
Smoothing sums

T it le: Smoot h sums

Quick descript ion: It is often difficult to evaluate asymptotically sums of the type

but much simpler to deal with

where φ is a smooth function, which vanishes or decays very fast for n larger than N. Such
sums are called smoothed sums.

This trick is useful because it often turns out, either that the original problem leading to the
first type of sums could be treated using the second type; or that understanding the smoothed
sums may be the right path to understanding the first ones.

General discussion: The underlying facts behind this trick are two elementary properties of
harmonic analysis: (1) a Fourier (or similar) transform of a product is the convolution of the
Fourier transforms of the arguments; (2) in the sums above, one of the arguments in the
product is an (implicit) characteristic function of the interval of summation, and Fourier
transforms exchange properties of regularity with properties of decay at infinity, so that after
applying the Fourier transform to the product, the smoothing function becomes a rapidly
decaying factor which simplifies many further analytic manipulations. Thus, this technique
may be interpreted also as some form of regularization.

The effect is the trick is thus to eliminate some purely analytic problems of convergence
which are otherwise unrelated to the main issue of interest. This trick is often especially
useful in situations where the other argument of the product involved is non-negative. In
particular, it is very relevant for asymptotic counting problems in analytic number theory and
related fields. It may also fruitfully be combined with dyadic partition arguments (see this
(unwritten) tricki article).

Prerequisit es: Real analysis and integration theory, complex analysis for some
applications. Elementary harmonic analysis (such as Fourier transforms, or Mellin
transforms, depending on the type of applications). In particular, the two facts indicated above
(behavior with respect to product, and exchange of regularity and decay) are important.

Here are links to the examples to be found below:

Example 1 . (Summation of Fourier series)

Example 2. (Fourier inversion formula)

Example 3. (Estimating sums of arithmetic functions)

Example 4 . (The Prime Number Theorem)

Example 5. (The analytic large-sieve inequality)

Example 6. (The approximate functional equation for ζ(s))

Example 7 . (The explicit formula)

——————————————————————————————–

Example 1. (Summation of Fourier series) If f is a periodic function with period 1 on the real
line, which is integrable (in the Lebesgue sense, say) on the closed interval [0,1], the Fourier
coefficients of f are given by

for any integer n. A basic problem of Fourier analysis is to determine when the Fourier series
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exists and coincides with f.

Let

be the partial sum of this series. We can also interpret the formula as

where the sum is again unbounded, but the Fourier coefficients are “twisted” with the characteristic function of the finite
interval of summation

The multiplication-convolution relation of harmonic analysis and the definition of the Fourier coefficients lead to

where

is the so-called Dirichlet kernel of order N. This convolution expression is very useful to investigate when the partial
sums converge to f(x), but it is well-known that some regularity assumptions on f are needed: there exist integrable
functions f such that the Fourier series diverges almost everywhere, as first shown by Kolmogorov.

A significantly better behavior, for continuous functions f, is obtained if, instead of the partial sums above, the Fejér
sums are considered:

These are our first examples of smoothed sums, since the first expression shows that they differ from the partial sums
by the replacement of the characteristic function φN(x) by the function

which is more regular: it is continuous on R. Intuitively, one may expect a better analytic behavior of those modified
sums because of the averaging involved (by the second expression for the Fejér sums), or because the “smoother”
cut-off at the end of the interval of summation implies that those sums should be less susceptible to sudden violent
oscillations of the size of the Fourier coefficients.

This is visible analytically from the integral expression which is now

where

is the Fejér kernel. Because this kernel is non-negative, it is not very difficult to prove that

for all x if f is continuous. (And in fact, if f is of class C1, it is also easy to deduce that the original partial sum do
converge, proving Dirichlet’s theorem on the convergence of Fourier series for such functions).

T. Tao mentioned in his comments that the modern version of this example, in harmonic analysis, is the theory of
Littlewood-Paley multipliers, and that they are particularly important in the study of partial differential equations and the
associated spaces (such as Sobolev spaces). [A reference for this will be added soon].

Example 2. (Fourier inversion formula) If we consider a function f which is integrable on R, the Fourier transform of f is
the function defined by
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for x in R. The Fourier inversion formula states that if g is itself integrable, then we can recover the function f by the
formula

A first idea to prove this is to replace the values g(x) on the right-hand side of this expression by their definition as an
integral, and apply Fubini’s theorem to exchange the two integrals; this leads formally to

but the problem is that the inner integral over u does not exist in the Lebesgue sense. However, if g is replaced by a
smoother version obtained by multiplying with a function φ which decays fast enough at infinity, then the same
computation leads to

which is now legitimate. Selecting a sequence of such functions φ which converge (pointwise) to the constant function
1, the left-hand side converges to

while a standard Dirac-sequence argument shows that

behaves like a Dirac function at the origin, hence the right-hand side of the smoothed formula converges to f(t).

Not e. In these two first examples, one can see the “regularization” aspect very clearly, and one could also invoke
more abstract ideas of the theory of distributions to express the same arguments. (For instance, for Example 2, one can
say that Fourier inversion holds for the Dirac measure with Fourier transform 1, and that the formal properties involving
convolution then extend the formula to more general functions). In the next examples, involving analytic number
theory, it is often of the greatest importance to have explicitly quantitative estimates at all steps, and this is often more
easily done using computations with functions instead of distributions. However, which functions are used for
smoothing is often of little importance.

Example 3. (Estimating sums of arithmetic functions) Let a(n) be an arithmetic function, or in other words a complex-
valued function defined for positive integers, and let A(x) denote the summatory function

Many different problems of analytic number theory can be expressed as the problem of understanding the asymptotic
behavior of such sums as x goes to infinity. In Example 4, we describe a celebrated example, the Prime Number
Theorem where a(n) is the characteristic function of the set of primes, but here we look at a slightly simpler situation
where we assume that

and that we want to have an upper-bound for A(x), instead of an asymptotic formula. (This weakened goal might be
natural, either because we do not need an asymptotic formula for further applications, or because some uniformity in
parameters is needed which is easier to arrange with upper bounds). Quite often, this is approached by trying to use the
properties of the Dirichlet generating series

provided it converges at least in some half-plane where the real part of s is larger than some C.

Then we can replace the implicit characteristic function of the interval [1,x] in A(x) by any smooth(er) function which is
pointwise larger. For instance, if we choose a function φ as in the graph below
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so that it is smooth, non-negative, compactly supported on [0,2], and such that

then we have

Using the Mellin transform (the multiplicative counterpart to the Fourier transform), we can write

where we integrate over a vertical line in the complex plane with real part σ>0, and

Because we use a compactly supported function, it is easy to justify the exchange of the sum over n and the integral
representing φ(n/x), and obtain

Now we are free to use any technique of complex analysis to try to estimate this integral. The usual idea is to move the

line of integration (using Cauchy’s theorem) as far to the left as possible (since the modulus of xs diminishes when the
real part of s does). For this, clearly, one needs to know how far D(s) can be analytically continued, but it is equally
important to have some control of the integrand high along vertical lines to justify the change of line of integration, and
this depends on the decay properties of the Mellin transform at infinity, which amount exactly to the regularity properties
of φ itself. If φ was the characteristic function of the interval [1,x], then the Mellin transform only decays like 1/s for s
high in a vertical strip, and multiplying this with any functions D(s) which does not tend to 0 leads, at best, to
conditionally convergent integrals. On the other hand, if φ is compactly supported on [0,+∞[, it is very easy to check that
the Mellin transform is not only holomorphic when the real part of s is positive (which allows changing the contour of
integration that far), but also it decaysfaster than any polynomial in vertical strips, so that any D(s) which has at most
polynomial growth in vertical strips can be involved in this manipulation.

(A prototype of this, though it doesn't involve a compactly supported function, is φ(x)=e-x, for which we have

the Gamma function, which decays exponentially fast in vertical strips by the complex Stirling formula: we have

for some constant C, uniformly for σ in any bounded interval and |t|>1).

Finally, even if an asymptotic formula for A(x) is desired, it may be much easier to prove them by using upper and lower
bounds

where
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and the smoothing functions, this time, have graphs as described below

with a parameter y<x which is left free to optimize later on. In a concrete case, one may (for instance) prove -- using the
smoothness of the sums -- that

and then the choice of y=x2/3 and the encadrement above imply that

An example of this is found in the "circle" problem of Gauss, which asks the best possible estimate for the number of
points with integral coordinates inside a disc with increasing radius. Gauss himself, by a simple square-packing
argument proved that

(where the error term can also be interpreted as the approximate length of the boundary circle). The first improvement
of the error term is due to Voronoi

and it is typically proved by smoothing techniques. (Though there are also arguments involving the Euler-Maclaurin
formula).

Note also that, in smoothed form, a much better error term can easily be achieved, for instance

Example 4. (The Prime Number Theorem) The first proofs of the Prime Number Theorem

as x goes to infinity, due (independently) to J. Hadamard and C.J. de la Vallée Poussin in 1896, were implementations
of the previous example, either with a(n) the characteristic function of the primes, or

(which leads to slightly simpler formulas, as already discovered by Chebychev when working with elementary
methods). Both proofs used smoothing in a somewhat implicit form. Hadamard's proof, for instance, amounted roughly
to considering

(where the smoothing is present because the function which is inserted is zero at the end of the summation), and
rewriting it as

where the point is that the smoothing in B(x) is the reason for the appearance of the factor s-2, which itself allows the
integral to converge absolutely, even after shifting the integration to a contour close to but to the left of the line where
the real part of s is 1. Hadamard adds (see the last page) a remark that, in so doing, he avoids the well-deserved
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criticisms levelled by de la Vallée Poussin against those arguments which, being based on A(x) itself, involve an

integral with merely a factor s-1, which do not converge absolutely.

The last step of the proof is then an easy argument, using the fact that A(x) is increasing, that shows that the asymptotic
formula for B(x) implies the expected asymptotic formula for A(x), i.e., the Prime Number Theorem.

There is nothing special about suing this particular form of smoothing; almost any kind would work here.

Note that, in sharp contrast with the circle problem mentioned in Example 3, it is not possible to use smoothing here to
diminish too much the error term in the counting function: because there are infinitely many zeros of the Riemann zeta
function on the critical line, the best possible result is of the type

and this would follow from the Riemann Hypothesis.

Not e. It is of course the case that the proof of the Prime Number Theorem involves much more than this trick of
smoothing! However, it is clearly the case that trying to dispense with it -- as can be done -- means spending a lot of
energy dealing with purely analytic issues of convergence and exchange of sums and integrals, which become
completely obvious after smoothing.

Example 5. (The analytic large-sieve inequality) Sometimes smoothing can be used efficiently for estimating sums
involving oscillating terms (like exponential sums), although no direct comparison holds as it does in Example 3. As an
example, consider the dual analytic large sieve inequality

which can be proved to hold with

for all N, alll complex coefficients a(r), provided the real numbers ξr are δ-spaced modulo 1, i.e., we have

if r is distinct from s.

To prove this inequality one is tempted to open the square on the left-hand side, and bring sum over n inside to obtain

with

This is a geometric sum, and is easily summed, but it is not so easy to get a good grip on it afterwards in summing
over r and s. Although Montgomery and Vaughan succeeded, it is instructive to note that a much quicker argument --
though with a weaker result -- can be obtained by smoothing W(r,s). However, after opening the square, it is not clear
how to insert a smoothing factor without (maybe) changing the sums completely -- since the coefficients a(r) are
arbitrary. So one must insert the smoothing beforehand: the left-hand side of the inequality is non-negative and can be
bounded by

for any smooth function φ which is equal to 1 on [1,N]. This leads to modified sums

which can be evaluated and transformed, for instance, by Poisson’s formula to exploit the rapid decay of the Fourier
transform of φ.

The best functions for this particular example (leading to the inequality with N-1+1/δ) are remarkable analytic functions
studied by Beurling and later Selberg. This illustrates that whereas the particular smoothing function used is often
irrelevant, it may be of great importance and subtlety for specific applications.

Example 6. (The “approximate functional equation”) This next example shows how to use smoothing to represent an
analytic function given by a Dirichlet series outside of the region of absolute convergence, so that it can be analyzed
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further. As an example, the series

converges absolutely only when the real part of s is larger than 1 (it converges conditionally when the real part is
positive). It is known to have analytic continuation to an entire function, but in order to investigate its properties in the
critical strip, say when the real part of s is 1/2, it is necessary to find some convenient alternative expression valid in
this region. [Note that what is explained below applies also to the Riemann zeta function, with a small complication in
presentation due to the presence of a pole at s=1; this is why we describe the case of L(s).]

So assume s has real part between 0 and 1. A common procedure is to pick a non-negative smooth function φ on
[0,+∞[, with compact support or rapide decay, equal to one on a neighborhood of 0, and with

and then consider, for a parameter X>1, the smoothed sum

which makes sense for all s if φ decays fast enough. The role of X is, intuitively, as the effective length of the sum.

Using Mellin inversion as in Example 3, we get

Now shift the vertical line of integration to the left; because L(s) has at most polynomial growth vertical strips (a
non-obvious fact, but one that can be proved without requiring much specific information because of the general
Phragmen-Lindelöf principle) and because the Mellin transform of the smooth function φ decays faster than any
polynomial, this shift is easy to justify.

Now where do we get poles while performing this shift? The recipe for φ (specifically, that it equals 1 close to 0 and has
integral 1) easily imply that φ(w) has a simple pole at w=0 with residue 1, and this leads to a contribution equal to

so that

where the remainder R(X), if we shifted the intregration to the line with real part c is

This can be estimated fairly easily if c is very negative, but one can also use the functional equation of L(s) to express
R(X) as a sum very similar to S(X), except that s is replaced with 1-s, and the new sum has effective length roughly
equal to (|t|+1)/X, where t is the imaginary part of s (the smoothing function is also different). Thus one gets, roughly, an
expression for L(s) as the sum of two sums of lengths, the products of which is equal to |t|+1. This is a very general fact
in the study of L-functions and of the basic tools for the study of their analytic properties.

Example 7. (The “explicit formula” of prime number theory) In his paper on the Riemann zeta function, Riemann
stated that the function π(x) which counts primes up to x is given by

where the sum runs over zeros of ζ(s). This “explicit formula” and similar ones can be very useful to understand many
aspects of the distribution of primes, but this particular one is hard to justify for convergence reasons. However,
provided one looks at a smoothed sum

(which has effective length x), it is a simple exercise in contour integration to obtain an explicit formula which
converges very well, involving a sum over the zeros of the zeta function weighted with the Mellin (or Laplace, or
Fourier) transform of φ.

Generalizations of it to primes in arithmetic progressions or Dirichlet L-functions are very efficient, for instance, in
finding very strong estimates — assuming the Generalized Riemann Hypothesis — for the smallest prime in an
arithmetic progression, or similar problems.
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—————————————————————————————–

References: The technique of smoothing is not usually discussed in detail in textbooks. One exception is in my
introductory book on analytic number theory (in French, so smooth sums are called sommes lisses or sommes
lissées): see Section 2.3 in particular where the technique is introduced; it is then used throughout the book quite
systematically even when — sometimes — it could be dispensed with.

For details of Examples 4, 5, 6, 7, 8, one can look in my book with Henryk Iwaniec (see Chapters 5 and 7 in particular),
although the technique is used there without particular comments.
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