

P&S COMSOL[®] Design Tool Lecture Week 3: Introduction to COMSOL

Xinzhi Zhang, Guillaume Zajac

Content

- Software & Physics
- Meshing
- Boundary Conditions
- Source
- Tutorial 3: Young's Slit Experiments

E *H* zürich

Software & Physics

Software & Physics

Simulation Software

Simulation Method

Finite Element Method (FEM)

COMSOL

Finite Difference Time Domain (FDTD)

EHzürich

Software & Physics

Software & Physics

<u>FEM</u>

- 1. Division of space into finite elements
 - Local refinement
 - Almost perfectly conformal
- 2. Formulation of a boundary value problem
 - Field calculated at the node and interpolated at edges
- 3. Elimination of time derivatives (steady state)

Advantages of FEM

Disadvantages of FEM

- + Flexible geometry and meshing
- + Accuracy specification
- + Good for frequency-domain problems
- + Material properties

- Complexity
- Large computational power especially for 3D
- Bandwidth

EHzürich

Software & Physics

Software & Physics

C[°]lumerical

a) TE

 $\bullet H_z$ E_x

<u>FDTD</u>

- 1. Replace derivative with finite difference, discretize in space and time
- 2. Solve resulting difference equations
- 3. Evaluate magnetic field one time-step in future
- 4. Evaluate electric field one time-step in future
- 5. Repeat the previous two steps

• E_z H_x

b) TM

- + Intuitive, direct usage of *E* and *H*-Fields
 - + Nonlinear problems
- + Time-domain, good for broadband problems
- Animated display of evolving fields, suited for wave propagation

- Rectangular mesh
 - Conformality and refinement

c) 3D E

Yee grid

- Material boundaries
- Memory requirement
- Modeling for strong resonances

 H_{x}

Meshing

Software & Physics

FEM, FDTD, BEM...

Frequency Domain, Acoustics, Fluids, Plasma, etc

Domain & Mesh

Meshing

Software & Physics

FEM, FDTD, BEM...

Frequency Domain, Acoustics, Fluids, Plasma, etc

Domain & Mesh

- Discretization of simulation domain
- Mesh size determines accuracy of solution
 - Too large mesh → wrong results
- Accuracy vs. simulation time
 - Too small mesh → very large simulation time
 - If RAM is too low, data is written onto hard drive → ultra large simulation time

MATLAB

Boundary Conditions

Software & Physics

Domain & Mesh

■ COMSOL cādence

Boundary Conditions

FEM, FDTD, BEM...

Frequency Domain, Acoustics, Fluids, Plasma, etc

Types of boundary conditions in COMSOL Perfect Electric Conductor (PEC) Perfect Magnetic Conductor (PMC) Scattering Boundary Condition Periodic Boundaries Condition (PBC) Perfectly Matched Layer (PML)

Boundary Conditions

- Perfect Electric Conductor (PEC)
 - Properties
 - Electric field cannot penetrate \rightarrow reflection of electric field
 - Equivalent to infinite electric conductivity
- Perfect Magnetic Conductor (PMC)
 - Properties
 - Magnetic field cannot penetrate \rightarrow reflection of magnetic field
 - Equivalent to infinite magnetic conductivity
- Scattering Boundary Condition
 - Properties
 - Electric field is absorbed \rightarrow no reflection
- Periodic Boundary Condition
 - For repeating structures
 - Use a unit cell for the analysis
 - Simulates systems expanding infinitely in 1D/2D

Guillaume Zaiac zaiac@ief.ee.ethz.ch

Xinzhi Zhang xinzhi.zhang@ief.ee.ethz.ch

Source

Software & Physics

Domain & Mesh

FEM, FDTD, FDFD, FEM, BEM

Frequency Domain, Acoustics, Fluids, Plasma, etc

Bondary Condition

Source

P&S COMSOL[®] Design Tool Exercise Week 3: Young's Slit Experiments

Xinzhi Zhang, Guillaume Zajac

Content

- Tutorial 3: Young's Slit Experiments
 - Single slit
 - Theory
 - Simulation
 - Double slit
 - Theory
 - Simulation

Young's Slit Experiment: Single Slit

Young's Slit Experiment: Single Slit

Single Slit Point Source

domain_x	20[um]	2E-5 m	length domain
domain_y	20[um]	2E-5 m	width domain
lam0	1550[nm]	1.55E-6 m	wavelength
fO	c_const/lam0	1.9341E14 1/s	frequency
slit_width	lam0/4	3.875E-7 m	slit width
sep	5[um]	5E-6 m	seperation
screen	5[um]	5E-6 m	location of screen
source_x	-9.5[um]	-9.5E-6 m	location of point source
source_box	1[um]	1E-6 m	mesh refinement point source

EHzürich

Young's Slit Experiment: Single Slit – Parametric Sweep Results

0

Young's Slit Experiment: Single Slit – Parametric Sweep Results

Let's take a look at COMSOL

Young's Slit Experiment: Double Slit – Theory

 E_z -Field

Young's Slit Experiment: Double Slit – Theory

Separation Sweep 1 \rightarrow 5 μ m , step: 1 μ m

Next Week

Photonic Waveguide

Mode Analysis

Photonic Integrated Circuits

