  Legend, Grid, Axis orientation, and Logotype (3D plots) are included. To edit the default, select the Include check box and click to clear one or several of the Title,
  Legend, Axes, and Logotype check boxes (1D and 2D) or the Title, Legend, Grid,
  Axis orientation, and Logotype check box (3D).
- **b** Enter a **Font size** (pt).
- **c** Select a **Background—Current** or **Color**. If you select **Color** (the default setting), click the **Color** button to select a **Custom** color background to replace the default, which is white. Select **Current** to use the background in the plot group, which is a blue gradient background for 3D plots and white for 2D and 1D plots.
- 8 Under Advanced, enter a Resolution. The default is 96 DPI (dots per inch).
- **9** Select the **Antialiasing** check box to reduce stairstep-like lines and to smooth lines and edges.

**10** Click the **Export** button () in the settings window or right-click the node and select **Export**.

The file is exported to the location on your computer previously specified. The **Messages** window confirms where the files are exported as specified in the **Output** section.

## Data Export

Use **Data** (**model**) to export numerical data to file. Data export operates directly on data sets. You can use different types of evaluation points other than the ones in the data set (for example, a grid) and you can export the data on spreadsheet format or a sectionwise format.



For detailed information about the data formats uses in the exported data files, see Data Formats in the COMSOL Multiphysics Reference Guide.

### EXPORTING DATA

I In the Model Builder:

Right-click **Export** () and select **Data** ().

- OR -

Right-click any data set node, for example, **Solution**, and select **Add Data to Export**. Click the **Data** node under **Export**.



The nodes are numbered sequentially. To make it easier to organize, you can right-click and **Rename** the node.

2 Under Data select a Data set.

The **Data set** list contains the 1D, 2D, or 3D data sets previously defined, for example, **Solution** or **Cut Line**.

- **a** For **Parametric Sweep** studies select an option from the **Parameter value** list, which contains the parameter value combination for the outer solutions.
- **b** Select an option from the **Select via** list —**Stored output times** or **Interpolated times** (time-dependent models only). If **Stored output times** is selected, the **Times** section is auto-filled with information from the **Data set** selected.
- **c** If **Interpolated times** is selected, enter **Times** or click the **Range** button (|_____) to select and define specific times.
- **3** Under **Expression** select predefined expressions based on the physics of the model or enter an **Expression** in the field. Enter a **Description** or edit the default description as required.
- **4** Under **Output**, enter a **Filename** including a path to save it to your computer. - OR -

Click **Browse** and navigate to where you want to **Save** the output. For example, navigate to the computer desktop and enter a **File name** in the **Export Data** window. All are saved as .txt files.

- 5 Under Output, select the Points to evaluate in: From file, Grid, Regular grid, or Take from data set (the default).
- **6** Select the **Points to evaluate in**. Depending on the selected type of points to evaluate in, various additional settings are available.
  - To use coordinates from a data file, select **From file**. Then specify a **Coordinate filename** for a text file with the coordinates for the data output, or click **Browse** to locate the file.
  - To use a grid to define the points to evaluate in, select Grid or Regular grid. Then specify the Data format—Grid or Spreadsheet (the default). Additionally, for the Grid, specify the x, y, and z coordinates for the grid points in the fields or using the Range buttons ( ), or, for the Regular grid, specify the Number of x points, Number of y points, and Number of z points for the regular grid in the fields (default: 10 points in each direction).
  - To use the data points for the data in the data set, select **Take from data set**. Then specify the **Data format—Sectionwise** or **Spreadsheet** (the default). For spreadsheet data, select the **Transpose** check box to transpose the data from columns to rows. Additionally, select a **Space dimension—Take from data set** (the default), **Global**, **0**,

I, 2, or 3. Also select a Geometry level—Take from data set (the default), Volume, Surface, Line, or Point (some of these may not be applicable depending on the model's space dimension).

- 7 Under Advanced:
  - **a** The **Include header** check box is selected by default. Click to clear the check box if you do not want to include a header.
  - **b** The **Full precision** check box is selected by default and provides an output that contains all significant figures for data, which is stored as double-precision numbers. To limit the precision in the output to six significant figures, clear this check box.
  - **c** Select the **Sort** check box to sort the data by increasing *x*, *y*, and *z* coordinates. Otherwise, the data is unsorted.
  - d Select Lagrange points (the default) or Gauss points from the Evaluate in list to specify where COMSOL evaluates the data: in the Lagrange points (nodes of the Lagrange elements) or in the Gauss points for the Gaussian quadrature. The Evaluate in list is only available for Solution data sets.
  - e Select a Resolution—Finer, Fine, Normal (default), or Custom. If Custom is selected, enter a Lagrange-element node-point order (default: 1). Use a higher order for a finer resolution.
  - **f** Select a **Smoothing** method for smoothing of the data—**None**, **Internal** (the default, for smoothing within domains but not across interior boundaries), or **Everywhere**.
- 8 Click the **Export** button ()) in the settings window or right-click the node and select **Export**.

The file is exported to the location on your computer previously specified. The **Messages** window confirms where the files are exported as specified in the **Output** section.

## Mesh Export

Use the **Mesh** (**SS**) feature to export a mesh to file. Mesh export operates directly on data sets and exports the mesh in the frame specified by the data set.

You can also export the mesh data from data sets that contain meshes, for example, a **Mesh** data set or a **Solution** data set. Right-click the **Export** node and select **Mesh**. In the **Mesh** node's settings window, follow these steps to export mesh data.

- I In the **Data** section, select the mesh data set to export from the **Data set** list. The **Data set** list contains the solution and mesh data sets previously defined.
- 2 In the Output section, select a file type among the available formats in the File type list and enter a file name including the path in the Filename field (or click Browse... to specify the filename). You can export the mesh to a COMSOL Native file (binary .mphbin or text .mphtxt) or to an STL file (only if you select 3D data set).
- 3 Click the **Export** button ()) in the settings window or right-click the node and select **Export**.

The file is exported to the location on your computer previously specified. The **Messages** window confirms where the files are exported as specified in the **Output** section.

## Table Export

Use the **Table** ( ) feature to export the contents of a table to file. A table export stores the data from any of the tables in the model as a text file.

To export a table, right-click a **Table** node under **Tables** (**IIII**) and select **Add Table to Export**, or right-click the **Export** node (**N**) and select **Mesh** (**III**). In the **Table** node's settings window, follow these steps to export table data:

- I In the **Table** section, select the table to export from the **Table** list. The **Table** list contains all tables in the model.
- 2 In the Output section, specify the path and filename for the table data file, or clickBrowse to specify the filename.
- **3** In the **Advanced** section, clear the **Full precision** check box if you want to export the table data using the table display precision instead.
- 4 Click the **Export** button () in the settings window or right-click the node and select **Export**.

The file is exported to the location on your computer previously specified. The **Messages** window confirms where the files are exported as specified in the **Output** section.

Plot 1D, 2D, or 3D Image Export

Use the **ID Image**, **2D Image**, and **3D Image** (*ig*) features to export plot images as PNG, BMP, EPS, or JPEG image files.

🔐 Tip Use the Animation Export feature, for example, to export multiple images for different time steps or eigenvalues.

### I In the Model Builder:

```
Right-click Export () and select ID image, 2D Image, or 3D Image ().
- OR -
```

OK

Right-click any Plot Group node, for example, **3D** Plot Group or **ID** Plot Group, and select **Add Image to Export**. Click the **Image** node under **Export**.



The nodes are numbered sequentially. To make it easier to organize, you can right-click and **Rename** the node.

### 2 Under Scene:

a Select a Subject from the list.

The **Subject** list contains the 1D, 2D, or 3D plot groups previously defined. **ID Image** uses data from 1D plot groups, **2D Image** uses data from 2D plot groups, and **3D Image** uses data from 3D plot groups.



- 3 Under Image:
  - **a** From the **Size** list, select **Manual** to specify the image size manually using the settings below, or select **Current** to use the current size of the **Graphics** windows (in that case, only the **Antialiasing** setting is available).
  - **b** Select a Unit of dimension—Pixels (px), Millimeters (mm), or Inches (in).
  - **c** Select the **Lock aspect ratio** check box to keep the original image width and height.
  - **d** In the **Width** and **Height** fields, enter the number of pixels, millimeters, or inches for the final image size.
  - e Enter a Resolution. The default is 96 DPI (dots per inch).
  - **f** Select the **Antialiasing** check box (selected by default) to reduce stairstep-like lines and to smooth lines and edges.
- 4 Under File:
  - a Choose a format for the image file from the Format list: PNG, BMP, JPEG, or (1D only) EPS. The default format is PNG.
  - **b** Enter a Filename including a path to save it to your computer.
    - OR -

Click **Browse** and navigate to where you want to **Save** the output. For example, navigate to the computer desktop and enter a **File name** in the **Export Image**.

The text entered in the **File name** field is used for all the images generated. For example, if you enter image, select .png as the file type, and there are 11 frames in the movie, 11 files are created: image01.png, image02.png, ..., image11.png.

- 5 Under Layout:
  - a By default, the Title, Legend, Axes, and Logotype (1D and 2D images) or the Title, Legend, Grid, and Logotype (3D images) parts of the plot are included. To edit the default, select the Include check box and click to clear or select one or several of the Title, Legend, Axes, and Logotype check boxes (1D and 2D) or the Title, Legend, Grid, Axis orientation, and Logotype check boxes (3D).
  - **b** Enter a **Font size** (pt).
  - **c** Select a **Background—Current** or **Color**. If you select **Color** (the default setting), click the **Color** button to select a **Custom** color background to replace the default, which is white. Select **Current** to use the background in the plot group, which is a blue gradient background for 3D plots and white for 2D and 1D plots.

6 Click the **Export** button ( ) in the settings window or right-click the node and select **Export**.

The file is exported to the location on your computer previously specified. The **Messages** window confirms where the files are exported as specified in the **File** section.

Plot Export

Use Plot (
) to export a plot from a ID Plot Group, 2D Plot Group, or 3D Plot Group.

I In the Model Builder:

Right-click **Export** ( $\bigcirc$ ) and select **Plot** ( $\bigcirc$ ).

- OR -

Right-click any Plot type in any or all Plot Groups, for example, the Surface and Streamline plots in a 3D Plot Group, select Add Plot Data to Export. Click the Plot node under Export.



The nodes are numbered sequentially. To make it easier to organize, you can right-click and **Rename** the node.

- 2 Under Plot:
  - **a** Select a **Plot group**. The **Plot group** list contains the 1D, 2D, or 3D plot groups previously defined.
  - **b** Select a **Plot** to export its data. **Plot Groups** can contain one or more individual plots.
- 3 Under Output, enter a Filename including a path to save it to your computer.

- OR -

Click **Browse** and navigate to where you want to **Save** the output. For example, navigate to the computer desktop and enter a **File name** in the **Export Data** window. All are saved as .txt files.

4 Under Output, from the Data format list, select Sectionwise or Spreadsheet.



See The COMSOL File Formats in the COMSOL Multiphysics Reference Guide for information about these formats.

For streamline plots and particle tracing plots you can also control the amount of data to export. By default, the data contains full information about all points for all particles or streamlines. Select the **Only export start and end points** check box to only include one row with the start and end points for each particle or streamline.



This check box only has an effect on particles plotted as lines because plots of particles as points do not contain full information about the particle trajectories.

- 5 Under Advanced, the following settings area available:
  - The **Include header** check box is selected by default. Click to clear the check box if required.
  - The **Full precision** check box is selected by default. To limit the precision in the output to seven digits.
  - Select the **Sort** check box to sort the data by increasing *x*, *y*, and *z* coordinates. Otherwise, the data is unsorted.
- 6 Click the **Export** button ()) in the settings window or right-click the node and select **Export**.

The file is exported to the location on your computer previously specified. The **Messages** window confirms where the files are exported as specified in the **File** section.

## Player Export

A Player (1) creates interactive animations directly in the COMSOL Desktop.

- I In the Model Builder, right-click Export () and select Player ().
- **2** Under **Scene**, select a **Subject**. The **Subject** list contains the 1D, 2D, and 3D plot groups previously defined. Select one of these or select **None**.

3 Under Parameter Sweep, select a Sweep Type—Result parameter, Dynamic data extension, or Stored solutions (the default). Go to Stored Solutions, Result Parameter, or Dynamic Data Extension for next steps.



Each time selected creates a frame in the movie or an individual image file.

### Stored Solutions

Selecting **Stored solutions** (the default) is useful for animating time-dependent solutions or an animation across the eigenmodes for an eigenvalue/eigenfrequency solution or across the parametric solutions for a solution from a parametric sweep.

### If Stored solutions is selected for a 2D Plot Group:

- **a** Select **Stored output times** from the **Select via** list, and select any time from the **Times** list.
- b For time-dependent problems, select Interpolated times from the Select via list.Times are automatically added from the Stored solutions.
- **c** For parametric sweep studies where the are multiple inner solutions (for example, a parameter sweep around a time-dependent solution), select an option from the **Solutions** list—**Inner solutions** or **Outer solutions**.

If **Outer solutions** is selected (that is, the parameters from the parametric sweep), the **Parameter values** list contains all options. Select as required, then select an option from the **Inner type** list—**First**, **Last** (the default), or **All**.

If **Inner solutions** is selected, select the **Parameter value** to animate, then the time steps. See Volume Integration, Surface Integration, and Line Integration Derived Values and Global Plots for more information about the inner and outer solutions.

### **Result Parameter**

Selecting **Result parameter** is useful for animating the changes resulting from a sweep of the values for a defined global parameter (listed in **Global Definitions>Parameters**). Using a parameter you can, for example, animate a sweep of the position of a slice across the geometry in a slice plot.

#### If Result parameter is selected:

- a Select the parameter from the **Parameter** list (or select **None**), which contains all global parameters, and define an interval for the parameter values using the **Start** and **Stop** edit fields.
- **b** Enter the **Number of frames**. The number of frames divided by the number of frames per second gives the total playing time for a movie of a static or eigenvalue solution.

#### Dynamic Data Extension

Selecting **Dynamic data extension** is useful for animating the dynamics of an eigenmode in an eigenfrequency or eigenvalue solution. In such a dynamic data extension, the full harmonic cycle, which is the default, is the normal choice. You can also use it to animate a stationary solution even if there is no obvious interpretation of the animation.

#### If Dynamic data extension is selected:

- a When animating static and eigenvalue solutions, select a Cycle type:
- Full harmonic—a full sine wave (the solution phase grows linearly from 0 to 360°)
- Half harmonic—half a sine wave (the solution phase grows linearly from 0 to 180°)
- Linear—a linear ramp ( $\operatorname{Re}(e^{i\alpha})$ , where  $\alpha$  is the phase, grows linearly from 0 to 1) The cycle starts from the angle specified in the Solution at angle (phase) field when defining a Solution Data Set.
- **b** To visualize the time evolution of a time-harmonic model, enter the **Number of frames** to include in the animation.

The number of frames divided by the number of frames per second gives the total playing time for a movie of a static or eigenvalue solution.

- 4 Under Frames:
  - **a** If the selected sweep type is **Stored solution**, select **All** or **Number of frames** from the **Frame selection** list. Select **All** to play all solutions in the stored solution.
  - **b** Enter the **Number of frames** (if applicable). The default is 25 frames.
  - **c** Enter the **Frame number** or select it using the slider to get a preview of individual frames. Observe the geometry in the **Graphics** window to see the shown frame number.

- **5** Under **Playing** you can adjust some settings that affect the playing of the recorded plots:
  - **a** Specify how fast the player runs by typing the time (in seconds) to display each frame (default value: 0.1 s) in the **Display each frame for** field.
  - **b** Select the **Repeat** check box to repeat the playing instead of playing the plot sequence once.
- 6 Right-click the **Player** node and select **Generate Frame** () to create a series of frames (if more than one **Frame number** is selected).
- 7 Right-click the Player node and select Play (
  ). Watch each Frame number cycle from beginning to end in the Graphics window. Use these buttons on the Graphics window to Play (
  ), Stop (
  ), Next (
  ), and Previous (
  ), to cycle through the animation.

## Creating Reports

In this section:

- About the Report Generator
- Report Feature Types
- Generating a Model Report
- Basic Report Components
- Model Report Components

## About the Report Generator

The Report Generator is a tool for reporting and documenting models created in COMSOL Multiphysics. It creates a record of the entire model including all the settings made during the modeling process.

The report this utility generates is an overview of the model, and includes:

- Model properties
- Geometry
- Physics
- Mesh
- Studies
- Results and visualization

Several reports can be created for each model, and it is possible to configure each report by adding, moving, deleting, and disabling the nodes that define the report. The reports are stored with the model, so you can keep generating reports using the previously configured report contents and update the reports when the model changes.

These reports are easy to publish as electronic documents suitable for the Internet or as Microsoft® Word documents (.docx files). The utility generates the HTML report in a file format that makes it possible to customize the report in any HTML editor. A custom style sheet can be used to format the report.

You can use HTML tags to create hyperlinks and format the report output in text boxes, headings, and captions.

• Reports in the COMSOL Multiphysics Reference Guide

C See Also

- Report Feature Types
- Generating a Model Report

## Report Feature Types

For any model you can add one or more reports to the **Reports** branch 🔣 and then generate model reports for documentation and information about a model. You can create reports using predefined templates that define different levels of detail in the report:

- **Brief Report**: contains an overview of the model with all results and plots but no details about the physics and variables.
- **Intermediate Report**: contains comprehensive information about the model, including the physics settings and variables but not complete information about the underlying equations, for example.
- **Complete Report**: contains all information about the model, including physics interface details such as weak equation expressions and shape functions. This report is suitable for troubleshooting, for example.
- **Custom Report**: contains an initially empty report, which you can configure using the availably report components.



For all report types, the templates provide a starting point. It is possible to customize all reports by modifying, moving, adding, disabling, and deleting nodes in the reports. You can also switch the level of detail for an existing report, which affects the report nodes added afterward.

- Reports in the COMSOL Multiphysics Reference Guide
   About the Report Generator
   See Also
  - Generating a Model Report

For a model for which you want to create a report, the following steps describe the general procedure:

- I Right-click **Reports** ( ) and choose a template that creates report nodes that describe the model with a suitable level of detail: **Brief Report**, **Intermediate Report**, or **Complete Report**. You can also choose **Custom Report** and **Document**.
- 2 In the main **Report** settings window, specify the output format (**HTML** or **Microsoft Word**), the location for the output file and the associated folder with images and style sheet information. You can also specify the style sheet to use for HTML reports and how to enumerate the sections in the report.
- **3** The top node is typically the **Title Page** node ( ). In its settings window you can define the title (defaults to the model's file name), an image to use at the top of the report, author and company information, and add a summary and acknowledgments if applicable.
- **4** Review the structure and contents of the report. You can add, move, edit, disable, and delete structural elements and report contents.
  - Reports in the COMSOL Multiphysics Reference Guide



Report Feature Types

• About the Report Generator

## Basic Report Components

Right-click nodes to select and add these report nodes from the **Basic** submenu—**Bibliography, Code**, **Equation**, **Heading**, **Image**, **List**, **Note**, **Table**, and **Text**.



For all details about these features, see Basic Report Components in the COMSOL Multiphysics Reference Guide.

## Model Report Components

Right-click nodes to select items from the **Model** submenu. This group of report components provide information about the model are detailed in these sections as described in the *COMSOL Multiphysics Reference Guide*:

- Definitions Report Nodes
- Results Report Nodes
- Geometry Report Node
- Material Report Node
- Mesh Report Node
- Model Report Node
- Parameters Report Node
- Physics Interface Report Node
- Root Report Node
- Solver Report Node
- Study Report Node



The links to the features described in the *COMSOL Multiphysics Reference Guide* do not work in the PDF, only from the online help in COMSOL Multiphysics.

冒 Tip To locate and search all the documentation, in COMSOL, select **Help>Documentation** from the main menu and either enter a search term or look under a specific module in the documentation tree.

## Running the COMSOL Software

This chapter provides an overview of the different ways that you can run the COMSOL software in addition to the COMSOL Desktop graphical user interface.

In this chapter:

- Running COMSOL
- COMSOL Client/Server Architecture
- Running COMSOL Client/Server
- Running COMSOL in Parallel

## Running COMSOL

The primary way to access COMSOL's functionality is through the COMSOL Desktop. This section describes alternative means of accessing COMSOL's functionality. In this section:

- COMSOL Client/Server
- Parallel COMSOL
- COMSOL API
- COMSOL Batch
- LiveLink for MATLAB



The links to features described in other guides does not work in the PDF, only from the online help in COMSOL Multiphysics.



To locate and search all the documentation, in COMSOL, select **Help>Documentation** from the main menu and either enter a search term or look under a specific module in the documentation tree.

## COMSOL Client/Server

COMSOL's client/server architecture lets you access the COMSOL server— COMSOL's computational engine—as a separate process. For example, the COMSOL Desktop can act as a COMSOL client when connected to a COMSOL server.

You must have a floating network license (FNL) to run the COMSOL server and the COMSOL client on separate computers. Any valid COMSOL license is sufficient to run the client and the server run on the same computer.

The client and server need not run on the same platform. For example, you can run the COMSOL Desktop on Windows connecting to a COMSOL server on a Linux or Mac server. In this way you can interactively access a more powerful remote computer.

To start the COMSOL server under windows, just click **COMSOL Multiphysics Server** in the **Client Server** folder under your COMSOL installation on the start menu. On Linux

and Mac, type the command comsol server to start the COMSOL server. For more options for starting the COMSOL server, see the *COMSOL Installation and Operations Guide* for how to launch a COMSOL server on the different platforms. The section "The COMSOL Command" for your platform describes all options for launching the COMSOL server.

You can connect to a COMSOL server from the COMSOL Desktop by selecting **Connect to Server** on the **File** menu in the COMSOL Desktop. Disconnect from the sever by selecting **Disconnect from Server**.

You can also export and import a model from the COMSOL Desktop to a running COMSOL server and vice versa. This functionality is primarily intended for the LiveLink for MATLAB. Select **Export Model to Server** or **Import Model from Server** on the **File** menu to transfer a model between the COMSOL Desktop and the LiveLink for MATLAB.

## Parallel COMSOL

COMSOL supports two mutual modes of parallel operation: shared-memory parallel operations and distributed-memory parallel operations, including cluster support.

## SHARED MEMORY PARALLEL MODE

The shared memory parallel mode is suitable for running COMSOL on modern multicore or multiprocessor computers.

This parallel mode of operation is available for all platforms and all license types.

By default, COMSOL uses the shared memory parallel mode and allocates all cores on the computer.

To control the number of core used and other options, see the section *The COMSOL Command* for your platform.

### DISTRIBUTED MEMORY PARALLEL MODE

This parallel mode lets you run COMSOL on a Windows HPC cluster or a Linux cluster.

See Running COMSOL in Parallel for details about running COMSOL in parallel architectures, including Windows and Linux clusters.



For more options on how to run COMSOL on a cluster from the command line, see the *COMSOL Installation and Operations Guide*. Click The COMSOL Commands for a Windows platform, The COMSOL Commands for a Linux platform, or The COMSOL Commands for a Mac platform.



The links to features described in other guides does not work in the PDF, only from the online help in COMSOL Multiphysics.



To locate and search all the documentation, in COMSOL, select **Help>Documentation** from the main menu and either enter a search term or look under a specific module in the documentation tree.

## BASIC CLUSTER CONCEPTS

The following terms occur frequently when describing the hardware for cluster computing and shared memory parallel computing:

- Compute node: The *compute nodes* are where the distributed computing occurs. The COMSOL server resides in a compute node and communicates with other compute nodes using MPI (message-passing interface).
- Host: The *host* is a hardware physical machine with a network adapter and unique network address. The host is part of the cluster. It is sometimes referred to as a *physical node*.
- Core: The *core* is a processor core used in shared-memory parallelism by a computational node with multiple processors.

The number of used hosts and the number of computational nodes are usually the same. For some special problem types, like very small problems with many parameters, it might be beneficial to use more than one computational node on one host.

## COMSOL API

The COMSOL API is a Java-based programming interface for COMSOL functionality. The COMSOL Java API can be used for developing standalone applications based on COMSOL functionality.

The most basic use of the COMSOL Java API is to run a Model Java-file from the COMSOL Desktop or with the COMSOL batch command.

To run a Model Java-file from the COMSOL Desktop, compile it using the COMSOL compile command. This command is called comsolcompile on Windows and comsol compile on other platforms. The compilation gets you a model class file corresponding to the model Java-file. Launch the model class file by selecting **Open** on the **File** menu, and selecting a **Model Class File** under **File name**.

To create a standalone application using the COMSOL Java API you need to develop a text based or GUI-based interface to the functionality and compile it using the COMSOL compile command. The application can be run in *standalone mode* that links your Java application directly to the COMSOL Java code (as a single process). You can also choose to run the application in client/server mode by connecting to a COMSOL server.

The COMSOL API is described in the COMSOL Java API Reference Guide.

See the *COMSOL Multiphysics Installation and Operation Guide* for how to launch the COMSOL compile command on the different platforms. The sections the COMSOL Command for the respective platforms describe how the COMSOL server can be launched.

## COMSOL Batch

The COMSOL batch mode makes it possible to run COMSOL without a graphical user interface. The COMSOL batch mode of operations allows you to run both Model Class-files and Model MPH-files.

You can control the options for running COMSOL in batch mode from the **Study** node in the **Model Builder**. To enable the Batch feature, click the **Show** button ( $r_{\overline{\infty}}$ ) and select **Advanced Study Options**. Then in the **Model Builder**, right-click a **Study** node and select **Batch**. Also see Batch in the *COMSOL Multiphysics Reference Guide*.

You can also run COMSOL batch entirely from a command prompt. See the COMSOL Installation and Operations Guide for how to launch the COMSOL batch command on the different platforms. The sections *The COMSOL Command* for the respective platforms describe how to launch the COMSOL server.

In batch mode you can monitor the memory usage reported in the log as lines of the form

Memory: RAM/MAXRAM VIRT/MAXVIRT

where RAM is the current memory usage in MB, and VIRT is the current virtual memory usage in MB. The maximum measured usage is reported in MAXRAM and MAXVIRT, respectively. The log only reports changes to the memory usage. You can also monitor the current progress, which is reported as lines in the log of the form

Current Progress: 53%

where the percentage indicates the currently estimated progress.

## LiveLink for MATLAB

The LiveLink for MATLAB provides access to a COMSOL Model from MATLAB. On the MATLAB prompt you access the COMSOL model through a client/server connection to a running COMSOL server. You access the model through the COMSOL Java API and the MATLAB Java interface. In addition, there are M-file wrapper functions that help you perform tasks such as displaying graphics using MATLAB figure windows or fetching data from the model object.

## **COMSOL** Client/Server Architecture

In this section:

- Standalone COMSOL
- Running COMSOL as a Client/Server
- Running COMSOL with MATLAB

## Standalone COMSOL

The most straightforward way of running COMSOL is as a standalone application.

Computer				
	Process (32- or 64-bit)			
	COMSOL Desktop (standalone mode)			

Running COMSOL as a Client/Server

The COMSOL client and server applications are available on all platforms.



The license server is not the same as a COMSOL server. The license manager can run on a computer different from both the ones used by COMSOL Desktop and COMSOL server.

## RUNNING COMSOL MULTIPHYSICS CLIENT/SERVER ON THE SAME COMPUTER

Both the COMSOL client and the COMSOL server can run on the same computer and with all available license types: named user license (NSL), CPU locked license (CPU), and floating network license (FNL).



## RUNNING COMSOL CLIENT/SERVER ON DIFFERENT COMPUTERS

The COMSOL client and COMSOL Multiphysics server can also run on different computers, but this configuration requires a floating network license (FNL).



Running COMSOL with MATLAB

COMSOL can run together with MATLAB on the same machine using COMSOL's client/server architecture. The command comsol server matlab launches this

configuration. The command comsol matlab can be use to launch just the client and to connect to a remote server.



## RUNNING A THIN CLIENT

When running inside MATLAB the COMSOL client runs in a so-called thin client mode. This means that few COMSOL shared libraries are loaded. Thus all operations that require shared libraries are performed on the COMSOL server.

## Running COMSOL Client/Server

The COMSOL Desktop can run in a separate process as a client to a COMSOL server. The COMSOL Desktop client uses a TCP/IP connection to connect to the COMSOL server. The client and server need not run on the same platform. You must have a floating network license (FNL) to run the COMSOL server and the COMSOL client on separate computers.

You can also use the COMSOL client/server when running COMSOL with MATLAB. To do so, start a COMSOL client on a separate computer and connect to a COMSOL server started from within a MATLAB process. In this section:

- Advantages of Using COMSOL Client/Server
- Running COMSOL Client/Server

## Advantages of Using COMSOL Client/Server

The COMSOL client/server configuration frees your desktop computer of lengthy computations, dispatching your jobs to a dedicated computer. The computer that runs the COMSOL server could have more memory and a faster CPU than your desktop computer.

Running the COMSOL server and the COMSOL client separately on the same computer increases the total memory available to solve problems. This is particularly interesting because the 32-bit limit on addressable memory can be the limiting factor for complex models. The COMSOL server components do not use the memory required for the graphical user interface, freeing that memory for the actual computations on the server.

Running COMSOL Client/Server

### STARTING A COMSOL SERVER

When you have access to the Windows desktop, start the COMSOL server from the **Start** menu. Go to **All Programs**, select **COMSOL 4.3** and then **Client Server**, and select **COMSOL Multiphysics 4.3 Server**. If starting the COMSOL server from a terminal window in Windows, use the command

<COMSOL installation directory>\bin\win32\comsolserver.exe for the

T

Tib

32-bit version or <comsol installation directory>\bin\win64\comsolserver.exe for the 64-bit version.

On Linux, use the comsol server command to start a COMSOL server.

On Mac OS X, use the **COMSOL Multiphysics Server** application, or if you connect to Mac OS X from another computer, use the **comsol server** command in the terminal window.

### INITIALIZING THE COMSOL SERVER

The first time you start a COMSOL server on a computer, you are asked for a user name and password. By default, your user name and a hashed password is stored on your computer's hard drive. You can avoid storing user name and password on disk by providing the **-passwd nostore** target option to the COMSOL server command. When the COMSOL server is started, the server displays the port number. The server also displays a message each time you log in from a client.

## CONNECTING THE DESKTOP TO A SERVER

From the COMSOL Desktop select **Connect to Server** on the **File** menu. In the **Connect to Server** dialog box, specify the hostname of the server, the TCP/IP port number of the server (the port number of displayed by the server).

Connect To Ser	ver		<b>X</b>
Server setting Server name: Server port:		Login User name: Password:	•••••
			Remember password     OK     Cancel

The user name and password are the ones you used when starting the server, and the port number is printed by the server when it is started.

## DISCONNECTING THE DESKTOP FROM A SERVER

You can close the connection to the server or MATLAB using the menu item **Disconnect from Server**. Doing so transfers all data from the server to the client and makes it a standalone version of COMSOL Multiphysics. Unless the server was started with the option -multi on it exits.

### CONNECTING TO A SERVER FROM MATLAB

From MATLAB you can use the commands Modelutil.connect and Modelutil.disconnect to connect and disconnect from a COMSOL server. The connection to the server is necessary to access and manipulate a model.

C See Also

COMSOL Java API Reference Guide

### DISCONNECTING MATLAB FROM A SERVER

To connect to a COMSOL server, use the menu item **Connect to Server**. This opens a dialog box where you can enter the server and login information

### EXPORTING TO A COMSOL SERVER

Primarily for use with the LiveLink for MATLAB, use **Export Model to Server** to transfer the model in the COMSOL Desktop to a MATLAB session. This model transfer works while another client is connected to the server. You have this situation when running the LiveLink for MATLAB.

## IMPORTING FROM A COMSOL SERVER

Primarily for use with the LiveLink for MATLAB, use **Import Model from Server** to transfer the model from a MATLAB session to the COMSOL Desktop. This model transfer works while another client is connected to the server. You have this situation when running the LiveLink for MATLAB.

# Running COMSOL in Parallel

COMSOL supports two mutual modes of parallel operation. One mode is based on the distributed memory model and runs on several nodes on a Linux or Windows cluster; see Distributed-Memory Parallel COMSOL. The other mode is based on the parallel shared memory model. This section includes these topics:

- Shared-Memory Parallel COMSOL
- COMSOL and BLAS
- Distributed-Memory Parallel COMSOL
- Benefits of Running COMSOL in a Distributed Mode
- Running COMSOL in Parallel on Clusters

#### Shared-Memory Parallel COMSOL

Most multiprocessor machines and dual-core/multicore machines support the shared memory model; however, it is not supported by several nodes on a cluster. The solvers, assembly, and meshing in COMSOL Multiphysics benefit from shared memory parallelism. By default COMSOL uses all cores available on the machine for shared-memory parallelism.

#### BENEFITS OF RUNNING COMSOL SHARED-MEMORY PARALLEL

All iterative solvers and smoothers except Incomplete LU are parallelized. Some smoothers have blocked versions. The blocked versions are usually more parallel than the nonblocked versions. The finite element assembly also runs in parallel. Usually the speedup depends on the problem size; problems using a lot of memory usually have better speedup.

The PARDISO sparse direct linear solver runs in parallel. The SPOOLES sparse direct linear solver also runs in parallel. The MUMPS direct solver benefits from shared memory parallelism; however, to a slightly lesser extent than PARDISO and SPOOLES.

The free mesher in 3D runs in parallel over the faces and domains of the geometry object being meshed. For this reason, the speedup when running on several processors depends strongly on the domain partitioning of the corresponding geometry. Meshing a geometry with only one domain, such as an imported CAD part, gives almost no speedup at all. On the other hand, meshing a geometry with several domains, such as

an imported CAD assembly with many parts, can give significant speedup, especially if the number of elements in the mesh is large.

These plots run in parallel in 3D: slice plots, isosurface plots, volume plots, line plots, deformed-shape plots, and streamline plots.

These plots run in parallel in 2D: surface plots, contour plots, and line plots as well as deformed-shape plots run in parallel.

A significant part of the parallel speedup in computations comes from functions of the type BLAS (basic linear algebra subprogram; see the next section). If you want to run the software in parallel, it is important that the BLAS library you use supports parallelism. The BLAS libraries shipped with COMSOL do that.

Running in parallel usually requires extra memory. If you run out of memory, try to lower the number of used cores as explained in the Installation and Operations Guide. The speedup depends on the processor load. For instance, if your system has m processors and n of them are used by other active programs, do not set the number of processors to a number that is greater than m - n. The reason is that the programs compete for the same resources, which slows all of them considerably.

## COMSOL and BLAS

3D

2D

BLAS is a set of functions for basic linear algebra operations. Vendors often supply BLAS libraries optimized for their hardware. A large portion of the computational engine in COMSOL relies on BLAS. Included with COMSOL are the BLAS libraries ACML (AMD Core Math Library) optimized for AMD processors with SSE2 support, MKL (Math Kernel Library) optimized for Intel processors. You can also supply your own BLAS library optimized for your hardware. By default COMSOL automatically tries to detect an appropriate BLAS library. The defaults in COMSOL are:

- MKL on Intel processors.
- ACML on AMD processors that support SSE2 instructions; otherwise MKL is used.

You can override the default as explained in the *COMSOL Installation and Operations Guide*. If the library you want to use is unavailable or incorrectly installed, COMSOL switches back to the default library.

## Distributed-Memory Parallel COMSOL

Note

The Linux and Windows versions of COMSOL support a distributed memory mode. The distributed mode starts a number of computational nodes set by the user. Each computational node is a separate process running a COMSOL instance. A computational node is not the same as a physical node (computer), but they can coincide. When running in distributed mode, COMSOL uses MPI for communicating between the processes in the distributed environment.



Figure 22-1: Schematic of a cluster with 3 physical nodes (computers) with 4 processors each.

The distributed-memory mode can be combined with COMSOL's ability to benefit from the shared-memory model. All modes that COMSOL can run in are able to use distributed memory mode.

In client/server mode, the computer or cluster acting as server must be accessible from the client through a TCP/IP connection. If you are not able to connect to the server, you can use the COMSOL Batch to solve models on the cluster or do parametric sweeps. You can also use the Cluster Computing study to set up a COMSOL Batch job from within the GUI.

For the schematic in Figure 22-1, you can choose any number of computational nodes between 1 and 12. Each node, in turn, can use between 4 and 1 processors for shared memory. By default, COMSOL uses as many processors as are available on each physical node for shared-memory parallelism on Windows. This is suboptimal if the

number of computational nodes is not the same as the number of physical nodes. It is recommended that you explicitly set the number of processors. For the schematic example, if you run 6 computational nodes, the optimal value for number of processors is 2. The number of processors used is  $6 \cdot 2 = 12$ .

For the same example, assuming you are the sole user of the system for the duration of the computation and that your problem requires a lot of memory, use 3 computational nodes with 4 shared memory cores each. If, on the other hand, your problem is small, use 12 computational nodes with 1 shared memory core each. This way you make the best use of shared-memory and distributed-memory parallelism for each problem.

You do not need a cluster to benefit from COMSOL's ability to utilize the distributed-memory model. On a multiprocessor computer you can use multiple computational nodes. This can be useful for small-sized parameter sweeps, for example. Make sure that the number of computational nodes times the number of processors does not exceed the number of available processors; otherwise performance deteriorates significantly.

## Benefits of Running COMSOL in a Distributed Mode

The following direct solvers are supported by COMSOL when running in distributed mode:

- MUMPS
- SPOOLES

PARDISO is not supported in distributed mode. MUMPS is used instead.

The following iterative solvers are supported:

- Iterative solvers: BiCGStab, CG, GMRES, and FGMRES
- Smoothers and preconditioners: SOR, SOR Gauge, SOR Line, SOR Vector, and Vanka
- Multigrid

COMSOL can also run parameter sweeps using the distributed mode. The simplest way to start a distributed parameter sweep is to select the **Distribute parametric sweep** check box in the **Cluster Computing** node's settings window. The simplest way to modify an existing model is to add the **Cluster Computing** study and select **Compute** in the study node's settings window. To enable the cluster computing feature, click the **Show** button (**>**) and select **Advanced Study Options**. Then in the **Model Builder**, right-click a **Study** node and select **Cluster Computing** (**>**).

## Running COMSOL in Parallel on Clusters

You control the options for running COMSOL on a cluster from the **Study** node in the **Model Builder**. To enable the cluster computing feature, click the **Show** button ( $\textcircled{}_{\bigcirc}$ ) and select **Advanced Study Options**. Then in the **Model Builder**, right-click a **Study** node and select **Cluster Computing** ( $\textcircled{}_{\bigcirc}$ ).



You must have a floating network license (FNL) to run COMSOL in distributed memory parallel mode. See Cluster License Handling for more information.



Cluster Computing in the COMSOL Multiphysics Reference Guide



The Micromixer—Cluster Version and Joule Heating of a Microactuator—Distributed Parameter Version models show how to set up a model for running COMSOL in parallel on a cluster: in the first case for faster solution of a large fluid-flow model using distributed solver jobs, and in the second case for a distributed parametric sweep.



Тір

The links to the features described in other guides does not work in the PDF, only from the online help in COMSOL Multiphysics.

To locate and search all the documentation, in COMSOL, select **Help>Documentation** from the main menu and either enter a search term or look under a specific module in the documentation tree.

The following sections describe how to run cluster jobs on Windows and Linux.

#### RUNNING A CLUSTER JOB ON WINDOWS

This section outlines the main steps for running a cluster job on Windows. Before you start, check that the installation of COMSOL follows these guidelines:

- Make sure that the COMSOL installation directory is shared between all the compute nodes and the head node on a shared network disk.
- Make sure that the license manager is available and up and running.
- If you work on a desktop PC, which is recommended, install COMSOL on that local PC. Also install Windows HPC Pack on the desktop PC before you start. Windows HPC Pack makes it possible to access the cluster from your workstations. It is free and ships with the Microsoft HPC Server 2008 (HPCS 2008). An alternative is to log in to the cluster via Remote Desktop, for example.

To run a cluster job, follow these steps:

- I Start COMSOL Multiphysics.
- 2 In a complete model, right-click the Study node and select Cluster Computing ( 🙀 ).
- **3** You can make a distributed parametric sweep to take advantage of the cluster with any solver settings. If you want to use a distributed solver job for other models without a parametric sweep, make sure that you enable a direct solver for the active solver node under **Solver Configurations**. To do so, right-click the **Direct** node (Solver 1) and select **Enable**. The MUMPS and SPOOLES direct solvers support distributed solver jobs.

# <mark>т</mark>р

If the Solver Configurations node does not exist, right-click the Study node and select Show Default Solver (

- **4** In the **Cluster Computing** node's settings window, select **HPCS 2008** from the **Cluster type** list. This provides access to all parameters that you need for communication with the cluster.
- 5 To submit the job, right-click the Study node ( $\cong$ ) and select Compute ( $\equiv$ ).
- 6 You can define more details in the settings window for the Cluster Computing node ( ♥ ).under Job Configurations ( ₽ ). When you submit a job, COMSOL Multiphysics adds a Cluster Computing node. If you want to change or inspect its settings before submitting the first job, right-click the Study node ( ) and select Show Default Solver ( ).

7 After submitting the job to the cluster, you can monitor the progress in the Progress window ( ) and the Log window ( ). The Progress window shows the progress of the batch data and external processes, and the Log window contains a log with information about the solver operations for each parameter in a parametric sweep, for example. You can also get details about a cluster job in the Windows Job Manager, which is available in the HPC Pack.

#### RUNNING A CLUSTER JOB ON LINUX

Before you begin, make sure that the license manager is up and running and reachable from all compute nodes and the headnode. Skip the steps 1) and 3) if you are running COMSOL on the machine from where you wish to start the cluster job.

- I Start the COMSOL server on the Linux system with the command comsol server. Notice the port number that is displayed (for example, COMSOL 4.3 started listening on port 2036).
- 2 Start COMSOL Multiphysics on your desktop computer.
- **3** Select **File>Connect to Server**. In the **Connect to Server** dialog box, use the login credentials that you entered at the startup of the COMSOL server.
- 4 In a complete model, right-click the **Study** node and select **Cluster Computing** ( 🙀 ).
- 5 You can make a distributed parametric sweep to take advantage of the cluster with any solver settings. If you want to use a distributed solver job for other models without a parametric sweep, make sure that you enable a direct solver for the active solver node under **Solver Configurations**. To do so, right-click the **Direct** node (N) and select **Enable**. The MUMPS and SPOOLES direct solvers support distributed solver jobs.

## ₩ Tip

If the Solver Configurations node does not exist, right-click the Study node and select Show Default Solver (

- **6** In the **Cluster Computing** node's settings window, select **General** from the **Cluster type** list for Linux clusters. This provides access to all parameters that you need for communication with the cluster.
- 7 To submit the job, right-click the Study node ( $\cong$ ) and select Compute ( $\equiv$ ).
- 8 You can define more details in the settings window for the Cluster Computing node (
   ) under Job Configurations (
   ). When you submit a job, COMSOL Multiphysics adds a Cluster Computing node. If you want to change or inspect its

settings before submitting the first job, right-click the **Study** node (2) and select **Show Default Solver** (

9 After submitting the job to the cluster, you can monitor the progress in the **Progress** window ( ) and the **Log** window ( ). The **Progress** window shows the progress of the batch data and external processes, and the **Log** window contains a log with information about the solver operations for each parameter in a parametric sweep, for example.

You can do the same cluster simulation from the command line using, for example, a scheduler script. Some example commands:

```
comsol -nn 2 mpd boot -f machinefile -v -d
comsol -nn 2 batch -inputfile comsoltest.mph -outfile output.mph
-batchlog b.log
comsol mpd allexit
```

#### CLUSTER LICENSE HANDLING

To run COMSOL Multiphysics simulations in distributed memory parallel mode (on a cluster), you must have a floating network license (FNL). Look for the keyword CLUSTERNODE in your license file. When running a cluster job, COMSOL uses the following license components and license check-out procedures:

- On the headnode, one seat of the COMSOL and COMSOLGUI features each are checked out.
- On each of the compute nodes, only one CLUSTERNODE feature is checked out, and it is not counted. This means that you have unlimited number of cluster nodes available for every seat (job) of the floating network license.
- When running a batch job through a scheduler, COMSOL's license manager checks out the noncluster COMSOL license keys (COMSOL, COMSOLGUI, CADIMPORT, CHEM, and so on) from one of the distributed processes. All other processes in the batch job only check out a CLUSTERNODE license key. So, license keys can be checked out from any physical node in the cluster depending on where the scheduler starts the processes.

# 23

# Glossary

This Glossary of Terms contains terms related to finite element modeling, mathematics, geometry, and CAD as they relate to the COMSOL Multiphysics software and documentation. For more application-specific terms, see the glossaries in the documentation for most of the add-on modules. For references to further information about a term, see the index.

# Glossary of Terms

**adaptive mesh refinement** A method of improving solution accuracy by adapting the mesh to the problem's physical behavior.

**affine transformations** Geometric transformations that are combinations of linear transformations and translations.

**algebraic multigrid (AMG)** An *algebraic multigrid* solver or preconditioner performs one or more cycles of a multigrid method using a coarsening of the discretization based on the coefficient matrix. Compare to *geometric multigrid (GMG)*.

anisotropy Variation of material properties with direction.

**application programming interface (API)** An *API* provides a set of documented functions and methods for interacting with a software product.

**arbitrary Lagrangian-Eulerian formulation (ALE formulation)** A formulation for a moving mesh where dependent variables represent the mesh displacement or mesh velocity. The COMSOL Multiphysics solvers have built-in support for the mesh movement.

arc A segment of the circumference of a circle or ellipse.

**Argyris element** A 2D, 6-node triangular finite element with a 5th-order *basis function* providing continuous derivatives between elements.

**aspect ratio** The ratio between the longest and shortest element or geometry dimension.

**assemble** Taking the local element stiffnesses, masses, loads, and constraints to form the *stiffness matrix*, *mass matrix*, load vector, constraint matrix, and constraint residual vector.

**associative geometry** An algorithm that maps data associated with a geometry to the new *geometric entities* when the geometry is modified.

**backward differentiation formula (BDF)** A multistep formula based on numerical differentiation for solutions to *ordinary differential equations*. A BDF method of

order *n* computes the solution using an *n*th-grade polynomial in terms of backward differences.

**basis function** A function  $\varphi_i$  in the *finite element space* such that the *i*th degree freedom is 1, while all other degrees of freedom are 0. For the Lagrange finite element space,  $\varphi_i$  is a linear or higher order polynomial on each mesh element with value 1 in node *i* and 0 in all other nodes.

Bernstein polynomial See Bézier basis.

**Bézier basis** A set of polynomial functions that occur in the definition of a *Bézier curve*. These polynomial functions are often called *Bernstein polynomials*.

**Bézier curve** A *rational Bézier curve* is a parameterized *curve* formed as the quotient of two polynomials expressed in the Bézier basis. It is a vector-valued function of one variable. The coefficients of a rational Bézier curve are geometrically interpreted as *control points* and *control weights*. A *nonrational Bézier curve* is a rational Bézier curve with all weights equal, thereby making the denominator polynomial equal to a constant. A nonrational Bézier curve is also called an *integer Bézier curve*.

**Bézier patch, Bézier surface** A *Bézier patch* or *Bézier surface* is a surface extension of the *Bézier curve*. The *Bézier patch* is a function of two variables with an array of control points.

bidirectional constraint See constraint.

**Boolean operations** Boolean operations are used to construct a *geometry object* from other solid geometry objects and rebuild it in a new form. At least two primary geometry objects are required to create a resultant new geometry object. That new object depends on the type of Boolean operation:

- Union (add): the resultant geometry object occupies all the space of the initial geometry objects
- Difference (subtract): the resultant geometry object occupies all the space of the first geometry object except for the space inside the second geometry object.
- Intersection: the resultant geometry object occupies only the space common to the initial geometry objects

**boundary** A *geometric entity* with a space dimension one less than the space dimension for the geometry (for example, a *face* in a 3D geometry). In a mathematical

context, the symbol  $\partial \Omega$  represents the boundary of the domain  $\Omega$ . Sometimes *boundary* is used in a narrower sense meaning an *exterior boundary*. See also *interior boundary*, *exterior boundary*.

border The interface between two parts in an assembly.

**boundary modeling** A geometry modeling method to create a geometry by defining its boundaries. Compare to *solid modeling* and *surface modeling*.

brick element See hexahedral element.

chamfer A CAD feature that trims off a corner with a plane or straight line.

**Cholesky factorization** A memory-saving version of LU factorization where U is the transpose of L. It requires that the coefficient matrix A (A = LU) be a symmetric positive definite matrix. See also LU factorization and positive definiteness.

**coefficient form PDE** A PDE in the coefficient form is a PDE formulation suited for linear PDEs

$$\begin{cases} e_a \frac{\partial^2 u}{\partial t^2} + d_a \frac{\partial u}{\partial t} + \nabla \cdot (-c \nabla u - \alpha u + \gamma) + \beta \cdot \nabla u + a u = f & \text{in } \Omega \\ \mathbf{n} \cdot (c \nabla u + \alpha u - \gamma) + q u = g - h^T \mu & \text{on } \partial \Omega \end{cases}$$

$$hu = r$$
 on  $\partial \Omega$ 

**composite geometry object, composite solid object** Geometric objects made up by combining *primitive geometry objects* and other composite objects. See also *constructive solid geometry, primitive geometry object,* and *Boolean operations.* 

**COMSOL Desktop** The integrated simulation environment for the COMSOL Multiphysics products with a number of windows such as the Model Builder window, the Graphics window, and each feature node's settings window.

**COMSOL Multiphysics binary file** A binary data file with the extension .mphbin that contains geometry objects or mesh objects. Earlier versions of COMSOL Multiphysics used the file extension .flb.

**COMSOL Multiphysics text file** A text data file with the extension .mphtxt that contains geometry objects or mesh objects.

**condition number** A measure of the possible error in a solution due to ill-conditioning of the equations. See also *ill-conditioning*.

**constant** A named model property that has a constant numeric value.

**constraint** Restriction imposed upon the dependent variables, typically as a *Dirichlet boundary condition*. *Neumann boundary conditions* are not regarded as constraints. When Dirichlet boundary conditions are introduced, the finite element algorithm makes a corresponding change to the Neumann boundary conditions so that the resulting model becomes solvable. For a *bidirectional constraint*, COMSOL Multiphysics accomplishes this change by adding the transpose of the constraint matrix *h* times a vector of *Lagrange multipliers* to the right-hand side of the Neumann boundary condition. For a *unidirectional constraint*, the extra term is often some matrix times the vector of Lagrange multipliers. In a mechanical model, the extra term is called a *constraint force*.

**constructive solid geometry (CSG)** A solid-modeling method that combines simple solid shapes, or *primitives*, to build more complex models using Boolean operations. See also *solid modeling* and *primitive*.

**control point** *Bézier* and *NURBS* curves and surfaces are defined by a set of points known as *control points*. The locations of the these points control the curve's shape.

**control weight** Scalar values assigned to *control points* to further control the shape of a curve or surface.

**contour plot** A plot that shows the variation of a solution component or other quantity. Points with equal values of the plotted quantity are connected with contour lines.

**convergence** The tendency for a finite element solution to approach the exact solution within well-defined and specified tolerances, for example, by reducing the mesh element size or the time step.

**coupling operator** An operator used to couple data within a model (geometry) or between different models (geometries). See also *extrusion coupling operator*, *projection coupling operator*, and *integration coupling operator*. Coupling variables

provided similar functionality in earlier version of COMSOL Multiphysics, but coupling operators can be reused with different arguments (for example, for integrating different quantities over the same domain).

curl element See vector element.

**curve** The path of a point moving through space. See also *Bézier curve*, *NURBS*, and *manifold*.

**curve object** A geometry object consisting of only *edges* and *vertices*, for example a geometry object representing a *curve*.

**curve segment** An individual polynomial or rational polynomial curve. Compounded curves consist of several *curve segments*.

**degree of freedom (DOF)** One of the unknowns in a discretized finite element model. A degree of freedom is defined by a name and a *node point*. The degree of freedom names often coincide with the names of the dependent variables. The local degrees of freedom are all degrees of freedom whose node points are in one mesh element.

**deformed geometry** A geometry where the shape changes with a moving-mesh algorithm. It also the name of a *physics interface* for modeling deforming geometries. This is similar to the Parameterized Geometry physics interface in earlier versions of COMSOL Multiphysics.

**dependent variable** A varying quantity whose changes are arbitrary, but they are regarded as produced by changes in other variables. For example, temperature is a function of the space coordinates and time. In a narrower sense, the dependent variables, or *solution components*, are the unknowns in a mathematical PDE model. Compare to *independent variable*.

**differential-algebraic equation (DAE)** A set of equations that includes both differential and algebraic equations. A DAE is classified in terms of its *index*, a positive integer, which is related to the minimum number of differentiations needed to transform a DAE to an ODE form.

**direct solver** A solver for a system of linear equation that uses some variant of Gaussian elimination. Compare to *iterative solver*.

**Dirichlet boundary condition** A Dirichlet boundary condition specifies the value of the function (dependent variable) on a boundary. Dirichlet boundary conditions are sometimes called *essential boundary conditions* or *constraints*. For a coefficient form PDE the Dirichlet boundary condition is hu = r. See also *constraint*.

**discretization** The process of dividing a continuous system into a finite number of elements with finite size. The difference between the finite-element representation and the real system, the discretization error, drops as the size of the elements decrease. For a time-dependent analysis, a discretization of time into steps provides an idealized behavior of the variations in the solution during these steps.

**divergence element** A finite element often used for electromagnetic vector fields. The degrees of freedom on the boundary of a mesh element correspond to normal components of the field. Also *Nédélec's divergence element*.

**domain** A topological part of the modeling space in a geometry model. The geometric representation of a domain is a line segment (interval) in 1D, an area in 2D, and a volume in 3D. In a mathematical context, the symbol  $\Omega$  represents the domain where the equations are defined.

**drop tolerance** A nonnegative scalar used in the incomplete LU preconditioner for the iterative solvers. See *incomplete LU factorization*.

dynamic model See time-dependent model.

**edge**, **edge** segment A *geometric entity* representing a bounded part of a *curve*. An *edge* or *edge segment* is a *boundary* in a 2D geometry. See also *domain*.

edge element See vector element.

eigenvalue PDE A PDE that describes an eigenvalue problem with unknown eigenmodes (eigenfunctions) u and eigenvalues  $\lambda$ . The *coefficient form* eigenvalue PDE is:

$$\lambda^{2} e_{\alpha} u - \lambda d_{\alpha} u + \nabla \cdot (-c \nabla u - \alpha u) + \beta \cdot \nabla u + a u = 0$$

elliptic PDE A linear stationary 2nd-order elliptic PDE has the form

$$\nabla \cdot (-c\nabla u - \alpha u + \gamma) + \beta \cdot \nabla u + \alpha u = f$$

where c is positive or negative definite, for example, Poisson's equation.

embed To insert a 2D geometry into a 3D geometry model.

**error** Deviations from the correct solution, primarily due to: poor modeling; *discretization* (such as insufficiently fine mesh, poor elements, or insufficiently short time steps); and roundoff and truncation (depending on numerical representation, *ill-conditioning*, or the solution algorithms).

**error estimate** An estimation of the error in the numeric solution to a problem, either locally or globally, primarily for use by an adaptive mesh refinement. See also *adaptive mesh refinement*, *error*.

**equivalent boundaries** *Boundaries* that are rigid transformations of each other and have compatible meshes. See also *periodic boundary condition*.

#### essential boundary condition See Dirichlet boundary condition.

**Eulerian formulation** [An Eulerian formulation means that the partial differential equations that describe some physics are formulated in a *spatial frame* (coordinate system), with coordinate axes fixed in space. An Eulerian formulation is common for fluid flow when the focus is on specific locations in space through which fluid flows. Compare to *Lagrangian formulation*.

**expression variable** A user defined variable that is defined on any geometry domain in terms of *dependent variables*, *independent variables*, *constants*, *application scalar variables*, and other *expression variables*. Global expression variables are valid in all geometries; scalar expression variables are valid in the current geometry.

**extended mesh** A data structure that includes the full finite element mesh. See also *mesh*, *node point*.

**extended multiphysics** A model that includes nonlocal couplings and dependencies between variables, where the value at a point is the result of a computation elsewhere in the domain or in another geometry defined in the same model. *Coupling operators* provide the ability to project or extrude values from one geometry or domain to another. Compare to *multiphysics*.

**exterior boundary** An *exterior boundary* for a dependent variable *u* is a *boundary* such that *u* is defined only on one of the adjacent domains, that is, a boundary to the exterior of the computational domain. See also *boundary*.

**extrude** To create a 3D geometry object from a 2D geometry object in a *work plane* by translating (extruding) it along a path, often a straight line.

**extruded mesh** A 3D mesh created by extrusion of a 2D mesh. An extruded mesh can contain *hexahedral elements* and *prism elements*.

**extrusion coupling operator** An operator in the destination that takes values from the source by interpolation at points that depend on the position of the evaluation points in the destination.

face, face segment A domain describing a bounded part of a *surface* in a 3D geometry. A *face* or *face segment* is a *boundary* in a 3D geometry. See also *domain*.

**face object** A geometry object with no topological information on domains. Typically a trimmed surface is represented as a face object.

**FEM** See finite element method.

**field variables** Dependent variables and variables derived from them. Compare to *expression variables*.

fillet A curved transition from one boundary to another, creating a rounded corner.

**finite element** In the mathematical sense, a *mesh element* together with a set of *shape functions* and corresponding *degrees of freedom*. The linear combinations of the shape functions form a space of functions called the *finite element space*. In the traditional FEA sense, the concept of a finite element also includes the discretized form of the PDEs that govern the physics. COMSOL Multiphysics generally uses *finite element* in the mathematical sense.

**finite element analysis (FEA)** A computer-based analysis method for field problems using the *finite element method*.

**finite element method (FEM)** A computational method that subdivides an object into very small but finite-size elements. The physics of one element is approximately described by a finite number of *degrees of freedom (DOFs)*. Each element is assigned a set of characteristic equations (describing physical properties, boundary conditions, and imposed forces), which are then solved as a set of simultaneous equations to predict the object's behavior.

**finite element space** The linear space of functions where the finite element approximation to the solution of a PDE problem is sought. The functions in the finite element space are linear combinations of *basis functions* (*shape functions*).

**flux vector** The vector is as below. See also *generalized Neumann boundary condition* and *normal flux*.

 $\Gamma = -c\nabla u - \alpha u + \gamma$ 

**frame** [A *frame* is a coordinate system that is fixed in space, to a material, to the geometry, or to a mesh. The frames make it possible to use an *Eulerian formulation* or a *Lagrangian formulation* for various physics in a model and to combine them using the arbitrary Lagrangian-Eulerian (ALE) method. The following frame types are available: *material frame (reference frame)*, *geometry frame, mesh frame*, and *spatial frame*.

**free mesh** An *unstructured mesh* that can represent any geometry. Compare to *mapped mesh*.

**free mesher** The mesh generator creating *free meshes*. The mesh generator creating *triangular elements* is also referred to as the *free triangle mesher*, and the mesh generator creating *quadrilateral elements* is also referred to as the *free quad mesher*.

free quad mesher The mesh generator creating unstructured quadrilateral meshes.

free triangle mesher The mesh generator creating unstructured triangular meshes.

**Gauss point** Sometimes improperly used as a synonym for *integration point*. See also *integration point*.

**general form PDE** A PDE in the general form is a PDE formulation suited for nonlinear PDEs

$$\begin{cases} e_a \frac{\partial^2 u}{\partial t^2} + d_a \frac{\partial u}{\partial t} + \nabla \cdot \mathbf{\Gamma} = F & \text{in } \Omega \end{cases}$$

$$-\mathbf{n} \cdot \mathbf{\Gamma} = G + \left(\frac{\partial R}{\partial u}\right)^{T} \mu \qquad \text{on } \partial \Omega$$

0 = R on  $\partial \Omega$ 

**generalized Neumann boundary condition** A generalized Neumann boundary condition (also called a *mixed boundary condition* or a *Robin boundary condition*) specifies the value of a linear combination of the *normal flux* and the *dependent variables* on a boundary. For a coefficient form PDE, the generalized Neumann boundary condition is

$$\mathbf{n} \cdot (c\nabla u + \alpha u - \gamma) + qu = g - h^T \mu$$

The generalized Neumann condition is often called just *Neumann condition* in the documentation.

**geometric entities** The basic parts that constitute the finalized geometry: *domains*, *boundaries* (*faces*), *edges*, and *points* (*vertices*).

**geometric multigrid (GMG)** A *geometric multigrid* solver or preconditioner performs one or more cycles of a multigrid method, using a coarsening of the discretization based on a coarsening of the mesh or a reduction in the order of the shape functions. Compare to *algebraic multigrid (AMG)*.

**geometry frame** In the geometry frame (coordinate system) the domain is fixed and identical to the original geometry. There is a one-to-one map from the geometry coordinates to the current spatial configuration of the domain, but this map may become quite ill-conditioned as the domain deforms. There is also a one-to-one map from the mesh coordinates to the geometry coordinates, which is trivial until the first remeshing event. After remeshing, both the map from mesh to geometry coordinates and the map from geometry to spatial coordinates may be ill-conditioned, while the composite map is the one used by the ALE method, while the geometry coordinates are in practice only used as reference for the Deformed Geometry interface and for postprocessing.

**geometry level** The types of topological entities within a geometry model that describes bounded parts of the manifolds in the model, and also the relations between different manifolds in the geometry. The different geometry levels are the *vertex*, *edge*, *face*, and *domain* levels. An entity of dimension one less than the space dimension is referred to as a *boundary*. See also *manifold*.

**geometry model** A collection of topological and *geometric entities* that form a complete geometric description of the model.

**geometry object** The objects that represent a geometry model. See also *curve object*, *face object*, *primitive geometry object*, *solid object*.

grid A *grid* usually refers to sets of evenly-spaced parallel lines at particular angles to each other in a plane, or the intersections of such lines. Compare to *mesh*.

**Hermite element** A finite element similar to the *Lagrange element*. The difference is that there are degrees of freedom for the (1st-order) space derivatives at the mesh vertices. See also *Lagrange element*.

**hexahedral element** A 3D mesh element with eight corners and six faces, also referred to as *brick element*; sometimes also called *hex element* as a short form.

**higher-order element** A finite element with *basis functions* that consists of polynomials of degree 2 or higher.

**hybrid geometry modeling** Creating a geometry model using a combination of *boundary modeling/surface modeling* and *solid modeling*.

**hyperbolic PDE** A typical example of a linear 2nd-order hyperbolic PDEs is the *wave* equation

$$e_{a}\frac{\partial^{2} u}{\partial t^{2}} + \nabla \cdot (-c\nabla u - \alpha u + \gamma) + \beta \cdot \nabla u + au = f$$

where  $e_a$  and c are positive.

**IGES file** An *IGES file* contains 3D CAD data, including the 3D geometry, in an open format according to the *Initial Graphics Exchange Specification*. IGES file can be imported to COMSOL Multiphysics using the CAD Import Module.

**ill-conditioning** An ill-conditioned system is sensitive to small changes in the inputs and is susceptible to roundoff errors. See also *condition number*.

**imprint** An imprint of the smaller boundary on the larger boundary that makes the parts in a *pair* match. An imprint inserts points on the boundary in 2D and creates a curve on the boundary in 3D.

**incomplete LU factorization** An approximate *LU factorization* where small matrix elements are discarded to save memory and computation time. The *drop tolerance* is

a relative measure of the smallness of the elements that should be discarded. See also *LU factorization*.

independent variable A variable that can cause variation in a second, *dependent variable*. The independent variables are most often space coordinates and time. Compare to *dependent variable*.

index, for DAE See differential-algebraic equation.

index vector See domain group.

**initial condition** The starting values for the dependent variables in a time-dependent analysis and for *nonlinear iterations* or other iterative solvers.

**integration coupling operator** An operator that evaluates integrals of expressions over the source and returns a single scalar value when used in the destination. Similar functionality is available to evaluate the average, minimum, and maximum values.

integration point See numerical integration formula.

**interactive meshing** Building a mesh in an incremental fashion where each meshing operation acts on a set of geometry domains.

**interior boundary** An *interior boundary* for a dependent variable *u* is a *boundary* such that *u* is defined on both adjacent domains or in no adjacent domain. See also *boundary*.

interval The domain between two vertices in a 1D geometry. Also called a *domain*.

**isoparametric element** A finite element that uses the same *shape function* for the element shape coordinates as for the *dependent variables*.

isosceles triangle A triangle with at least two equal sides (and two equal angles).

#### iteration See iterative solver.

**iterative solver** A solver for a system of linear equations that uses an iterative method, calculating a sequence of more and more accurate approximations to the solution. Each step in this sequence is one *linear iteration*. This should not be confused with the Newtons iterations (*nonlinear iterations*) that occur in the solution of a nonlinear system of equations. Compare to *direct solver* and *nonlinear iteration*.

**Jacobian matrix** A matrix containing the first derivative of a vector-valued function of a vector variable. In particular, it is the derivative of the *residual vector* with respect to the *solution vector*. When used in this narrower sense, the term *stiffness matrix* is sometimes used.

**Lagrange element** A *finite element* with polynomial shape functions of a certain *order*. The value of the function is used as the *degree of freedom*, and the node points are evenly distributed within the mesh element.

**Lagrange multiplier** An extra dependent variable introduced in the Neumann boundary condition when a constraint is added. See also *constraint*.

**Lagrangian formulation** A Lagrangian formulation means that the partial differential equations that describe some physics are formulated in a *material frame* (coordinate system) with coordinate axes fixed to the material in its reference configuration and following the material as it deforms. The Lagrangian formulation is common for solid mechanics because it makes anisotropic material properties independent of the current spatial orientation of the material. Compare to *Eulerian formulation*.

**linear iteration** A step in a linear iterative solver. See *iterative solver*. Compare to *nonlinear iteration*.

**linear PDE** An equation where both sides are sums of a known function, the unknown functions, and their partial derivatives, multiplied by known coefficients that only depend on the *independent variables*. Other PDEs are called *nonlinear*.

**LU factorization** For a linear system of equations, a version of Gaussian elimination that produces a factorization A = LU of the coefficient matrix, where L and U are the lower and upper triangular matrices, respectively. This makes it easy to quickly solve a number of systems with the same coefficient matrix. See also *direct solver*.

**manifold** A mathematical function describing a *surface*, *curve*, or *point* in a geometry model of any dimension.

**mapped mesh** A *structured mesh* with *quadrilateral elements* generated by mapping using transfinite interpolation.

mapped mesher The mesh generator creating mapped meshes.

**mass matrix** The matrix E that multiplies the second time derivative of the *solution vector* in the linearized discretized form of a PDE problem. If there are no second time derivatives (that is, if E = 0), then the term mass matrix is often used for the matrix D that multiplies the first derivative of the solution vector (the D matrix is otherwise called the *damping matrix*).

**material frame** The material frame defines a coordinate system that is fixed to the material in its reference configuration and follows the material as it deforms. The material frame is used in connection with a *Lagrangian formulation*. This frame is also referred to as a *reference frame*.

**mesh** A subdivision of the domains of a geometric model into, for example, triangles (2D) or tetrahedra (3D). These are examples of *mesh elements*. See also *grid*, *structured mesh*, and *unstructured mesh*.

**mesh element** The individual elements in the mesh that together form a partitioning of the geometry, for example, *triangular elements* and *tetrahedral elements*. See also *finite element*.

**mesh frame** In the mesh frame (coordinate system) the domain is fixed until an automatic or manual remeshing operation is performed, as well as between remeshing events. There is always a one-to-one map from the mesh coordinates to the current spatial configuration of the domain. Otherwise, the mesh frame can be defined freely and separately from both the *spatial frame*, the *material frame* and the *geometry frame*. The *arbitrary Lagrangian-Eulerian formulation (ALE formulation)* modifies the Eulerian formulation to describe all physical quantities as functions of the mesh coordinates instead of spatial coordinates to allow moving boundaries.

**mesh vertex** An endpoint or corner of a mesh element. See also *node point* and *vertex*.

**method of lines** A method for solving a time-dependent PDE through a space discretization, resulting in a set of ODEs.

mixed boundary condition See generalized Neumann boundary condition.

**mode reduction** A model-reduction technique for reducing systems with many degrees of freedom, for example large finite element models, to a form with fewer degrees of freedom for dynamic system simulations and analysis. See also *state-space model*.

**model input** *Model inputs* are fields such as temperature and velocities that act as inputs for materials and model equations. The model inputs can be fields computed by other physics interfaces or user defined values.

**Model Java-file** A file that contains Java commands based on the COMSOL Multiphysics *API*. Use the API to extend and modify the Model Java-file. Compiling and running a Model Java-file creates the COMSOL Multiphysics model.

Model MPH-file A binary data file with the extension .mph that contains a COMSOL Multiphysics model. Often also just called model file. Earlier versions of COMSOL Multiphysics used the file extension .fl.

**Model M-file** An M-file containing commands that create a COMSOL Multiphysics model. A Model M-file is a text file that is similar to a *Model Java-file* and that can be modified and used with MATLAB. If you have a MATLAB license and a license for the COMSOL LiveLink for MATLAB, the COMSOL Desktop can load a Model M-file. Compare with *Model MPH-file*.

**model object** An object (data structure) that contains all data for a model. This is the fundamental data structure in a COMSOL Multiphysics model.

**Model Wizard** Part of the COMSOL Desktop, the Select Space Dimension, Select Physics, and Select Study Type pages are part of the Model Wizard selections that start building a model.

MRI data Magnet resonance imaging (MRI) data is an image data format, primarily for medical use. MRI produces high-quality images of the inside of the human body. 3D MRI data is usually represented as a sequence of 2D images.

**multidisciplinary models** Multidisciplinary models combine PDE-based finite element modeling with other mathematical modeling techniques such as dynamic simulation in areas like automatic control and signal processing.

**multigrid** A solver or preconditioner for a linear system of equations that computes a sequence of increasingly accurate approximations of the solution by using a hierarchy of coarsened versions of the linear system (having fewer degrees of freedom). See also *algebraic multigrid*, *geometric multigrid*.

**multiphysics** Multiphysics models include more than one equation and variable from different types of physics. These variables can be defined in different domains. The

equations can be coupled together through equation coefficients that depend on variables from other equations. Compare to *extended multiphysics*.

#### natural boundary condition See Neumann boundary condition.

**Neumann boundary condition** A Neumann boundary condition specifies the value of the *normal flux* across a boundary. Neumann boundary conditions are sometimes called *natural boundary conditions*. Compare to *generalized Neumann conditions*.

**Newton's method** An iterative solver method, also called the *Newton-Raphson method*, for solving nonlinear equations. See also *nonlinear iterations*.

Newton-Raphson method See Newton's method.

**node point** Any point in the mesh element where the degrees of freedom are defined. The node points often include the mesh vertices and possible interior or midpoint locations. See also *degree of freedom* (DOF) and *mesh vertex*.

**nonlinear iteration** A Newton step in the solution of a nonlinear PDE problem. Each nonlinear iteration involves the solution of a linear system of equations. Compare to *linear iteration*.

nonlinear PDE See linear PDE.

**norm** A scalar measure of the magnitude of a vector or a matrix. Several types of norms are used to measure the accuracy of numerical solutions.

**numerical integration formula** A numeric-integration method that approximates an integral by taking the weighted sum of the integrand evaluated at a finite number of points, the *integration points* (sometimes improperly called *Gauss points*). Also called *quadrature formula*.

**normal flux** The normal component of the *flux vector* at a boundary.

**NURBS** The *nonuniform rational B-spline (NURBS)* is a popular curve and surface representation scheme. A NURBS representation can be divided into a number of *rational Bézier curves* or surfaces.

order of a finite element The degree of the polynomials that define the *shape* functions (basis functions).

**ordinary differential equation (ODE)** An equation involving functions and their derivatives. The derivatives are with respect to one independent variable only. Compare to *partial differential equation (PDE)*.

**parabolic PDE** A typical example of a linear 2nd-order parabolic PDE is the *heat* equation

$$d_a \frac{\partial u}{\partial t} + \nabla \cdot (-c \nabla u - \alpha u + \gamma) + \beta \cdot \nabla u + a u = f$$

where  $d_a$  and c are positive.

**parameter** A constant that takes on different values for each model in a parametric analysis. See also *constant*.

**partial differential equation (PDE)** An equation involving functions and their partial derivatives; that is, an equation that includes derivatives with respect to more than one independent variable. Compare to *ordinary differential equation (ODE)*.

**periodic boundary condition** A boundary condition where the values of the solution appear in a periodic pattern, typically so that the value of the solution on one boundary is equal to the value on another boundary. See also *equivalent boundaries*.

**phasor** A complex number or a vector of complex numbers representing a sinusoidally varying current or voltage.

**physics interfaces** Sets of features for different types of physics in the COMSOL Desktop environment. The physics interfaces contain predefined equations and boundary conditions and a set of features for setting up models for a certain type of physics. In earlier versions of COMSOL Multiphysics, the application modes provide similar functionality.

**pivot** Usually a value on the main diagonal of the *stiffness matrix*. *Pivoting* is the interchanging of rows and columns in order to place a particularly large element in the diagonal position. The value of the diagonal term when it is used to eliminate values below it is called the *pivot value*.

point A location in space.

point object A geometry object with only vertices.

**positive definiteness** A symmetric matrix is *positive definite* when all its eigenvalues are positive.

**preconditioner** The convergence rate of iterative methods depends on the spectral properties of the coefficient matrix. A *preconditioner* is a matrix that transforms the linear system into one that has the same solution but that has more favorable spectral properties. See also *algebraic multigrid*, *geometric multigrid*, *incomplete LU factorization*, *iterative solver*, and *SSOR*.

**primitive, primitive geometry object** A geometry object with a basic shape such as a cube or a sphere. Add primitives to a model, using arbitrary sizes and positions, and combine them to form complex shapes. See also *constructive solid geometry, composite geometry object*, and *Boolean operations.* 

**prism element** A 3D mesh element with six corners and five faces, also referred to as *wedge element*.

**projection coupling operator** An operator that takes values from the source by evaluating line integrals over lines whose positions are dependent on the position of the evaluation points in the destination.

quadrature formula See numerical integration formula.

**quadrilateral element** A 2D mesh element with four corners and four edges; sometimes also called *quad element* as a short form.

rational Bézier curve See Bézier curve.

reference frame See material frame.

**residual vector** The vector *L* in the discretized form of a PDE problem. In the absence of *constraints*, the discrete form of a stationary equation is 0 = L(U) where *U* is the *solution vector*.

**revolve** To create a 3D geometry object from a 2D geometry object in a *work plane* by rotating it around an axis.

**revolved mesh** A 3D mesh created by revolving a 2D mesh. A revolved mesh can contain *hexahedral elements* and *prism elements*.

Robin boundary condition See generalized Neumann boundary condition.

**shape function** A *basis function* described in local element coordinates. See also *basis function*.

shift A value  $\sigma$  around which an eigensolver searches for eigenvalues.

simplex element Triangle element in 2D and tetrahedral element in 3D.

solid A description of a part of the modeling space. See also *domain*.

**solid modeling** A 3D geometry modeling method that describes both the boundary and interior of the geometry using solid objects. See also *constructive solid geometry* (*CSG*) and *solid*.

solid object A geometry object representing one or several *solids*.

solution component See dependent variable.

**solution matrix** A matrix that contains a sequence of solutions as columns. A steady-state problem results in a *solution vector*, but eigenvalue problems, time-dependent problems, and parametric analyses produce a *solution matrix*. See also *solution structure*.

**solution structure** A data structure that includes the *solution vector* or *solution matrix* and any associated data such as parameter values, output times, or eigenvalues.

**solution vector** A vector with all the *degrees of freedom* (values of the *dependent variables*) as its components. See also *solution matrix* and *solution structure*.

**solver sequence** A recorded sequence of named solver settings and commands that can be replayed by a single solver call.

**sparse matrix** Matrix for which the number of zero elements is large enough to justify special data types and algorithms that avoid operations on zero elements.

**spatial frame** The spatial frame defines a coordinate system with coordinate axes fixed in space. The spatial frame is used in connection with a *Eulerian formulation*.

split To divide a geometry object into its minimal parts.

**stability** A solver for a time-dependent model is *unconditionally stable* if the initial conditions are not amplified artificially and the roundoff errors do not grow, regardless of the size of the time step. A solver is *conditionally stable* if there is a maximum value of the time step above which the numerical solution is unstable.

**state-space model** A linear time-invariant representation of a dynamic system as a set of 1st-order *ODEs* of the form

$$\dot{x} = Ax + Bu$$
$$\dot{y} = Cx + Du$$

where x is the state vector, u is the input, and y is the output. A, B, C, and D are the constant dynamics, input, output, and direct transmission matrices, respectively.

static model See stationary model.

**stationary model** A model where the dependent variables do not change over time. It typically represents a steady-state solution. Also called *static model* or *steady model*.

```
steady model See stationary model.
```

stiffness matrix See Jacobian matrix.

**streakline** The locus of particles that have earlier passed through a prescribed point in space. See also *streamline*.

**streamline** A curve that is everywhere tangent to the vector field (in particular a velocity field) at a given instant of time. Sometimes called a *flow line* or *flux line*. See also *streakline*.

**streamline-diffusion stabilization** A numerical technique for stabilization of the numeric solution to a PDE by artificially adding diffusion in the direction of the *streamlines*.

**strong form** A partial differential equation in the *strong form* is the standard formulation as an equality of functions. The strong form is divided into the *coefficient form* and the *general form*. Compare to *coefficient form*, *general form*, and *weak form*.

**structured mesh** A mesh for which all elements and nodes have the same topology. Compare to *unstructured mesh*.

surface A mathematical function (manifold) from 2D to 3D space.

surface normal A vector perpendicular to the surface.

**surface modeling** A 3D geometry modeling method to describe a geometry by defining its bounding surfaces. Compare *boundary modeling* and *solid modeling*.

swept mesh A 3D mesh generated by sweeping a face mesh along a domain.

symmetric matrix A matrix that equals its own transpose.

symmetric successive overrelaxation (SSOR) A symmetric successive overrelaxation (SSOR) preconditioner uses classic SSOR iterations.

**symmetry** The invariance of an object attribute or of the object itself under a well-defined operation or transformation such as inversion, rotation, or reflection. A *symmetry* allows for a reduction of the model geometry so that appropriate boundary conditions account for the redundant portions of the geometry. Axial symmetry is a common type of *symmetry*.

symmetry boundaries See equivalent boundaries.

test function See weak form.

**tetrahedral element** A 3D mesh element with four corners, six edges, and four triangular faces.

time-dependent model See transient model.

**transient model** A model where at least one of the dependent variables changes over time, for example, the heat equation or the wave equation. Also called *dynamic model*, *time-dependent model*, or *unsteady model*.

triangular element A 2D mesh element with three corners and three edges.

**trimmed surface** If the parameter space of a surface is divided into "valid" and "invalid" regions, the image of the valid regions is called the *trimmed surface*. This corresponds to the part of the surface limited by a closed loop of edges lying on the surface.

unidirectional constraint See constraint.

**unstructured mesh** A mesh without a specific pattern where the elements can have different shapes and the nodes can have different connectivities. Compare to *structured mesh*.

#### unsteady model See time-dependent model.

**vector element** A finite element often used for electromagnetic vector fields. Each mesh element has degrees of freedom corresponding only to tangential components of the field. Also called *curl element*, *Nédélec's edge element*, or just *edge element*.

**vertex** A point in a geometry model, often an endpoint of a geometry segment or an intersection of *geometric entities* of higher degree such as *edges* or *faces*. A vertex is referred to as a *point* for the specification of point sources and other PDE modeling. See also *domain*.

**weak constraint** A reformulation of a *Dirichlet boundary condition* as a *weak form* equation. When using a weak constraint, the corresponding *Lagrange multiplier* becomes a *solution component* (*dependent variable*).

**weak form** A partial differential equation in the *weak form* is a more general formulation than the strong form. It is produced by multiplying the *strong form* PDE with an arbitrary function called the *test function* and integrating over the computational domain. Most physics interfaces in COMSOL Multiphysics are implemented using a weak form. Compare to *strong form*.

#### wedge element See prism element.

**well-posed** A well-posed numerical model has at least one solution, and depends continuously on its input, such as initial conditions, boundary conditions, and the geometry.

**work plane** An embedded 2D work space that can be positioned relative to the coordinate planes or an already existing geometry. Using *work planes* makes it possible to define a geometry in terms of previously created geometry objects such as *points*, *edges*, and *faces*.

# Index

0D spatial dimension 77 ID models guidelines for solving 331 ID plot group (node) 1066 ID, 2D, and 3D graphics toolbar buttons 263 2D axisymmetric models 1119 guidelines for solving 332 2D models guidelines for solving 332 2D plot group (node) 1069 2D view (node) 293 3D models guidelines for solving 333 3D plot group (node) 1069 3D view (node) 294, 301

A About COMSOL Multiphysics box 110 absolute IPS systems 519 AC impedance studies 1004 AC/DC Module 38 accumulated probe table 1189 Acoustics Module 39 adaptive mesh refinement 986 add Material Library (button) 415 add to selection (button) 262 adding arrays, example 371 extrusions, example 365 functions to materials 171 geometry, example 354, 356 materials to models 405 multiphysics couplings 904 nodes 85, 439 physics interfaces 77 plot groups 1038 rotations, example 358, 366

source terms 819 study nodes 981 study steps 986 user model library 453 variable expressions to plots 1044 variables 166 adj operator 137 adjacent (node) 286 adjacent geometry objects 260 adjoint sensitivity 882, 884 advanced physics options, expanding 473 advanced settings 546 affine transformations 336 ALE 909 limitations of 917 ALE method 910 algebraic equation (node) 869 align with work plane button 346 alpha blending 302 ambient light 296 Ampère's law (node) 618 analytic function (node) 174 analytic functions 171 analytic functions, materials and 431 animation (node) 1193 anisotropic material properties 403 anisotropic materials 429, 566 ALE and 910 coordinate systems and 225 loss factor damping and 801 modeling 502 antialiasing plot animations 1196 plot images 1202 screenshot images 72, 308 antisymmetry (node) 777

appearance, of icons 114 arbitrary Lagrangian-Eulerian formulation. See ALE arbitrary Lagrangian-Eulerian method 910 arrays and ranges 165 arrow line (node) 1079 arrow surface (node) 1081 arrow volume (node) 1083 artificial diffusion 552 assembly, boundary conditions for 495 assembly, geometry 350 assigning geometric scope to materials 407 to variables 167 associative geometry 313 at operator 133 at operator, spatial 140 author name, resetting 448 author, include in history 455 automatic remeshing 925 automatic solution form 994 auxiliary dependent variable (node) 849 average of time-dependent expression 134 average (node) 221 average coupling operators 207 average evaluation (node) 1015 average values, on boundaries 163 average, data series operation 1180 AVI file formats 1193 axial symmetry boundary conditions 493, 495 cylindrical coordinates 332 axial symmetry (node) 648 axis limits, locking 293 axisymmetric geometries PDE formulation in 809

spatial coordinates for 157 axisymmetric models cylindrical coordinate systems, and 333 particle tracing with mass theory 1119 physics interfaces, and 540 revolution data sets and 1032 selecting 77 solid mechanics interface 758 azimuth axis of spherical coordinate system 236 R Babuska-Brezzi condition 676 backward Euler method 138 ball (node) 287 ball operators 140 band-pass filtering 189 base vector system (node) 227 basic material property group 427 Basset history term 686 batch commands 1217 Batteries & Fuel Cells Module 40 bdf operator 139 BH curve 428 bidirectional constraints 856 BLAS libraries 1226 body load (node) 770 Boolean expressions 132 Boolean operations 321, 325, 335-336 Boolean selections 285 borrowing licenses 468 boundary definition 259 elements, meshes 940 layers 962 similarity coupling operators 200 boundary conditions axial symmetry 495 electric currents interface 600 electromagnetics theory 567

electrostatics interface 582 for non-overlapping pair parts 496 heat equation, and 721 heat transfer interface 730 identity pairs 495 inlet and outlet, theory 682 laminar flow interface 691 magnetic fields interface 616 pressure acoustics, frequency domain interface 638 solid mechanics interface 765 transport of diluted species interface 658 wall distance interface 875 boundary coordinate system (node) 229-230 boundary coordinate systems 225 boundary current source (node) 605 boundary electromagnetic heat source (node) 753 boundary element refinement 1138 boundary heat source (node) 741 boundary heat source variable 720 boundary layers, meshes 961 boundary load (node) 771 boundary loads theory 794 boundary point probe (node) 254 boundary point probes 249 boundary probe (node) 251 boundary similarity (node) 212 boundary stress (node) 701 Boussinesq approximation 679 box (node) 287 branches, in the Model Builder 82 British engineering unit systems 518 special units in 527 British thermal units 526 browse update (button) 63

build selected (button) 946 building expressions 123 building models 79 built-in materials database 389 bulk modulus elastic moduli 785 material property 428 pressure acoustics 630 button 75 button definition 75 c CAD Import Module 55 camera (node) 302 camera, locking 302 canceling solvers 997 canonical systems 781 332-333

Cartesian coordinate systems 157, 224, Cauchy stress 790 Cauchy-Green tensor 788 cell Reynolds number 698 center of rotation 303 CFD Module 41, 672, 674, 681 CFL number, pseudo time stepping, and 677, 690 CGSA unit systems 517 special units in 528 change cross-section (node) 596 change thickness (node) 768 change thickness (out-of-plane) (node) 596 changing. see editing characteristics, of functions 171 charge conservation (node) 585 charge relaxation theory 569-571 check mark definition, materials 400, 408 Chemical Reaction Engineering Module 42, 571 circle operators 140

circumferential wave number 632 clear selection (button) 262 clearing meshes 974 client/server architecture 1214 clipboard, copying images 308 cluster jobs on Linux 1231 on Windows 1230 clusters license handling for 1232 parallel mode 1216 codecs 461 coefficient form 991 coefficient form (node) 813 coefficient form PDE interface 810 coefficient of thermal expansion for non-SI units 419 coefficients and material properties 152 collapsing all nodes 90 color (button) 72 color coded plots and plot groups 1041 color expression (node) 1148 color tables 1051 combining plots 1173 comet tail plots 1058 comments in text files 146 comments, adding to models 448 compact MPH-files 442 comparing solutions 1024 compile equations, global equations and 864 complement (node) 285 complex variables, splitting 477 complex-valued problems 994 component variables 159 composite geometry objects 335 composite solid objects 321

compressible flow 674 compute differential check box 1063 compute nodes 1216 COMSOL batch feature 1217 COMSOL Desktop client/server architecture and 1214 connecting to a server 1223 help window 102 languages for 71 layout 68 Model Library 106 physics interfaces 538 COMSOL Java API 1217 COMSOL Support Knowledge Base 101 concentration (node) 661 conductive heat flux variable 715 connected manifolds 259 connecting COMSOL to a server 445, 1223 MATLAB to a server 1224 consistent stabilization methods 478 consistent stabilization settings 547 constants, as predefined variables 143 constitutive relations theory 564-565 constraint (node) 820 constraint group (node) 123 constraint groups 514 constraint settings 547 constraints editing 497 equation views node and 499 on time derivatives 839 structural mechanics 554 contact impedance (node) 608 contact pair (node) 246 contact pairs 244 context help 103 context menus 85, 484

continue solving 981 continuity (node) 495, 742 pressure acoustics, frequency domain interface 649 continuity on interior boundary (node) 745 contour (node) data sets 1016 plots 1084 contours, level labels and 1085 contributing nodes 489 contribution global 883 integral 883 probe 883 contributions, listings of 489 control variable field 890 convection and diffusion (node) 659 convection-diffusion equation 838 convective heat flux variable 716, 719 convective out-of-plane heat flux variable 717 convective terms 653 convergence data, copying 1002 convergence plots 1001 convergence tests 551 convergence, discontinuous functions and 193 converting geometry objects 340 meshing technique 942 models to weak form 845 units 532 convolution integrals 132 coordinate system line (node) 1087 coordinate system surface (node) 1087 coordinate system volume (node) 1087 coordinate systems

absolute 225 base vector 227 boundary 229-230 Cartesian 224 cylindrical 231 in physics symbols 760 mapped 233, 244 relative 225 rotated 234 scaling 237 solid mechanics theory 781 spherical 235 user defined 225 copying COMSOL models 443 convergence data 1002 geometric entities 291 geometry objects 338 mesh solutions 920 nodes 88 screenshots to clipboard 308 selections 261 tables in results 1190 user-defined material libraries 416 Corrosion Module 43 Coulomb gauge 576-577 coupling operators average 207 boundary similarity 200 general extrusion 199 integration 205 linear extrusion 199 maximum and minimum 207 couplings, adding 904 create plot button 171, 1038 create selection (button) 267 creating ID geometry models 352

2D geometry models 353 3D geometries 345 3D geometry models 363 arrays 338 composite geometry objects 335 cross-section plots 1160 default plots 1038 deformed meshes 920 geometries 312, 323 materials libraries 415 memory efficient geometry 550 meshes 940 multiphysics models 904 selections 261 smooth functions 193 user-defined selections 282-283, 288-289 user-defined views 294 variables 147 work planes, example 368 Creo Parametric custom file folder 467 cross-section plots 1160 creating 1167 cut plane data sets 1171 cut point data sets for 1164 data sets and plot groups, deleting 1163 data sets for 1012 line 2D 1166 line 3D 1168 line plots 1166 point 1164 surface 1171 toolbar 1161 crosswind diffusion consistent stabilization method 478 fluid flow interfaces 675 crosswind diffusion, consistent stabiliza-

tion method 726 CSV files 182 cubic splines 184 curl 808 current conservation (node) 602 current node geometry 317 current source (node) electric current interface 605 current sources line 611 theory 571 curvature, meshes 957 custom color tables 1053 customizing plot titles 1046 cut line (node) 1017 cut line data sets 1166 cut plane (node) 1018 cut plane data sets 1171 cut planes 1160 cut point (node) 1020 cut point data sets 1164 cyclic color tables 1052 cylindrical coordinate systems 333, 758 cylindrical system (node) 231 cylindrical system, PDE for 809 cylindrical wave radiation (node) 646 D damping (node) 769 damping models 799-800 data (node) 1197 data sets average and integral evaluation 1015 contour 1016 cut line 1017 cut plane 1018 cut point 1020 defining 1012 edge 1022

function 1023 isosurface 1024 join 1024 maximum and minimum evaluation 1026 mesh 1026 mirror 1027 parameterized curve 1028 parameterized surface 1029 parametric extrusion 1030 particle 1031 revolution 1032 selections, adding 1012 solution 1035 surface 1036 data sets (node) 1012 default BLAS library 1226 color tables, changing 1055 coordinate system variables 334 desktop settings 70 fonts 70 help searches 101 initial values 501 Model Builder nodes 437 model identifiers 438 physics interface nodes 492 plots, creating 1038 plots, generating 995 quality settings 1060 resetting expand sections 456 resetting sections to display 473 resetting show settings 456 solvers, showing 990, 1230 study types in equation views 559 unit systems 517 user name and password 1223 views 274

defining cross-section plots 1160 data sets 1012 derived values and tables 1175 functions 170 global parameters 145 isotropic materials 784 parameters 145 plots 1038 thermoelastic materials 786 variables 147 definitions (node), local and global 121 deformation (node) 1150 deformation gradient 788 deformed configurations, remeshing 920 deformed geometry (node) 934 deformed geometry interface 934 degeneracies, in geometry 313 deleting geometric entities 330, 345 interior boundaries, example 360 nodes 440 physics interfaces 905 recovery files 445 restoring a material library 417 solvers 990 tables 1190 undoing 90 DEM data 175 dependent variables entering initial values 501 reviewing 77 shape functions 498 depends operator 132 derivative recovery 1061 derived values global evaluations 1185 global matrix evaluations 1185

point evaluation 1184 volume, surface, and line averages 1181, 1183 volume, surface, and line integration 1182 descriptions, for physics interface variables 498 design problems 48 desktop layouts, setting 70 dest operator 132 destination maps 201 destination selection (node) mathematics interfaces 823 detaching windows 69 dielectric loss 428 dielectrics and perfect conductors 567 difference (node) selections 285 differentiation operators 129 diffuse light 296 diffusion (node) 659 DIN number 396 dipole source (node) 640 dipole sources 630 directional light (node) 297, 303 Dirichlet boundary condition (node) 819 disabling solvers 990 disco color tables 1052 disconnecting from MATLAB 1223 from servers 445, 1224 discontinuous functions 192 discontinuous Galerkin formulation 685 discrete states (node) 870 discretization (node) 865 discretization section, expanding 473 discretization settings 546 disk operators 140

dispersive materials 566 displacement gradients 782 displaying equations 497, 558 precision settings 454 sensitivity analysis 885 user defined views 274 distance equation (node) 874 distributed impedance (node) 607 distributed loads, theory 794 distributed memory mode cluster license handling 1232 floating network license and 1229 Linux and Windows 1227 distributed ODE (node) 869 distributed ODEs and DAEs 867 distributed parameter sweeps 1228 divergence 808 documentation window 103 documentation, finding 62 domain conditions laminar flow interface 691 magnetic fields interface 616 domain features electric currents interface 600 electrostatics interface 582 heat transfer interface 730 pressure acoustics, frequency domain interface 638 solid mechanics interface 765 transport of diluted species interface 658 domain heat source variable 720 domain material 392 domain point probe (node) 252 domain point probes 249 domain probe (node) 251 domains

associative geometry 313 coordinate systems 224 definition 259 geometry, converting 340 hiding 278 splitting 344 dotted line, under parts of equations 558 double dogleg solver 999 double dot product 671 down operator 131 downloading model meshes and solutions 107 drag force 686 drag-and-drop to copy nodes 88 to move nodes 87 Duhamel-Hooke's law 783 Dulong-Petit law 786 duplicating. see copying. dynamic context help 100 dynamic help (button) 102

E edge (node)

2D and 3D data sets 1022 edge conditions electric currents interface 600 electrostatics interface 582 heat transfer interface 730 pressure acoustics, frequency domain interface 638 solid mechanics interface 765 edge load (node) 772 edge map (node) 213 edge probe (node) 251 edge source (node) 819 edge tolerance 1116 edges, definition 259 edit object (node) 341 editing

constraints 497 default fonts 70 Desktop language 71 Desktop layout 69 equations 497 material properties 403 Model Library root folder 451 node properties 446 results tables 1190 solver configurations 989 variables 168, 497 weak-form expressions 497 editing language on GUI 71 eigenfrequency study pressure acoustics 633 solid mechanics 798 eigenvalue initial values 501 preset studies 506 problem solving 836 variables 154 with operator and 133 eigenvalues 991 Eikonal equation 873, 876 elastic material properties 767 elastic moduli 784 elasticity matrix 784 elastoplastic material model 429 electric currents interface 598 theory 574 electric displacement field (node) 590 electric fields theory 569 electric insulation (node) 607 electric potential (node) 587 electromagnetic heat source (node) 753 electromagnetic units 518 electrostatic units 518 electrostatics interface 581

theory 572 element filters 1059 element growth rates, meshes 956 element order 476 element orders and types 842 element quality 975 element size 975 element sizes, meshes 956 element volume, relative 920, 927 elements shrinking in plots 1059 elevation function (node) 175 emailing COMSOL 63 EMU unit systems 518 special units in 528 entering initial values for dependent variables 501 model names 450 parameters 146 ranges and vector-valued expressions 164 shape function variables 160 values for anisotropic materials 502 equation residual 479 equation section, expanding 473 equation view 497, 546 equations displaying 497, 558 editing 497 plane, cylindrical, and spherical wave radiation 644 viewing 497, 558 error (node) geometry 318 errors and warnings 109 geometry 318 estimating memory use 549

ESU unit systems 518 special units in 529 Euler angles 234 Eulerian formulation 910 evaluating data in Lagrange or Gauss points 1199 results with expressions 1044 results with special operators 126 tables 1188 events interface 870 exclusive nodes 488 expand sections button 472 expanding all nodes 90 sections 473 expanding sections 546 explicit (node) 283 explicit event (node) 871 explicit events 870 exporting animations 1193 data from data sets 1197 images 1201 mesh data 1199 models 1215 models from the server 1224 models to servers 446 players 1204 plot data 1203 series of images 1193 table data 1200 expression evaluated for harmonic perturbation 1063 expressions 1044 expressions, building 123 expressions, for physics interface variables 498 exterior boundaries 494

external current density (node) electric currents interface 604 magnetic fields interface 620 external function (node) 177 external process window 108 external surface charge accumulation (node) 588 extrusion coupling operators 196, 199

F faces, definition 259 far field (node), plots 1090 far field variables 1090 fast Fourier transform 1093 FFT 1038, 1093 file formats 442 filter (node), plots 1153 filtering elements 1059 finalized geometry 313, 350 finish (button) 79 firewall security warnings 103 first Piola-Kirchhoff stress 790 fixed constraint (node) 774 fixed mesh (node) deformed geometry interface 936 moving mesh interface 929 Flash file formats 1193 floating potential (node) electric currents interface 603 electrostatics interface 589 flow continuity (node) 703 fluid flow Mach number 673 particle tracing 686 single-phase theory 670 fluid models, pressure acoustics 639 fluid properties (node) 692 flux (node) 662 flux discontinuity (node) 665 flux vectors 816

flux/source (node) 821 fluxes, computing 508 fonts, default for plots 70 foot-pound-second unit systems 518 forward sensitivity 882, 884 Fourier's law 711 FPS unit systems 518 special units in 530 frame time derivative 915 frames deformed meshes and 911 for derived values 1176 overview of 911 free (node) 773 free deformation (node) deformed geometry interface 936 moving mesh interface 929 free meshing 949 troubleshooting 958 frequency domain study pressure acoustics 631 solid mechanics 797 frequency spectrum 1038, 1093 frequency variables 154 fsens operator 137 full harmonic, cycle types 1196 full MPH-files 442 function ID, 2D, and 3D (nodes) data sets 1023 functions adding to materials 431 characteristics 171 defining 170 dimensions of inputs/outputs 522 global and local 170 input and output dimensions 522 materials and 171 objective 47

units for inputs/outputs 171 G Galerkin constraints 737 Galerkin formulation 685 Galerkin least-squares (GLS) 675 gallons 526 gas models 420 gauge transformation and fixing 576 Gauss' law and charge relaxation theory 569 Gauss' law equation 572 Gaussian pulse function (node) 178 general extrusion (node) 208 general extrusion coupling operators 199 general form (node) 817 general form PDE interface 815 general projection (node) 216 general stress (boundary stress condition) 701 generating arrays 165 generating default plots 995 Geomechanics Module 44 geometric entities context menu layout 484 coordinate systems and 224 definition 259 deleting 345 hiding 306 hiding and showing 277 selecting 261, 269 selection lists, pasting into 291 variables and 155, 167 visualization cues 262 geometric entities, buttons 261 geometric nonlinearity 789 geometric primitives 321, 323 geometric scope assigning to materials 407 definitions branch and 83

geometric entities and 267 materials and 398 variables and 151, 167 geometric variables 155 geometrical sensitivity 886 geometry current node 317 editing nodes 316 errors and warning 318 geometry frames 911 geometry objects array, creating 338 converting 340 copying and pasting 338 editing 341 mirroring 336 moving 336 rotating 336 scaling 336 splitting 344 geometry sequence 314 geometry shape order using first order 978 geometry toolbar 327-328 geometry, simplifying 331 geometry, working with 547 GIF file formats 1193 global contribution 883 coordinate systems 333 parameters 145 variable probes 249 variables 147 global (node), plots 1092 global constraint (node) 864 global control variable (node) 891 global coordinate systems 781 global definitions (node) 120

global equations (node) 861-862 global equations, complex variables and 864 global evaluation (node) 1185 global matrix evaluation (node) 1185 global objective (node) 891 global variable probe (node) 256 go to default view (button) 274 go to source (button) 88 gradient 808 gradient displacements 782 graphics toolbar buttons 263 graphics window 96 gravitational IPS unit systems 519 special units 531 gray-scale color tables 1052 Greek characters 1048 Green strains 788 Green-Lagrange strains 788 Gregorian year 526 grid data format 1198 grid data formats 182 ground (node) 586 guidelines, for modeling 548 H half harmonic cycle types 1196 harmonic loads 797 harmonic perturbation plots 1062 HB curve 428 headlight (node) 300, 303 heat equation 838 heat flux (node) 739 heat flux, computing 511

heat flux, theory 712 heat source (node) 736

defining as total power 736, 741–742,

heat sources

744

line and point 744

heat transfer in fluids (node) 733 heat transfer in solids (node) 731 heat transfer interfaces 708 theory 709 Heat Transfer Module 45, 672, 681 heaviside functions, smoothed 193 height expression (node) 1156 Helmholtz's theorem 576 help searching 101 help buttons 105 help files, preloading 103, 455 help mode 455 help topics, searching 104 help window 100, 103 help, displaying in browser 455 hexahedral elements, meshes 941 hide button 546 hide geometric entities (node) 306 hide geometry objects (button) 278 hide geometry objects (node) 306 hide selected (button) 278 hiding geometric entities 277 hiding the logo 460 Higdon conditions 644 highlighting, of geometry objects 315 histogram (node) 1095 host computer 1216 HTML formatting and tags 1047 HTTP secure proxy settings 466 hybrid modeling 321 hyperelastic material 429 hyperelastic smoothing 916 icon definition 75 icons, key 114

icons, key 114 ideal gas property group 427 identifiers, for nodes 469 identity mapping (node) 215

н.

identity pair (node) 245 identity pairs 244, 495 if operator 132 image (node) 1201 image function (node) 179 image snapshot (button) 73, 308 images model thumbnail 448 of models, saving 444 plot animations 1193 screenshots, capturing 308 imaginary parts, complex variables 864 impedance (node) 643 implicit event (node) 871 implicit events 870 importing 2D geometries from DXF files 322 3D geometries from STL and VRML files 322 CAD files 55, 322 file data sources, example 185 function data 181 global parameters 145 material libraries 415 meshes 945 models from a server 446 models, from the server 1224 models, to the server 1215 NASTRAN files with pyramid elements 941 Importing a Virtual Geometry 376 inch-pound-second unit systems 519 incident pressure field (node) 647 incompressible flow theory 674 inconsistent stabilization settings 547 inconsistent units 534 independent variables 334 indicator states (node) 870

inflow (node) 663 inheritance and variables 163 inhomogeneous materials 566 initial values (node) electric currents interface 605 electrostatics interface 586 equation-based interfaces 818 heat transfer interface 737 joule heating interface 753 magnetic fields interface 622 pressure acoustics, frequency domain interface 640 single-phase, laminar flow interface 693 solid mechanics interface 770 transport of diluted species interface 661 wall distance interface 874 initializing a COMSOL Multiphysics server 1223 inlet (node) 696 inlet boundary condition, theory 682 inner solutions 1043 input properties 423 inputs, materials 403 insert expression (button) 1044 inserting boundary layer splits 962 expressions and predefined quantities 1044 geometric entities into selection lists 291 variables into expressions 1044 installation folder preference settings 467 integral contribution 883 integral evaluation (node) 1015 integral objective 889

integral transforms 132 integral, data series and 1181 integration 1016 integration (node) 220 integration coupling operators 205 integration order 1016 interactive plotting cross-section plots 1166, 1168 isosurfaces 1098 slice plots 1133 interior boundaries definition 494 keeping 336 removing 351 interior sound hard boundary (wall) (node) 648 intermediate meshes 201 Internet resources 62 interpolation 1056 interpolation function (node) 180 interpolation functions, materials and 431 interpolation, splines 184 intersecting geometry, example 355 intersection 336 intersection (node) 285 inverse problems 48 inverted mesh elements 156, 977 IPS unit systems 519 special units in 531 isdefined variable 127 isinf operator 133 islinear operator 133 isnan operator 133 isosurface (node) data sets 1024 plots 1098 isotropic diffusion, in fluid flow 675

isotropic diffusion, inconsistent stabilization methods 479, 727 isotropic materials defining 784 elastic properties 767 loss damping and 801 lacobian Т correct versus incorrect 993 reasons for an incorrect 994 Jacobian matrix 992 Java-files 442 job sequences 989 join (node) data sets 1024 Joule heating 746, 899 Joule heating interface 746 Joule heating model (node) 751 K key to icons 114 keyboard shortcuts 70, 111 Khan and Richardson drag force 686 Khan-Richardson model 687 Knowledge Base 101 knowledge base, COMSOL 63 L Lagrange element variables 161 Lagrange multiplier 816, 823 Lagrange multipliers interpretations of 508 variables for 163 Lagrangian formulations 782, 910 Lamé constants 428, 785 laminar flow Reynolds number, and 674 laminar flow interface 689 theory 670 languages, for COMSOL Desktop 71 Laplace smoothing 916 large deformations 788

leaking wall, wall boundary condition 695 legends, position 1067 level labels 1085 licensed products, list of 110 licenses display and use of 468 licenses, borrowing 468 light markers 305 light sources and attributes 295 light sources, hiding 302 lindev operator 135 line (node), plots 1103 line average (node) 1181 line charge (node) 592 line charge (on axis) (node) 593 line charge (out-of-plane) (node) 594 line current (out-of-plane) (node) 626 line current source (node) 611 line current source (on axis) (node) 611 line graph (node) 1100 line heat source (node) 744 line heat source variable 720 line integration (node) 1182 line maximum and minimum (nodes) 1184 line plots, maximum and minimum 1105 linear cycle types 1196 linear elastic material (node) 766 linear elastic materials 783 linear extrusion (node) 210 linear extrusion coupling operators 199 linear projection (node) 218 linear transformations 336 linear viscoelastic material 429 linear vs. nonlinear solver, selecting 992 linearization points 1045 linearized resistivity 427 linper operator 136

linpoint operator 135 linsol operator 135 lintotal operator 135 lintotalavg operator 135 lintotalpeak operator 135 lintotalrms operator 135 Linux clusters 1216, 1227 linzero operator 136 LiveLink for MATLAB 56, 1218 LiveLink products 55 load cases 514 creating groups for 122 load from file (button) 169 load group (node) 122 load groups 514 loading, parameters from a text file 146 loads solid mechanics theory 794 local definitions 121 parameters, materials 404 variables 147 local CFL number 677, 690 local coordinate systems 782 local mesh size 975 location of maximum and minimum 207 location, maximum and minimum plots 1105 lock (button) 1042 locking plot windows 1042 log window definition 98 size, setting 455 solvers 997 logarithmic variables 557 logo, showing and hiding 460 logs, from solver 999

look and feel 455 loss factor damping solid mechanics theory 800 loss tangent 428 lower gradient limits, crosswind diffusion and 478 lumped parameters, transformation of 1186 M Mach number definition, single-phase flow 673 magnetic field (node) 623 magnetic fields interface 614 theory 579 magnetic insulation (node) 622 magnetic losses 428 magnetic potential (node) 624 magnitude controlled 1139 main menu and toolbar 73 mapped coordinate systems 244 mapped meshing 960 mapped system (node) 233 Material Browser opening 393, 405 overview 396 material coordinates 156, 780 material frames 911-912 Material Library 389, 415 material properties referencing 150 materials adding functions 431 databases 389 domain, default 392 functions, adding 171 geometric scope and 398 grouping of 566 linear elastic 783 local parameters 404

output properties 403, 418 predefined 405 properties 397, 406 properties, evaluating and plotting 392 property groups 427 searching 396 showing 461 status 399 used in model 395 user defined 414 math symbols 1049 mathematical functions 141 MATLAB 1218, 1224 MATLAB function (node) 186 MATLAB installation folder 467 MatWeb, importing material data from 415 max/min volume, surface, and line (nodes) plots 1105 maximize (button) 69 maximum and minimum coupling operators 207 derived values 1183 location of 207 mesh element sizes 956 plot values 1105 maximum evaluation (node) data sets 1026 maximum model coupling (node) 222 maximum, of data series [18] Maxwell's equations dielectrics 568 quasi-static approximation 575 theory 563 mean effective thermal conductivity 732 mean operator 131 measure (button) 945

mechanisms of heat transfer 709 memory preference settings for 465 memory use batch mode 1218 estimating 549 example 469 MEMS Module 45 mesh (node) data sets 1026 exports feature 1199 plots 1108 mesh element quality 975 mesh element size 975 mesh elements 940 mesh frames 911-912 mesh generation troubleshooting 958 mesh movements 913 mesh plots filter elements in 1059 mesh time derivative 916 mesh vertices 940 meshes boundary layers 961 clearing 974 creating 940 distribution, specifying 957 narrow regions 957 resolution of curvature 957 running COMSOL in parallel 1225 size, specifying 955 smoothing methods 916 stop conditions for quality 919 techniques 946 toolbar 941 messages window 97 M-files 442

Microfluidics Module 46, 672, 681 minimize (button) 69 minimum evaluation (node) data sets 1026 minimum model coupling (node) 222 minimum, of data series 1181 mirror (node) 2D and 3D data sets 1027 mirroring geometry objects 336 MKL (Math Kernel Library) 1226 Model Builder ID plots, adding 1067 2D and 3D plots, adding 1071 COMSOL Desktop 68 context help and 102 context menus and 85 data set nodes, adding 1012 definitions nodes 120 keyboard shortcuts 112 layout 80 model nodes and 437 moving nodes 87 nodes 113 nodes, adding 85 physics interfaces, adding 896 sequencing and 84 study nodes, adding 981 viewing names and tags 469 Model Builder settings 546 model couplings 195 model documentation searching 100 model documentation, opening 450 model history, resetting 444 model identifier 447 model inputs 904 multiphysics couplings 904 multiphysics interfaces 545

optimizing 47 model Java-files 442, 1217 Model Library 62 models with no stored solution 442 MPH-file types in 442 opening 106 root folder, editing 451 saving models 443 toolbar 107 updating 452 using 449 Model Library examples analytic functions 174 average model couplings 222 base vector coordinate systems 227 boundary and domain probes 251 boundary coordinate systems 229 boundary layer mesh 962 contact impedance 609 contact pairs 247 cut line 3D data set 1017 cut plane data sets 1019 cut point data sets 1021 cylindrical coordinate systems 231 deformed geometry interface 934 domain point probes and point probes 253 electric currents interface 598 electrostatics interface 581 explicit selections 283 far field plots 1092 free triangular mesh 951 function data sets 1023 gaussian pulse functions 178 general extrusion model couplings 208 global parameters 145 global variable probes 256 global variables 167

harmonic perturbation 1005 heat transfer in fluids 734 heat transfer in solids 731 identity mapping model coupling 215 identity pairs 245 integral and average evaluation data sets 1015 integration model couplings 221 interpolation functions 180 Joule heating interface 746 laminar flow interface 689 line average derived values 1181 line integration 1183 linear extrusion model coupling 210 local variables 167 magnetic fields interface 614 mapped mesh 960 maximum and minimum model couplings 223 mirror data sets 1027 moving mesh interface 927 multiphysics 894 parameterized curve data sets 1029 parametric extrusion data sets 1030 **PDEs 850** periodic boundary condition 504 piecewise functions 186 plane wave radiation 645 point evaluation 1184 pressure acoustics, frequency domain interface 636 rectangle functions 189 revolution data sets 1032 rotated coordinate systems 234 solid mechanics interface 763 step functions 190 surface integration 1183 swept mesh 963

thermodynamics 732 transport of diluted species interface 656 volume integration 1183 volume maximum derived values 1184 waveform functions 192 model library, adding customized folder 453 model M-file 38 model M-files 442 model thumbnails displaying 449 root node 448 saving 444 model tree 80 branches 82 expanding and collapsing 90 Model Wizard coordinate systems and 333 layout 76 mathematics interfaces 804 models, building 79 physics interfaces 539 study types, adding 981 using 436 models guidelines for creating 548 images, saving 444 importing and exporting 446 materials, adding 405 saving 443 thumbnail image of 449 modules, COMSOL Multiphysics 37 monopole source (node) 639 monopole sources 630 Mooney-Rivlin 429 moving between windows 70

geometry objects 336 nodes 87 windows 69 moving mesh interface 927 moving wall, wall boundary condition 695 MPa unit systems 518 special units in 531 MPH-files 62, 442 MPI 1216 multiphysics couplings 904 multiphysics modeling 544, 894 multisampling 460 multislice plot (node) 1109 MUMPS solver 1225 Murnaghan 429 N nabla 808 names, for nodes 469 names, for spatial coordinates 438 naming models 450 physics interface variables 498 variables 150 narrow regions, meshes 957 nautical mile 526 Navier-Stokes equations 670 navigating the COMSOL Desktop 70 Neo-Hookean material 429 niterCMP variable 677 no flux (node) 663 no slip, wall boundary condition 694 no sorting, nodes 91 node definition 74 node properties 447 nodes contributing type 489 copying and duplicating 88 deleting 440 enable and disable 492

equation view 497 equations, displaying 558 exclusive type 488 identifiers 469 key to the Model Builder 113 Model Builder and 80 Model Builder, adding 85, 439 models, defined 437 moving 87 names and tags, viewing 469 overridden selections 491 physics interface defaults 483, 492 properties, editing 446 reaction forces and 221 referenced source, going to 88 renaming 414, 447 selections, creating 282 status 491 study types 981 nojac operator 131 non-conservative formulations 654 non-Latin characters, in plots 70 nonlinear geometry 789 nonlinear materials 566 nonlinear properties 152 nonlinear solver 992 nonlinear stationary solver 991 Nonlinear Structural Materials Module 47 non-Newtonian fluids 672 non-overlapping parts, pairs 496 normal acceleration (node) 641 normal conductive heat flux variable 719 normal convective heat flux variable 719 normal current density (node) 606 normal distribution, random functions 189 normal stress 790

normal stress (boundary condition) 697 normal stress, normal flow (boundary stress condition) 702 normal total energy flux variable 719 normal translational heat flux variable 719 normal variables 159 not-a-number, evaluating 1045 notational conventions, for PDEs 808 numerical results, displaying directly 1191 Nyquist plot (node) 1111 o objective functions 47 objective function 880, 888 complex-valued 886 specification of 883 ODE solver settings 1115 ODEs and DAEs interface 862 ODEs, distributed 867 of particle trajectories 1056 Ohm's law and charge relaxation theory 569 ohmic heating 746, 899 one point map (node) 213 open boundary (node) single-phase flow interfaces 700 transport of diluted species interface 666 open PDF (button) 107 opening Model Library 449 recovery files 445 operations, undoing and redoing 90 operators adj 137 at 133 bdf 139

circle, disk, sphere, ball 140 d 129 depends 132 dest 132 down 131 dtang 129 fsens 137 if 132 isinf 133 islinear 133 isnan 133 lindev 135 linper 136 linpoint 135 linsol 135 lintotal 135 lintotalavg 135 lintotalpeak 135 lintotalrms 135 linzero 136 mean 131 nojac 131 pd 129 ppr 136 pprint 136 prev 138 reacf 136 realdot 137 Ρ sens 137 shapeorder 138 spatial at 140 subst 139 test |3| timeavg 134 timeint 134 up 131 var 131 with 133

operators, applying to data series 1175 optimization problems 48 **Optimization Module 47** optimizing the display 460 order of elements 842 orthographic projection 303 orthographic scale 303 orthotropic materials 428 coordinate systems and 225 loss damping and 801 outer solutions 1043 outflow (node) heat transfer interfaces 738 transport of diluted species interface 664 outlet (node) 697 outlet boundary condition, theory 682 out-of-plane inward heat flux variable 718 out-of-plane wave number 632 output properties, materials 403, 418 overridden nodes 491 override and contribution section, expanding 473 override and contribution settings 546 overrides, listings of 489 pair boundary heat source (node) 741 pair conditions electric currents interface 600 electrostatics interface 582 heat transfer interface 730 laminar flow interface 691 magnetic fields interface 616 pressure acoustics, frequency domain interface 638 solid mechanics interface 765 transport of diluted species interface

658 pair selection 547 pair thin thermally resistive layer (node) 742 pairs 244 parallel operations 1215 parallel speedup, BLAS libraries 1226 parallel, running COMSOL in 1225 parameter estimation 48 parameter sweeps, distributed 1228 parameterization variables 157 parameterized curve (node) 1028 parameterized surface (node) 1029 parameters (node) 145 parametric continuation solver 986 parametric extrusion (node) 1030 parametric surfaces from elevation functions 176 parametric sweeps 987 results evaluation 1043 PARDISO solver 1225 Particle data set 1031 particle evaluation (node) 1187 particle tracing (node) 1113 particle tracing in fluid flow 686 Particle Tracing Module 48 particle tracing with mass 687 particle tracing with mass (node) 1117 particle trajectories (node) 1121 particle trajectories, interpolation of 1056 particle types, in plots 1123 paste selection (button) 267 pasting nodes 88 pasting selections 261 pathlines 1113 PDE interface 810 PDEs

stationary 991 time-dependent 991 PDEs, general form 815 perfect conductors and dielectrics 567 perfect magnetic conductor (node) 625 performance, optimizing graphics 460 periodic boundary conditions 504 periodic condition (node) 646 electrostatics interface 590 mathematics interfaces 822 solid mechanics interface 778 transport of diluted species interface 665 periodic flow condition (node) 702 periodic heat condition (node) 740 perspective projection 303 phase factors, pressure acoustics 632 phase portrait (node) 1124 phi 1033 physical constants 143 physical memory, size of 469 physical nodes 1216 physics adding to model 903 Physics Builder 463 physics interface nodes by space dimension 485 physics interfaces, default nodes 492 physics settings windows 546 physics symbols coordinate directions for 760 showing 758 physics symbols, showing 461 physics-induced meshes 946 piecewise function (node) 186 piecewise functions, materials and 431 piezoelectric material properties 423 Pipe Flow Module 49

plane stress and strain 757, 764 plane wave radiation (node) 645 Plasma Module 51 player (node) 1204 plot (node) 1203 plot groups, adding 1038 plot titles, customizing 1046 plots arrow line 1079 arrow surface 1081 arrow volume 1083 color expressions 1148 combining 1173 contour 1084 convergence 1001 coordinate systems 1087 cross-section 1164, 1171 cross-section, 2D 1166 cross-section, 3D 1168 deformations 1150 derivative recovery 1061 functions and 171 global 1092 height expressions 1156 histograms 1095 isosurface 1098 line 1103 line graphs 1100 locking 1042 maximum and minimum 1105 mesh 1108 multislice 1109 Nyquist 1111 particle tracing 1113 particle tracing with mass 1117 particle trajectories 1121 phase portrait 1124 point graph 1127

principal stress volume and surface 1129-1130 scatter surface and scatter volume 1131 slice 1133 streamline 1135 surface 1142 table 1144 updating 462 volume 1147 plotting expressions in results 1044 probes, while solving 249 plotting, material properties 392 PMC. see perfect magnetic conductor. Poincaré map (node) 1126 point charge (node) 594 point charge (on axis) (node) 595 point conditions electric currents interface 600 electrostatics interface 582 heat transfer interface 730 laminar flow interface 691 magnetic fields interface 616 pressure acoustics, frequency domain interface 638 solid mechanics interface 765 point current source (node) 612 point current source (on axis) (node) 613 point evaluation (node) 1184 point graph (node) 1127 point heat source (node) 744 point heat source variable 720 point light (node) 298, 303 point load (node) 773 point probe expression (node) 252 point source (node) 819

points, definition 259 pointwise constraint (node) 855 Poisson's equation 52 Poisson's ratio 785 polar plot group (node) 1069 polynomial-preserving recovery 136, 1061 potentials, scalar and magnetic 566 ppr and pprint operators 136 Precision 461 precision for grids and legends 461 predefined materials 405 guantities and expressions 1044 variables 143, 149, 169 predefined quantities 1044 preferences 454 prefixes, for units 520 prescribed deformation (node) deformed geometry interface 936 moving mesh interface 930 prescribed displacement (node) 774 prescribed mesh displacement (node) deformed geometry interface 937 moving mesh interface 930 prescribed mesh velocity (node) deformed geometry interface 937 moving mesh interface 931 prescribed normal mesh velocity (node) 931 pressure (node) 642 pressure (outlet boundary condition) 698 pressure acoustics interface study types 631 theory 631 pressure acoustics model (node) 639

pressure acoustics, frequency domain interface 635 pressure loads 795 pressure point constraint (node) 704 pressure, no viscous stress (inlet and outlet boundary conditions) 697 pressure-correction method 678 pressure-wave speeds 428, 785 prestressed analysis 1004 prestressed analysis plots 1062 prev operator 138 principal stress surface (node) 1130 principal stress volume (node) 1129 principle of virtual work 796, 886 print (button) 72 printing plots 72 prism elements, meshes 941 Pro/ENGINEER installation folder 467 probe contribution 883 probe objective 883, 889 processors, number of 465 product updates preference settings 466 progress (button) 98 Progress window 98, 997 projection coupling operators 196, 203 projection method for Navier-Stokes equations 678 projection, perspective and orthographic 303 property groups 402, 412-413, 427 proxy server settings for product and Model Library updates 466 pseudo time stepping advanced settings 690 laminar flow theory 677

pyramid elements, meshes 941

Q quadratic mean 1181 quadrilateral elements, meshes 940 quality, optimizing graphics 460 quasi-static approximation 575

R radiative heat flux variable 719 radiative heat, theory 723 radiative out-of-plane heat flux variable 718 rainbow color tables 1051 ramp function (node) 188 random function (node) 189 range (button) 165 ranges format options 164 using arrays 165 vector-valued expressions and 166 rate of strain tensor 789 ratio of specific heats 734 Rayleigh damping 799 reacf operator 136, 1016 reaction forces computing 508 data sets and 1016 reactions (node) 660 real parts, complex variables 864 realdot operator 137 recovery files 444 recovery files, saving 465 rectangle function (node) 189 reference coordinates 156, 780 reflections, in Sector data sets 1034 refpnt variable 764 refractive index 428 regular screen displays 70 re-initialization on domains (node) 872 relative element volume 920, 927 relative tolerance 1115

remeshing a deformed mesh 919 remeshing automatically 925 remove from selection (button) 262 removing user model library 453 removing interior boundaries 351 renaming nodes 414, 447 rendering, detail 276, 460 repair tolerance 336, 341 replace expression (button) 1044 report generator 1208 reports animation 1193 data 1197 player 1204 plot data 1203 plot images 1201 reset hiding (button) 278 reset selected (button) 497 resetting author name 448 desktop layouts 70 model history 444 residuals, consistent stabilization and 479 resistive heating 746, 899 resistivity temperature coefficient for non-SI units 419 resizing windows 69 response surface 1146 restoring default preferences 454 results tables, editing 1190 results window 99 results, displaying while solving 997 reverting to last saved file 444 reviewing dependent variables 77 revolution (node), data sets 1032 revolving axisymmetric models 1032 Reynolds number definition 674

Reynolds particle number 686 **RF Module 52** ribbons, as streamline type 1056 RMS 1181 RMS, of an expression 135 Robin boundary conditions 820 roller (node) 778 root mean square 1181 rotated system (node) 234 rotating geometry objects 336 rotations, in Sector data sets 1034 row index, in table graphs 1145 Runge-Kutta methods 1118 running COMSOL with MATLAB as client/server 1222 s save to file (button) 168

saving global parameters 145 models 443 recovery files 444, 455 variables 168 scalar coupling operators 196 scaling geometry objects 336 scaling system (node) 237 scatter surface and scatter volume (nodes) 1131 scene light 296 scene light (button) 276 scheduler script 1232 scope, of search 104 scoping mechanisms, for variables 150 screenshots 308 scroll lock (button) 99 searching help 100, 104 materials 396 Model Library 106, 449 model names 450

searching help 101 second Piola-Kirchhoff stress 790 sectionwise data format 1198 sectionwise data formats 182 sector 2D (node), data sets 1034 sector 3D (node), data sets 1034 sector symmetries 1034 sector symmetry (node) 610 select boundaries (button) 268 select box (button) 271 select objects (button) 272 selecting adjacent entities 286 entities in enclosing box 287 geometric entities 269 heat transfer interfaces 708 physics interfaces 77 space dimensions 77, 331, 335 study types 53, 78 unit systems 519 selection (node), creating 289 selections adding to data sets 1012 Boolean 285 copying 261 creating 261, 282-283, 288 creating from geometry objects 290 entities in enclosing ball 287 explicit 283 not applicable 492 pasting 261 pasting from files or clipboard 291 sens operator 137 sensitivity analysis 880 sensitivity interface 888 theory 880 sequence of operations 439 sequences, in COMSOL 84, 487

servers connecting 445 disconnecting 445, 1223-1224 importing and exporting 1224 initializing 1223 saving models 446 set difference 336 set intersection 336 set model library root (button) 107 set union 336 Settings window equation view, displaying 497 settings window definition 85 example 268 keyboard shortcut 112 layout 95 properties 448 selection lists and 267 units 522 shape function types 842 shape function variables 160 shape functions 498 order of 476 shapeorder operator 138 shared memory mode 1225 shared memory parallel mode 1215 shear modulus expression 785 shear modulus, material property 428 shear strain 787 shear stress 790 shear-wave speeds 428, 785 show button 456, 472, 546 showing advanced physics options 479 advanced results options 481 advanced study options 481 auxiliary dependent variable 849

batch feature 1217 cluster computing 1228 default solvers 990 discretization 475. 865 equation sections 474 equation view 475 geometric entities 277 global constraints 864 global equations 862 help topics 101 job configurations 989 labels in the Model Builder 470 legends on plots 1049 logo on canvas 460 material texture and color 461 override and contribution 475 physics symbols 461, 758 pointwise constraints 855 preference settings 456 product licenses used 468 stabilization 477 weak constraints 853 weak contribution on mesh boundaries 849 work planes 368 shrinking elements 1059 sign functions 193 simplifying analysis using variables 148 single-phase flow interface laminar flow 689 theory 670 singularities in geometry 313 SIPG method 685 skew-symmetric part 789 slice plot (node) 1133 sliding wall, wall boundary condition 695 theory 682 slip, wall boundary condition 694

theory 681 small-signal analysis 1004 small-signal analysis plots 1062 smoothing discontinuous functions 193 smoothing functions 171 SNOPT 47 software updates 63 solid mechanics prescribed displacement 774 solid mechanics interface 763 theory 780 solid mechanics materials, properties 420 solution (node), data sets 1035 solution at angle (phase) 1036 solution form automatic 994 solution process canceling 997 stop buttons for 998 solution times, for models 449 solver events 870 solver sequences 981, 987 solvers canceling 997 continue operation 981 deleting 990 disabling 990 hierarchical structure of 997 logs from 999 solving, getting results while 997 solving, plotting while 249 sort nodes by space dimension 91 by type 91 sound hard boundary (wall) (node) 640 sound soft boundary (node) 641 source maps 201 source nodes, going to 88

source term (node) 819 source terms, adding 819 space charge density (node) 586 space dimension physics interface nodes 485 toolbar buttons 263 units and 535 space dimensions, selecting 77, 331, 335 space dimensions, units and 535 space-time derivatives 162 space-varying properties 152 spatial at operators 140 spatial coordinate variables 157 spatial coordinates 156, 780 editing names of 438 spatial frames 911-912 special operators, evaluating results 126 specific heat capacity, definition 711 specifying mesh distribution 957 mesh sizes 955 specular light 296 spf.cellRe variable 675 spf.sr variable 693 sphere operators 140 spherical system (node) 235 spherical wave radiation (node) 645 spin tensor 789 split (button) 344 split complex variables 864 splitting geometry objects 344 SPOOLES solver 1225 spotlight (node) 299, 303 spreadsheet data format 1198 spreadsheet data formats 181 stabilization methods 478 stabilization section, expanding 473 stabilization settings 547

standard deviation [18] stationary PDE problems 991 stationary study 984 stationary value 991 step function (node) 190 step functions 193 sticky help 103 stiffness matrix correct versus incorrect 993 Stokes equations 993 stop condition 919 stop sign definition, materials 399, 408 strain 787, 790 axial symmetry 787 engineering form 787 shear 787 tensor form 787 strain tensor 787 strain-charge form 429 strain-displacement relation 787 large displacement 788 small displacement 787 stream ribbons 1056 streamline (node) 1135 streamline diffusion consistent stabilization method 478 fluid flow interfaces 675 streamline diffusion, consistent stabilization methods 726 streamline length 1138 stress 790 Cachy 790 first Piola-Kirchhoff 790 normal 790 second Piola-Kirchhoff 790 shear 790 tensor 790 stress tensor 1129-1130

stress-charge form 429 stress-strain relation 790 Structural Mechanics Module 53 study steps 981, 986 study types 53, 982 eigenfrequency 798 frequency domain, solid mechanics interface 797 pressure acoustics interface 631 selecting 78 stationary, solid mechanics interface 796 subst operator 139 Subsurface Flow Module 54 subtracting geometry, example 354 summation 1016 surface (node) data sets 1036 plots 1142 surface average (node) [18] surface charge density (node) 588 surface current (node) 624 surface integration (node) 1182 surface maximum and minimum (nodes) 1184 surface plots, maximum and minimum 1105 surface-to-ambient radiation (node) 740 sweep type, for animations 1194 swept meshes 963 symbols for physics 758 symmetric interior penalty method (SIPG) 685 symmetries, and Sector data sets 1034 symmetry (node) heat transfer interfaces 739 single-phase flow interfaces 699 solid mechanics interface 776

transport of diluted species interface 664 symmetry, using when modeling 548 syntax errors 124, 534 system information, showing 110 T table (node) exports feature 1200 table graph (node), plots 1144 table surface (node), plots 1146 tables buffer size 463 clearing and deleting 1189 displaying results directly 1191 evaluating for derived values 1188 tags, for nodes 469 tags, HTML 1047 tangent variables 158 tangential derivative variables 162 tangential direction, derivatives in 130 technical support, COMSOL 63 temperature (node) 737 temporal averages 1175 temporary files 465 terminating distance 1138 test functions 131 test operator 131 tetrahedral elements, meshes 941 text formatting and symbols 1047 text symbols 1049 theory constitutive relations 564-565 electric currents 574 electric fields 569 electromagnetics 563 electrostatics interface 572 heat equation definition 710 heat transfer interfaces 709 inlet and outlet boundary conditions

## 682

laminar flow interface 670 magnetic and electric fields 575 magnetic fields interface 579 pressure acoustics interface 631 sensitivity interface 880 single-phase flow interfaces 670 solid mechanics interface 780 transport of diluted species in pipes interface 50 transport of diluted species interface 652 wall distance interface 876 thermal color tables 1051 thermal conductivity, mean effective 732 thermal insulation (node) 738 thermoelastic materials, defining 786 thin client mode 1221 thin diffusion barrier (node) 667 thin low permittivity gap (node) 591 thin thermally resistive layer (node) 743 thumbnails, model images 444 time derivatives constraints for 839 variables and 162 time variables 153 timeavg operator 134 time-dependent general form equations 816 time-dependent PDEs 991 time-dependent study 985 time-harmonic study pressure acoustics 631 timeint operator 134 time-varying properties 152 titles for plots 1046 tolerance edge 1116

relative 1115 repair 336, 341 toolbar cross-section plots 1161 geometric entities 261 geometry 327 graphics window 263 help window 105 main menu 73 meshes 941 Model Library 107 results tables 1190 toolbar style 455 top hat functions 189 topics, searching for help 104 total energy flux variable 717 total force loads 794 total heat flux 740 total heat flux variable 715 total normal heat flux variable 718 total power 736, 741-742, 744 traction boundary conditions 701 traffic color tables 1052 transformation matrix 219 transformations, of global matrices 1186 translation vector 219 translational heat flux variable 717 translational motion (node) 732 transparency 302 transparency (button) 276 transport mechanisms 659 transport of diluted species in pipes theory 50 transport of diluted species interface 655 theory 652 triangle function (node) 191 triangular elements, meshes 940 tuning parameter 478

turbulent heat flux variable 716 two-point map (node) 213 types, for nodes 469 typographical conventions 64 U undefined quantities, evaluating 1045 undo last operation 90 unexpected units 534 unicode-based characters 1047 unidirectional constraints 856 uniform distribution, random functions 189 union 336 union (node) selections 285 union, geometry 350 unit circle in Nyquist plots 1112 unit systems British engineering units 518 CGSA 517 EMU 518 ESU 518 FPS 518 gravitational IPS 519 IPS 519 MPa 518 none 519 selecting 519 SI 517 switching 532 units and space dimensions 535 for function inputs/outputs 171 for PDE interfaces 812, 816 for weak form interfaces 846 of variables 498 standard prefixes for 520 unexpected or unknown 534 units, space dimension and 535

unphysical values 554 UNS number 396 up operator 131 updates preference settings 466 updating COMSOL software 63 COMSOL software, automatically 466 plots 462 the Model Library 452 upside, of normals 159 user community, COMSOL 63 user defined materials 414-415 property group 413 user model library 453 user-controlled meshes 947 using coordinate systems 781 ranges 165 spatial and material coordinates 780 the Model Wizard 436 v value type, global equations 863 value types 477 var operator 131 variables creating 147 editing 168, 497 editing definition 497

eigenvalue 154

field vs. scalar 149

for far fields 1090

geometric 155

expressions, inserting into 1044

for Lagrange multipliers 163

for material properties 392

for spatial coordinates 157

geometric scope 151, 167

global and local 147 Lagrange element 161 loading from a file comments in text files 169 material and spatial coordinates 781 mathematical functions 141 naming conventions 150 niterCMP 677 parameterization 157 predefined 149 refpnt 764 saving 168 scoping 150 shape functions 160 shear rate magnitude 693 spf.cellRe 675 summary of predefined 169 tangent and normal 158 tangential derivative 162 time, frequency, and eigenvalues 153 vector 160 variance 1181 vector-valued expressions and ranges 164.166 velocity (inlet and outlet boundary conditions) 697 velocity (Lorentz term) (node) 621 version numbers, adding to models 448 vertex 260 vertices, definition 259 view (node) 292 view all (button) 278 View menu 471 equations, displaying 497 viewing deformed meshes 920 derived values table 1178

equations 497, 558 geometry sequences, example 361 licenses 468 node names and tags 469 node properties 446 views 2D user-defined 293 camera position 303 default 274 geometry, hiding 278, 306 Graphics window and 274 lighting, transparency, and wireframe rendering 276 user-defined, creating 294 zooming 274 virtual geometry 375 Virtual Geometry Operations 375 virtual geometry operations 313, 375 virtual memory, size of 469 visual feedback icons 114 volume (node), plots 1147 volume average (node) 1181 volume force (node) 693 volume integration (node) 1182 volume maximum and minimum (nodes) 1183 volume plots filtering elements in 1059 volume plots, maximum and minimum 1105 volume plots, principal stress 1129-1130 volume ratio 788 w wall (node) single-phase flow, laminar flow interfaces 694 wall distance interface 875 wall distance interface 873 theory 876

warning (node) geometry 319 warning sign definition, materials 399, 408 warnings 109 wave color tables 1052 wave numbers 632 wave radiation equations, plane, cylindrical, and spherical 644 wave speeds 768 waveform function (node) 192 weak constraint (node) 853 weak constraint settings 547 weak constraints 852 weak contribution (node) 847, 864 weak contribution on mesh boundaries (node) 849 weak expressions 499 weak form interfaces 845 weak form PDE (node) 847 weak-form expressions, editing 497 web sites, COMSOL 63 widescreen displays 70 window titles, customizing for plots 1067 Windows HPC cluster 1216 windows, moving between 70 Winslow smoothing 916 wireframe rendering 276, 460 wireframe rendering (button) 276 with operator 133 work plane clipping button 346 work planes 345, 364 working set, size of 469 Working with the Geometry Sequence 314 Y year, units 526

Young's modulus and Poisson's ratio 428 Young's modulus expression 785 Z zenith axis

of spherical coordinate system 236 zero charge (node) 591 zero flux (node) 822 zero normal mesh displacement (node) 933 zero normal mesh velocity (node) 932 zoom box (button) 274 zoom extents (button) 274 zoom selected (button) 261 zooming 274